Download citation
Download citation
link to html
In the structure of the title compound 2C18H25N2OTe+·SiF62−·4CHCl3, the bis­[2-(dimethyl­amino­meth­yl)phenyl]­hydroxy­telluronium cations and [SiF6]2− anions are linked via an inter­molecular O—H...F hydrogen bond and a secondary inter­molecular inter­action between Te and F [2.890 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047253/bt2520sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047253/bt2520Isup2.hkl
Contains datablock I

CCDC reference: 664218

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.022
  • wR factor = 0.053
  • Data-to-parameter ratio = 16.8

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT432_ALERT_2_A Short Inter X...Y Contact Te1 .. F2 .. 2.89 Ang.
Author Response: The contact is a secondary intermolecular Te...F contact below the sum of the Te--F van der Waals radii as present in many tellurium--fluorine compounds

Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C19 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C20
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of our recent studies regarding tellurium(II) and tellurium(IV) compounds with the intramolecular donor stabilizing substituent 2-Me2NCH2C6H4 (Hammerl et al., 2007) we obtained the title compound as a decomposition product.

In the title compound two intramolecular interactions between the aminomethyl nitrogen atom and the tellurium atom create two five-membered heterocycles with a 4-coordinated amine moiety (Te1···N1 2.719 (3) and Te1···N2 2.557 (2) Å). The Te1–O1 distance is with 1.9612 (17) Å slightly elongated compared to the calculated bond distance in [Ph2TeOH]+ (1.937 Å, Beckmann et al., 2005). The present hydrogen bridge O1–H1···F1 links the cation with the anion and exhibits a donor acceptor distance of 2.696 (2) Å. The tellurium atom is further coordinated by an intermolecular tellurium–fluorine interaction (Te1–Fi) 2.890 (2) Å) which is significantly shorter than the sum of the tellurium–fluorine van der Waals radii (3.53 Å, Bondi 1964).

Related literature top

For related literature, see: Beckmann et al. (2005); Bondi (1964); Hammerl et al. (2007).

Experimental top

The tellurium(IV) difluoride (2-Me2NCH2C6H4)2TeF2 was prepared according to literature (Hammerl et al., 2007). A solution in chloroform stored for a period of 3 months in a glass vessel at 4°C results in the formation of colorless crystals of the title compound suitable for X-ray diffraction studies. The presence of Si in the structure results from the slow reaction of the tellurium(IV) difluoride with glass.

Refinement top

H atoms were refined with fixed individual displacement parameters [U(H) = 1.2Ueq(C) or U(H) = 1.5Ueq(Cmethyl)] using a riding model with C—H ranging from 0.95 Å, to 1.00 Å. The H atom bonded to O was freely refined.

Structure description top

As part of our recent studies regarding tellurium(II) and tellurium(IV) compounds with the intramolecular donor stabilizing substituent 2-Me2NCH2C6H4 (Hammerl et al., 2007) we obtained the title compound as a decomposition product.

In the title compound two intramolecular interactions between the aminomethyl nitrogen atom and the tellurium atom create two five-membered heterocycles with a 4-coordinated amine moiety (Te1···N1 2.719 (3) and Te1···N2 2.557 (2) Å). The Te1–O1 distance is with 1.9612 (17) Å slightly elongated compared to the calculated bond distance in [Ph2TeOH]+ (1.937 Å, Beckmann et al., 2005). The present hydrogen bridge O1–H1···F1 links the cation with the anion and exhibits a donor acceptor distance of 2.696 (2) Å. The tellurium atom is further coordinated by an intermolecular tellurium–fluorine interaction (Te1–Fi) 2.890 (2) Å) which is significantly shorter than the sum of the tellurium–fluorine van der Waals radii (3.53 Å, Bondi 1964).

For related literature, see: Beckmann et al. (2005); Bondi (1964); Hammerl et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of [(2-Me2NCH2C6H4)2TeOH]2SiF6 with displacement ellipsoids drawn at the 50% probability level, solvent molecules not shown. Symmetry code: (i) 2 - x, -y, 2 - z.
Bis{bis[2-(dimethylaminomethyl)phenyl]hydroxytelluronium} hexafluorosilicate chloroform tetrasolvate top
Crystal data top
2C18H25N2OTe+·F6Si2·4CHCl3F(000) = 1428
Mr = 1445.56Dx = 1.711 (1) Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10976 reflections
a = 9.3260 (2) Åθ = 3.8–30.0°
b = 26.7485 (5) ŵ = 1.69 mm1
c = 12.1579 (3) ÅT = 100 K
β = 112.310 (3)°Block, colourless
V = 2805.84 (12) Å30.27 × 0.17 × 0.16 mm
Z = 2
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
5303 independent reflections
Radiation source: fine-focus sealed tube4543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 15.9809 pixels mm-1θmax = 26.0°, θmin = 3.8°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 3232
Tmin = 0.682, Tmax = 0.760l = 1514
12419 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0248P)2 + 1.7973P]
where P = (Fo2 + 2Fc2)/3
5303 reflections(Δ/σ)max = 0.002
316 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
2C18H25N2OTe+·F6Si2·4CHCl3V = 2805.84 (12) Å3
Mr = 1445.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.3260 (2) ŵ = 1.69 mm1
b = 26.7485 (5) ÅT = 100 K
c = 12.1579 (3) Å0.27 × 0.17 × 0.16 mm
β = 112.310 (3)°
Data collection top
Oxford Xcalibur3 CCD area-detector
diffractometer
5303 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
4543 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.760Rint = 0.020
12419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.70 e Å3
5303 reflectionsΔρmin = 0.47 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Details of H atom refinement: H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C–H = 0.95 (CaromH), 1.00 (CH), 0.99 (CH2), 0.98 Å (CH3) and with Uiso(H) = kUeq(carrier atom), where k = 1.2 for CH2 and CH, and 1.5 for CH3. Atom H1 was located in a difference Fourier map and the position refined with the restraint O–H = 0.84 Å. The highest peak and deepest hole in the final difference map were located 0.82 and 0.77 Å, respectively, from atom Cl6.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.657332 (16)0.106265 (5)0.882461 (12)0.01500 (5)
N20.3736 (2)0.08058 (7)0.82241 (16)0.0177 (4)
N10.7151 (2)0.13877 (7)0.69141 (17)0.0211 (4)
C140.4448 (3)0.08912 (9)1.1451 (2)0.0234 (5)
H140.34420.08231.14370.028*
O10.86846 (18)0.13175 (6)0.96468 (14)0.0206 (3)
C160.3275 (3)0.09072 (9)0.9225 (2)0.0210 (5)
H16A0.25640.06410.92700.025*
H16B0.27060.12290.90880.025*
C130.5689 (3)0.09495 (9)1.2530 (2)0.0256 (5)
H130.55280.09211.32510.031*
C10.5838 (2)0.18220 (8)0.84948 (19)0.0161 (4)
C90.5761 (3)0.12922 (10)0.5851 (2)0.0281 (6)
H9A0.56430.09310.57040.042*
H9B0.58580.14590.51680.042*
H9C0.48470.14220.59670.042*
C60.6282 (3)0.21139 (9)0.7725 (2)0.0199 (5)
C180.2607 (3)0.10074 (10)0.7101 (2)0.0278 (6)
H18A0.29530.09330.64550.042*
H18B0.25260.13700.71710.042*
H18C0.15880.08540.69270.042*
C170.3917 (3)0.02619 (9)0.8115 (2)0.0274 (6)
H17A0.42290.01960.74480.041*
H17B0.29270.00940.79740.041*
H17C0.47160.01340.88510.041*
C70.7367 (3)0.19189 (9)0.7170 (2)0.0221 (5)
H7A0.71800.21030.64230.026*
H7B0.84550.19810.77180.026*
C100.6168 (3)0.10249 (8)1.0427 (2)0.0166 (4)
C40.4903 (3)0.28133 (9)0.8102 (2)0.0283 (6)
H40.45610.31500.79490.034*
C50.5788 (3)0.26103 (9)0.7539 (2)0.0267 (5)
H50.60700.28120.70120.032*
C120.7166 (3)0.10490 (9)1.2563 (2)0.0255 (5)
H120.80090.10951.33050.031*
C80.8526 (3)0.11594 (10)0.6818 (3)0.0317 (6)
H8A0.83380.08020.66480.048*
H8B0.94230.12030.75690.048*
H8C0.87360.13200.61740.048*
C110.7411 (3)0.10819 (9)1.1516 (2)0.0222 (5)
H110.84260.11431.15400.027*
C150.4664 (3)0.09319 (8)1.0388 (2)0.0179 (5)
C20.4969 (3)0.20344 (8)0.9081 (2)0.0201 (5)
H20.46900.18380.96170.024*
C30.4509 (3)0.25304 (9)0.8888 (2)0.0253 (5)
H30.39240.26750.92950.030*
Si11.00000.00001.00000.01539 (18)
F11.07064 (15)0.05684 (5)1.06107 (11)0.0210 (3)
F21.17733 (16)0.01661 (5)1.00741 (14)0.0320 (3)
F31.04137 (18)0.02414 (5)1.13490 (12)0.0310 (3)
Cl40.97905 (14)0.29009 (3)0.96386 (8)0.0668 (3)
Cl61.18389 (9)0.20509 (4)1.02213 (8)0.0558 (2)
C201.0230 (3)0.23273 (10)1.0382 (2)0.0285 (6)
H200.93160.21001.00200.034*
Cl20.18542 (8)0.11551 (2)0.34050 (7)0.03729 (16)
Cl30.34958 (8)0.02133 (3)0.38681 (7)0.03718 (16)
Cl51.05725 (9)0.24076 (3)1.18901 (6)0.0486 (2)
Cl10.05482 (9)0.02905 (3)0.40971 (7)0.04611 (19)
C190.1657 (3)0.05000 (9)0.3308 (2)0.0237 (5)
H190.11120.04050.24530.028*
H10.930 (3)0.1078 (7)0.992 (2)0.031 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01481 (8)0.01247 (8)0.01868 (8)0.00000 (6)0.00752 (6)0.00070 (6)
N20.0176 (10)0.0158 (10)0.0204 (9)0.0004 (8)0.0082 (8)0.0016 (8)
N10.0251 (11)0.0199 (10)0.0217 (10)0.0011 (8)0.0129 (9)0.0021 (8)
C140.0322 (14)0.0148 (11)0.0296 (13)0.0004 (10)0.0191 (11)0.0003 (10)
O10.0148 (8)0.0165 (8)0.0285 (9)0.0005 (7)0.0062 (7)0.0028 (7)
C160.0189 (12)0.0194 (12)0.0273 (12)0.0010 (9)0.0119 (10)0.0011 (10)
C130.0403 (15)0.0192 (12)0.0217 (12)0.0033 (11)0.0168 (11)0.0011 (10)
C10.0150 (11)0.0133 (11)0.0171 (11)0.0000 (8)0.0030 (9)0.0010 (9)
C90.0355 (15)0.0259 (13)0.0232 (12)0.0027 (11)0.0117 (11)0.0026 (11)
C60.0198 (12)0.0191 (11)0.0175 (11)0.0037 (9)0.0036 (9)0.0008 (9)
C180.0191 (12)0.0390 (15)0.0220 (12)0.0011 (11)0.0044 (10)0.0006 (11)
C170.0305 (14)0.0168 (12)0.0392 (15)0.0064 (10)0.0182 (12)0.0068 (11)
C70.0261 (13)0.0193 (12)0.0223 (12)0.0038 (10)0.0110 (10)0.0028 (10)
C100.0216 (11)0.0107 (10)0.0199 (11)0.0028 (9)0.0105 (9)0.0019 (9)
C40.0368 (15)0.0127 (11)0.0327 (14)0.0026 (10)0.0105 (12)0.0019 (10)
C50.0353 (14)0.0175 (12)0.0255 (12)0.0035 (11)0.0098 (11)0.0053 (10)
C120.0358 (14)0.0199 (12)0.0179 (11)0.0015 (11)0.0073 (11)0.0021 (10)
C80.0366 (15)0.0326 (15)0.0355 (15)0.0094 (12)0.0246 (13)0.0085 (12)
C110.0223 (12)0.0179 (12)0.0251 (12)0.0018 (10)0.0078 (10)0.0002 (10)
C150.0223 (12)0.0099 (10)0.0230 (12)0.0005 (9)0.0106 (10)0.0003 (9)
C20.0199 (12)0.0167 (11)0.0236 (12)0.0004 (9)0.0082 (10)0.0021 (9)
C30.0291 (14)0.0165 (12)0.0303 (13)0.0017 (10)0.0115 (11)0.0026 (10)
Si10.0146 (4)0.0148 (4)0.0151 (4)0.0008 (3)0.0038 (3)0.0011 (3)
F10.0208 (7)0.0178 (7)0.0202 (7)0.0000 (5)0.0032 (6)0.0005 (5)
F20.0208 (8)0.0208 (7)0.0573 (10)0.0026 (6)0.0183 (7)0.0015 (7)
F30.0509 (10)0.0212 (7)0.0166 (7)0.0042 (7)0.0084 (7)0.0035 (6)
Cl40.1229 (9)0.0308 (4)0.0442 (5)0.0042 (5)0.0295 (5)0.0048 (3)
Cl60.0359 (4)0.0773 (6)0.0648 (5)0.0022 (4)0.0311 (4)0.0307 (5)
C200.0310 (14)0.0265 (13)0.0319 (14)0.0031 (11)0.0165 (12)0.0046 (11)
Cl20.0358 (4)0.0240 (3)0.0439 (4)0.0009 (3)0.0063 (3)0.0025 (3)
Cl30.0264 (3)0.0305 (3)0.0503 (4)0.0026 (3)0.0101 (3)0.0028 (3)
Cl50.0502 (5)0.0688 (5)0.0305 (4)0.0299 (4)0.0197 (3)0.0049 (4)
Cl10.0460 (4)0.0547 (5)0.0493 (4)0.0008 (4)0.0312 (4)0.0102 (4)
C190.0254 (13)0.0230 (13)0.0216 (12)0.0005 (10)0.0077 (10)0.0011 (10)
Geometric parameters (Å, º) top
Te1—O11.9612 (17)C17—H17C0.9800
Te1—C102.123 (2)C7—H7A0.9900
Te1—C12.132 (2)C7—H7B0.9900
Te1—N22.557 (2)C10—C111.398 (3)
Te1—N12.719 (3)C10—C151.407 (3)
N2—C161.462 (3)C4—C51.373 (4)
N2—C181.474 (3)C4—C31.378 (3)
N2—C171.477 (3)C4—H40.9500
N1—C71.452 (3)C5—H50.9500
N1—C91.464 (3)C12—C111.379 (3)
N1—C81.465 (3)C12—H120.9500
C14—C131.390 (3)C8—H8A0.9800
C14—C151.386 (3)C8—H8B0.9800
C14—H140.9500C8—H8C0.9800
O1—H10.84 (2)C11—H110.9500
C16—C151.514 (3)C2—C31.386 (3)
C16—H16A0.9900C2—H20.9500
C16—H16B0.9900C3—H30.9500
C13—C121.388 (4)Si1—F3i1.6659 (14)
C13—H130.9500Si1—F31.6659 (14)
C1—C21.388 (3)Si1—F21.6808 (13)
C1—C61.397 (3)Si1—F2i1.6808 (13)
C9—H9A0.9800Si1—F1i1.7091 (13)
C9—H9B0.9800Si1—F11.7091 (13)
C9—H9C0.9800Cl4—C201.748 (3)
C6—C51.395 (3)Cl6—C201.750 (3)
C6—C71.511 (3)C20—Cl51.751 (2)
C18—H18A0.9800C20—H201.0000
C18—H18B0.9800Cl2—C191.761 (2)
C18—H18C0.9800Cl3—C191.762 (3)
C17—H17A0.9800Cl1—C191.748 (3)
C17—H17B0.9800C19—H191.0000
O1—Te1—C1092.46 (9)C6—C7—H7A109.2
O1—Te1—C187.35 (7)N1—C7—H7B109.2
C10—Te1—C193.44 (8)C6—C7—H7B109.2
O1—Te1—N2165.62 (6)H7A—C7—H7B107.9
C10—Te1—N273.97 (8)C11—C10—C15120.6 (2)
C1—Te1—N288.75 (7)C11—C10—Te1119.44 (17)
O1—Te1—N2165.62 (6)C15—C10—Te1119.99 (17)
C10—Te1—N273.97 (8)C5—C4—C3120.0 (2)
C1—Te1—N288.75 (7)C5—C4—H4119.9
O1—Te1—N180.68 (6)C3—C4—H4119.9
C10—Te1—N1163.99 (7)C4—C5—C6121.3 (2)
C1—Te1—N171.86 (7)C4—C5—H5119.3
N1—Te1—N2111.17 (6)C6—C5—H5119.3
C16—N2—C18111.85 (18)C11—C12—C13119.7 (2)
C16—N2—C17109.71 (18)C11—C12—H12120.0
C18—N2—C17110.1 (2)C13—C12—H12120.0
C16—N2—Te1108.18 (14)N1—C8—H8A109.5
C18—N2—Te1117.65 (15)N1—C8—H8B109.5
C17—N2—Te198.58 (14)H8A—C8—H8B109.5
C7—N1—C9111.36 (19)N1—C8—H8C109.5
C7—N1—C8111.8 (2)H8A—C8—H8C109.5
C9—N1—C8111.2 (2)H8B—C8—H8C109.5
C13—C14—C15120.5 (2)C12—C11—C10119.9 (2)
C13—C14—H14119.7C12—C11—H11120.0
C15—C14—H14119.7C10—C11—H11120.0
Te1—O1—H1110 (2)C14—C15—C10118.6 (2)
N2—C16—C15111.64 (18)C14—C15—C16119.5 (2)
N2—C16—H16A109.3C10—C15—C16121.9 (2)
C15—C16—H16A109.3C3—C2—C1120.4 (2)
N2—C16—H16B109.3C3—C2—H2119.8
C15—C16—H16B109.3C1—C2—H2119.8
H16A—C16—H16B108.0C4—C3—C2119.7 (2)
C14—C13—C12120.7 (2)C4—C3—H3120.1
C14—C13—H13119.9C2—C3—H3120.1
C12—C13—H13119.9F3i—Si1—F3180.0
C2—C1—C6119.9 (2)F3i—Si1—F290.61 (8)
C2—C1—Te1120.04 (16)F3—Si1—F289.39 (8)
C6—C1—Te1120.04 (16)F3i—Si1—F2i89.39 (8)
N1—C9—H9A109.5F3—Si1—F2i90.61 (8)
N1—C9—H9B109.5F2—Si1—F2i180.0
H9A—C9—H9B109.5F3i—Si1—F1i90.58 (6)
N1—C9—H9C109.5F3—Si1—F1i89.42 (6)
H9A—C9—H9C109.5F2—Si1—F1i89.85 (7)
H9B—C9—H9C109.5F2i—Si1—F1i90.16 (7)
C5—C6—C1118.4 (2)F3i—Si1—F189.42 (6)
C5—C6—C7119.5 (2)F3—Si1—F190.58 (6)
C1—C6—C7122.0 (2)F2—Si1—F190.16 (7)
N2—C18—H18A109.5F2i—Si1—F189.85 (7)
N2—C18—H18B109.5F1i—Si1—F1180.00 (4)
H18A—C18—H18B109.5Cl4—C20—Cl6110.85 (16)
N2—C18—H18C109.5Cl4—C20—Cl5110.32 (14)
H18A—C18—H18C109.5Cl6—C20—Cl5110.22 (14)
H18B—C18—H18C109.5Cl4—C20—H20108.4
N2—C17—H17A109.5Cl6—C20—H20108.4
N2—C17—H17B109.5Cl5—C20—H20108.4
H17A—C17—H17B109.5Cl1—C19—Cl3109.93 (13)
N2—C17—H17C109.5Cl1—C19—Cl2110.45 (13)
H17A—C17—H17C109.5Cl3—C19—Cl2110.30 (13)
H17B—C17—H17C109.5Cl1—C19—H19108.7
N1—C7—C6111.86 (19)Cl3—C19—H19108.7
N1—C7—H7A109.2Cl2—C19—H19108.7
O1—Te1—N2—C164.3 (3)C1—C6—C7—N134.1 (3)
C10—Te1—N2—C1615.43 (14)O1—Te1—C10—C1111.54 (18)
C1—Te1—N2—C1678.50 (14)C1—Te1—C10—C1198.90 (18)
O1—Te1—N2—C18123.6 (3)N2—Te1—C10—C11173.30 (19)
C10—Te1—N2—C18143.28 (17)O1—Te1—C10—C15169.89 (17)
C1—Te1—N2—C1849.36 (17)C1—Te1—C10—C1582.53 (18)
O1—Te1—N2—C17118.5 (3)N2—Te1—C10—C155.27 (16)
C10—Te1—N2—C1798.76 (15)C3—C4—C5—C61.3 (4)
C1—Te1—N2—C17167.31 (15)C1—C6—C5—C40.7 (4)
C18—N2—C16—C15153.0 (2)C7—C6—C5—C4174.8 (2)
C17—N2—C16—C1584.5 (2)C14—C13—C12—C111.1 (4)
Te1—N2—C16—C1522.1 (2)C13—C12—C11—C101.3 (3)
C15—C14—C13—C120.1 (4)C15—C10—C11—C120.2 (3)
O1—Te1—C1—C2109.56 (18)Te1—C10—C11—C12178.82 (17)
C10—Te1—C1—C217.04 (18)C13—C14—C15—C101.1 (3)
N2—Te1—C1—C256.51 (18)C13—C14—C15—C16175.2 (2)
O1—Te1—C1—C667.85 (18)C11—C10—C15—C140.9 (3)
C10—Te1—C1—C6160.37 (18)Te1—C10—C15—C14177.65 (16)
N2—Te1—C1—C6126.08 (18)C11—C10—C15—C16175.3 (2)
C2—C1—C6—C52.1 (3)Te1—C10—C15—C166.1 (3)
Te1—C1—C6—C5179.50 (17)N2—C16—C15—C14162.94 (19)
C2—C1—C6—C7173.3 (2)N2—C16—C15—C1020.9 (3)
Te1—C1—C6—C74.1 (3)C6—C1—C2—C31.5 (3)
C9—N1—C7—C676.6 (2)Te1—C1—C2—C3178.88 (18)
C8—N1—C7—C6158.1 (2)C5—C4—C3—C22.0 (4)
C5—C6—C7—N1150.6 (2)C1—C2—C3—C40.6 (4)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F10.84 (2)1.86 (2)2.696 (2)177 (3)

Experimental details

Crystal data
Chemical formula2C18H25N2OTe+·F6Si2·4CHCl3
Mr1445.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.3260 (2), 26.7485 (5), 12.1579 (3)
β (°) 112.310 (3)
V3)2805.84 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.27 × 0.17 × 0.16
Data collection
DiffractometerOxford Xcalibur3 CCD area-detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.682, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
12419, 5303, 4543
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.04
No. of reflections5303
No. of parameters316
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.47

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F10.84 (2)1.86 (2)2.696 (2)177 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds