Download citation
Download citation
link to html
The title compound, C14H11N3S, exists as a thione and has a Z conformation about the central C—N bond. The phenyl ring is twisted out of the plane defining the rest of the mol­ecule [dihedral angle = 64.73 (8)°]. In the crystal structure, mol­ecules associate into pairs via N—H...N bonds and stack into columns via C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045734/bv2071sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045734/bv2071Isup2.hkl
Contains datablock I

CCDC reference: 663813

Key indicators

  • Single-crystal X-ray study
  • T = 98 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.030
  • wR factor = 0.069
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level B ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.506 1.000 Tmin(prime) and Tmax expected: 0.898 0.995 RR(prime) = 0.561 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_B Tmax/Tmin Range Test RR' too Large ............. 0.56
Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H5 .. S1 .. 3.14 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6 .. S1 .. 3.17 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C6 .. S1 .. 4.04 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.995 Tmax scaled 0.995 Tmin scaled 0.503 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.50 From the CIF: _reflns_number_total 2202 Count of symmetry unique reflns 1357 Completeness (_total/calc) 162.27% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 845 Fraction of Friedel pairs measured 0.623 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The preparation and crystal structures of series of compounds containing molecules related to the title compound (I), i.e. with the general formula PhNC(=S)R (R = pyrazolyl, 3,5-dimethylpyrazolyl and 3,5-diphenylpyrazolyl) and PhNC(=S)NRR' (R = alkyl or aryl) have been reported recently (Hossaini Sadr, Sardroodi et al., 2005; Hossaini Sadr, Jalili et al., 2005; Henderson et al., 2006). Compound (I) exists as a thione, C8=S1 is 1.6545 (19) Å, and the conformation about the C8—N3 bond is Z. The molecule is non-planar as the phenyl ring is twisted out of the plane of the central chromophore as manifested in the C8/N3/C9/C10 torsion angle of 51.7 (2)°. In the crystal structure, molecules related by 2-fold symmetry associate via N—H···N hydrogen bonds, Table 1. Pairs of molecules are connected by C—H···π interactions [C1—H1···Cg(C9—C14) = 2.47 Å for symmetry operation 1 - x, 1 + y, -z] on either side to form columns parallel to the b axis. Connections between columns are afforded by weak C—H···S interactions; the S1 forms two such contacts with different molecules of the adjacent chain, Table 1. A view of the unit-cell contents is shown in Fig. 2.

Related literature top

For related literature, see: Hossaini Sadr, Sardroodi et al. (2005); Hossaini Sadr, Jalili et al. (2005); Henderson et al. (2006).

Experimental top

A solution of indazole (1.18 g, 10 mmol) in dry n-hexane (25 ml) was treated with solid NaH (55%, 0.44 g, 10 mmol) under an N2 atmosphere. Liberation of H2 stopped after 3 h stirring. PhNCS (1.2 ml, 10 mmol) was added to the resulting suspension of [Na][Indz] and the reaction was continued overnight at r.t. The suspension was filtered using a fritted funnel and the collected white solid, [Na][PhNCSIndz], was washed with cold n-hexane (3 x 10 ml) and dried in vacuo; yield 2.60 g, 95%. M.p. = 240 °C (melting along with colour change and decomposition). Colourless crystals of (I) were obtained unintentionally as the decomposition product of an authenticated sample of Bu2Sn(PhNCSIndz)2 during attempts to grow crystals from heptane solution in air; M.p. = 90 °C.

Refinement top

All C– and N-bound H atoms were included in the riding-model approximation, with C—H = 0.95 Å and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(C, N).

Structure description top

The preparation and crystal structures of series of compounds containing molecules related to the title compound (I), i.e. with the general formula PhNC(=S)R (R = pyrazolyl, 3,5-dimethylpyrazolyl and 3,5-diphenylpyrazolyl) and PhNC(=S)NRR' (R = alkyl or aryl) have been reported recently (Hossaini Sadr, Sardroodi et al., 2005; Hossaini Sadr, Jalili et al., 2005; Henderson et al., 2006). Compound (I) exists as a thione, C8=S1 is 1.6545 (19) Å, and the conformation about the C8—N3 bond is Z. The molecule is non-planar as the phenyl ring is twisted out of the plane of the central chromophore as manifested in the C8/N3/C9/C10 torsion angle of 51.7 (2)°. In the crystal structure, molecules related by 2-fold symmetry associate via N—H···N hydrogen bonds, Table 1. Pairs of molecules are connected by C—H···π interactions [C1—H1···Cg(C9—C14) = 2.47 Å for symmetry operation 1 - x, 1 + y, -z] on either side to form columns parallel to the b axis. Connections between columns are afforded by weak C—H···S interactions; the S1 forms two such contacts with different molecules of the adjacent chain, Table 1. A view of the unit-cell contents is shown in Fig. 2.

For related literature, see: Hossaini Sadr, Sardroodi et al. (2005); Hossaini Sadr, Jalili et al. (2005); Henderson et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku Americas Corporation, 2005); cell refinement: CrystalClear (Rigaku Americas Corporation, 2005); data reduction: CrystalClear (Rigaku Americas Corporation, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. View of the crystal packing in (I) down the b axis. The N—H···N hydrogen bonds are shown as orange-dashed lines. Colour code: yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).
N-Phenylindazole-1-thiocarboxamide top
Crystal data top
C14H11N3SF(000) = 528
Mr = 253.32Dx = 1.416 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71070 Å
Hall symbol: C 2yCell parameters from 5144 reflections
a = 20.408 (8) Åθ = 3.4–29.6°
b = 5.690 (2) ŵ = 0.26 mm1
c = 11.949 (5) ÅT = 98 K
β = 121.110 (14)°Prism, colourless
V = 1188.0 (8) Å30.42 × 0.12 × 0.02 mm
Z = 4
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2202 independent reflections
Radiation source: fine-focus sealed tube2160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2525
Tmin = 0.506, Tmax = 1.000k = 76
6334 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.0876P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2202 reflectionsΔρmax = 0.22 e Å3
163 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 845 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C14H11N3SV = 1188.0 (8) Å3
Mr = 253.32Z = 4
Monoclinic, C2Mo Kα radiation
a = 20.408 (8) ŵ = 0.26 mm1
b = 5.690 (2) ÅT = 98 K
c = 11.949 (5) Å0.42 × 0.12 × 0.02 mm
β = 121.110 (14)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2202 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2160 reflections with I > 2σ(I)
Tmin = 0.506, Tmax = 1.000Rint = 0.023
6334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.22 e Å3
S = 1.05Δρmin = 0.19 e Å3
2202 reflectionsAbsolute structure: Flack (1983), 845 Friedel pairs
163 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53512 (3)0.82070 (8)0.39615 (4)0.02211 (12)
N10.45431 (9)1.0153 (3)0.15952 (14)0.0166 (3)
N20.43439 (9)1.0280 (3)0.02939 (14)0.0192 (3)
N30.55419 (8)0.7817 (3)0.19105 (13)0.0170 (3)
H30.54070.82840.11180.020*
C10.38502 (11)1.1986 (4)0.02293 (18)0.0205 (4)
H10.36181.24430.11190.025*
C20.36965 (9)1.3095 (4)0.06872 (15)0.0183 (4)
C30.32405 (11)1.4985 (4)0.0617 (2)0.0230 (4)
H3A0.29351.58150.01780.028*
C40.32458 (11)1.5613 (4)0.1736 (2)0.0244 (4)
H40.29431.68990.17170.029*
C50.36970 (11)1.4360 (4)0.29058 (19)0.0237 (4)
H50.36891.48270.36620.028*
C60.41493 (11)1.2485 (4)0.29997 (17)0.0215 (4)
H60.44481.16520.37960.026*
C70.41481 (10)1.1861 (3)0.18606 (17)0.0167 (4)
C80.51513 (10)0.8685 (3)0.24509 (16)0.0174 (4)
C90.61595 (10)0.6190 (3)0.25473 (16)0.0154 (4)
C100.60810 (11)0.4125 (4)0.30926 (17)0.0189 (4)
H100.56100.37790.30390.023*
C110.66871 (11)0.2582 (3)0.37105 (17)0.0205 (4)
H110.66350.11880.40950.025*
C120.73743 (10)0.3055 (4)0.37739 (16)0.0208 (4)
H120.77930.19960.42070.025*
C130.74437 (11)0.5080 (3)0.32012 (18)0.0201 (4)
H130.79080.53930.32260.024*
C140.68392 (10)0.6660 (3)0.25904 (17)0.0185 (4)
H140.68910.80540.22050.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0249 (2)0.0273 (3)0.0173 (2)0.0050 (2)0.01318 (17)0.0041 (2)
N10.0174 (8)0.0192 (8)0.0148 (7)0.0017 (6)0.0094 (6)0.0010 (6)
N20.0223 (8)0.0217 (9)0.0152 (7)0.0009 (7)0.0109 (6)0.0016 (6)
N30.0174 (7)0.0209 (9)0.0143 (6)0.0022 (6)0.0093 (6)0.0031 (6)
C10.0216 (9)0.0223 (10)0.0186 (9)0.0037 (8)0.0111 (7)0.0034 (8)
C20.0162 (8)0.0204 (9)0.0195 (8)0.0004 (9)0.0101 (7)0.0003 (9)
C30.0210 (10)0.0219 (10)0.0248 (10)0.0021 (8)0.0110 (8)0.0013 (8)
C40.0196 (10)0.0234 (11)0.0323 (10)0.0033 (8)0.0149 (8)0.0027 (8)
C50.0217 (10)0.0288 (11)0.0236 (10)0.0023 (9)0.0139 (8)0.0074 (8)
C60.0201 (9)0.0276 (12)0.0203 (9)0.0011 (8)0.0129 (8)0.0024 (8)
C70.0145 (9)0.0161 (9)0.0213 (9)0.0019 (7)0.0105 (7)0.0022 (7)
C80.0162 (8)0.0189 (11)0.0170 (8)0.0020 (7)0.0086 (7)0.0004 (7)
C90.0168 (9)0.0154 (9)0.0116 (8)0.0008 (7)0.0056 (7)0.0005 (7)
C100.0191 (9)0.0203 (9)0.0168 (8)0.0011 (8)0.0091 (7)0.0006 (7)
C110.0240 (10)0.0197 (11)0.0168 (8)0.0001 (8)0.0097 (7)0.0007 (7)
C120.0175 (8)0.0219 (9)0.0180 (8)0.0024 (9)0.0055 (7)0.0035 (8)
C130.0182 (9)0.0213 (10)0.0219 (9)0.0016 (8)0.0112 (8)0.0058 (8)
C140.0199 (9)0.0181 (10)0.0182 (9)0.0020 (7)0.0104 (7)0.0018 (7)
Geometric parameters (Å, º) top
S1—C81.6545 (19)C5—C61.377 (3)
N1—N21.391 (2)C5—H50.9500
N1—C71.399 (2)C6—C71.405 (3)
N1—C81.405 (2)C6—H60.9500
N2—C11.303 (3)C9—C141.387 (3)
N3—C81.352 (2)C9—C101.393 (3)
N3—C91.426 (2)C10—C111.379 (3)
N3—H30.8800C10—H100.9500
C1—C21.432 (3)C11—C121.391 (3)
C1—H10.9500C11—H110.9500
C2—C31.396 (3)C12—C131.384 (3)
C2—C71.405 (3)C12—H120.9500
C3—C41.378 (3)C13—C141.390 (3)
C3—H3A0.9500C13—H130.9500
C4—C51.407 (3)C14—H140.9500
C4—H40.9500
N2—N1—C7110.34 (14)N1—C7—C2106.18 (15)
N2—N1—C8118.84 (14)N1—C7—C6132.99 (17)
C7—N1—C8130.08 (15)C2—C7—C6120.82 (18)
C1—N2—N1106.36 (15)N3—C8—N1112.77 (15)
C8—N3—C9123.98 (14)N3—C8—S1125.95 (14)
C8—N3—H3118.0N1—C8—S1121.26 (13)
C9—N3—H3118.0C14—C9—C10120.00 (17)
N2—C1—C2112.47 (17)C14—C9—N3119.07 (16)
N2—C1—H1123.8C10—C9—N3120.92 (17)
C2—C1—H1123.8C11—C10—C9119.97 (18)
C3—C2—C7121.21 (16)C11—C10—H10120.0
C3—C2—C1134.13 (17)C9—C10—H10120.0
C7—C2—C1104.65 (17)C10—C11—C12120.40 (18)
C4—C3—C2118.07 (18)C10—C11—H11119.8
C4—C3—H3A121.0C12—C11—H11119.8
C2—C3—H3A121.0C13—C12—C11119.46 (18)
C3—C4—C5120.36 (19)C13—C12—H12120.3
C3—C4—H4119.8C11—C12—H12120.3
C5—C4—H4119.8C12—C13—C14120.55 (17)
C6—C5—C4122.72 (18)C12—C13—H13119.7
C6—C5—H5118.6C14—C13—H13119.7
C4—C5—H5118.6C9—C14—C13119.60 (18)
C5—C6—C7116.82 (17)C9—C14—H14120.2
C5—C6—H6121.6C13—C14—H14120.2
C7—C6—H6121.6
C7—N1—N2—C10.2 (2)C5—C6—C7—N1177.58 (19)
C8—N1—N2—C1170.97 (16)C5—C6—C7—C20.7 (3)
N1—N2—C1—C20.3 (2)C9—N3—C8—N1176.69 (16)
N2—C1—C2—C3178.1 (2)C9—N3—C8—S15.0 (3)
N2—C1—C2—C70.7 (2)N2—N1—C8—N39.0 (2)
C7—C2—C3—C40.1 (3)C7—N1—C8—N3160.10 (18)
C1—C2—C3—C4178.5 (2)N2—N1—C8—S1172.60 (13)
C2—C3—C4—C50.4 (3)C7—N1—C8—S118.3 (3)
C3—C4—C5—C60.2 (3)C8—N3—C9—C14129.93 (19)
C4—C5—C6—C70.4 (3)C8—N3—C9—C1051.7 (2)
N2—N1—C7—C20.61 (19)C14—C9—C10—C112.0 (3)
C8—N1—C7—C2169.24 (17)N3—C9—C10—C11179.65 (16)
N2—N1—C7—C6179.06 (19)C9—C10—C11—C121.1 (3)
C8—N1—C7—C69.2 (3)C10—C11—C12—C130.6 (3)
C3—C2—C7—N1178.21 (17)C11—C12—C13—C141.4 (3)
C1—C2—C7—N10.76 (19)C10—C9—C14—C131.2 (3)
C3—C2—C7—C60.5 (3)N3—C9—C14—C13179.58 (16)
C1—C2—C7—C6179.44 (17)C12—C13—C14—C90.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.882.303.097 (3)151
C5—H5···S1ii0.953.143.881 (2)136
C6—H6···S1iii0.953.174.040 (3)153
C1—H1···Cg(C9–C14)iv0.95???2.47???
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H11N3S
Mr253.32
Crystal system, space groupMonoclinic, C2
Temperature (K)98
a, b, c (Å)20.408 (8), 5.690 (2), 11.949 (5)
β (°) 121.110 (14)
V3)1188.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.42 × 0.12 × 0.02
Data collection
DiffractometerRigaku AFC12κ/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.506, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6334, 2202, 2160
Rint0.023
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 1.05
No. of reflections2202
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19
Absolute structureFlack (1983), 845 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: CrystalClear (Rigaku Americas Corporation, 2005), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.882.303.097 (3)151
C5—H5···S1ii0.953.143.881 (2)136
C6—H6···S1iii0.953.174.040 (3)153
C1—H1···Cg(C9–C14)iv0.95???2.47???
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds