Download citation
Download citation
link to html
The title compound, C14H14O3, was obtained by the Williamson method using 2,2′-dihydr­oxy-1,1′-biphenyl with chloro­hydrin. The asymmetric unit contains two crystallographically independent mol­ecules which differ slightly in the orientations of the hydroxy­ethoxy side chains. In each independent mol­ecule, an intra­molecular O—H...O hydrogen bond is observed. In the solid state, each of the two independent mol­ecules forms an O—H...O hydrogen-bonded centrosymmetric dimer. The crystal packing is further stabilized by C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044029/ci2446sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044029/ci2446Isup2.hkl
Contains datablock I

CCDC reference: 663789

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.049
  • wR factor = 0.145
  • Data-to-parameter ratio = 13.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Biphenyl ethers are used extensively as important chemical materials in the field of liquid crystal chemistry and crown ether chemistry (Martinez-Gomez et al., 2006; Shishkina et al., 2007). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1). These molecules differ slightly in the orientations of the hydroxyethoxy side chains (Table 1). In one of the independent molecules the two benzene rings (C3—C8 and C9—C14) are twisted away from one another by 59.02 (13)° while in the other molecule the rings are twisted by 63.24 (16)°.

The conformation of each independent molecule is influenced by an intramolecular O—H···O hydrogen bond (Table 2), similar to that observed by Dabrowska et al. (2007). In the solid state, each of the two independent molecules exists as an O—H···O hydrogen-bonded centrosymmetric dimer, and one such dimer is shown in Fig.2. In addition, the crystal packing is stabilized by C—H···π interactions (Table 2). In Table 2, Cg1, Cg2 and Cg3 denote the centroids of C23—C28, C17—C22 and C3—C8 rings, respectively.

Related literature top

For the general role of biphenyl ethers, see: Martinez-Gomez et al. (2006); Shishkina et al. (2007). For related hydrogen bonds, see: Dabrowska et al. (2007). For the synthesis of related compounds, see: Niu et al. (2006).

Cg1, Cg2 and Cg3 denote the centroids of the C23–C28, C17–C22 and C3–C8 rings, respectively.

Experimental top

The reaction was carried out under nitrogen atmosphere (Niu et al., 2006). 2,2'-Dihydroxy-1,1'-biphenyl (7.44 g, 0.04 mol), sodium hydroxide (1.6 g, 0.04 mol) and chlorohydrin (2.68 ml, 0.04 mol) were added to a solution of ethanol (40 ml). The mixture was heated at reflux for 7 h to ensure completion of the reaction. After cooling to room temperature, the solid product obtained was filtered off and was recrystallized from n-heptane. Single crystals of the title compound suitable for X-ray analysis were grown from ethanol by slow evaporation at room temperature over a period of about one week. Analysis C14H14O3: C 72.76, H 6.43%; found: C 72.71, H 6.53%.

Refinement top

All H atoms were placed in geometrically idealized positions (O—H = 0.82 Å and C—H 0.93 or 0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C).

Structure description top

Biphenyl ethers are used extensively as important chemical materials in the field of liquid crystal chemistry and crown ether chemistry (Martinez-Gomez et al., 2006; Shishkina et al., 2007). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1). These molecules differ slightly in the orientations of the hydroxyethoxy side chains (Table 1). In one of the independent molecules the two benzene rings (C3—C8 and C9—C14) are twisted away from one another by 59.02 (13)° while in the other molecule the rings are twisted by 63.24 (16)°.

The conformation of each independent molecule is influenced by an intramolecular O—H···O hydrogen bond (Table 2), similar to that observed by Dabrowska et al. (2007). In the solid state, each of the two independent molecules exists as an O—H···O hydrogen-bonded centrosymmetric dimer, and one such dimer is shown in Fig.2. In addition, the crystal packing is stabilized by C—H···π interactions (Table 2). In Table 2, Cg1, Cg2 and Cg3 denote the centroids of C23—C28, C17—C22 and C3—C8 rings, respectively.

For the general role of biphenyl ethers, see: Martinez-Gomez et al. (2006); Shishkina et al. (2007). For related hydrogen bonds, see: Dabrowska et al. (2007). For the synthesis of related compounds, see: Niu et al. (2006).

Cg1, Cg2 and Cg3 denote the centroids of the C23–C28, C17–C22 and C3–C8 rings, respectively.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of an O—H···O hydrogen-bonded (dashed lines) dimer in the title compound.
2'-(2-Hydroxyethoxy)-1,1'-biphenyl-2-ol top
Crystal data top
C14H14O3Z = 4
Mr = 230.25F(000) = 488
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2804 (15) ÅCell parameters from 1864 reflections
b = 12.8846 (18) Åθ = 2.7–23.7°
c = 14.106 (2) ŵ = 0.09 mm1
α = 108.870 (3)°T = 298 K
β = 101.160 (2)°Block, colourless
γ = 99.516 (2)°0.59 × 0.53 × 0.44 mm
V = 1190.8 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4133 independent reflections
Radiation source: fine-focus sealed tube2562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.949, Tmax = 0.962k = 1514
6226 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2314P]
where P = (Fo2 + 2Fc2)/3
4133 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H14O3γ = 99.516 (2)°
Mr = 230.25V = 1190.8 (3) Å3
Triclinic, P1Z = 4
a = 7.2804 (15) ÅMo Kα radiation
b = 12.8846 (18) ŵ = 0.09 mm1
c = 14.106 (2) ÅT = 298 K
α = 108.870 (3)°0.59 × 0.53 × 0.44 mm
β = 101.160 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4133 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2562 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.962Rint = 0.026
6226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
4133 reflectionsΔρmin = 0.20 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0453 (3)0.04937 (14)0.14343 (14)0.0736 (6)
H10.07550.09100.11270.110*
O20.2256 (2)0.27719 (12)0.22548 (12)0.0469 (4)
O30.1344 (2)0.15170 (13)0.00340 (12)0.0506 (4)
H30.09920.08440.03380.076*
O40.7641 (3)0.52204 (15)0.45876 (17)0.0794 (6)
H40.86740.56270.46340.119*
O50.7889 (3)0.74097 (15)0.46791 (14)0.0628 (5)
O61.1385 (2)0.64946 (13)0.49509 (13)0.0564 (5)
H61.17350.60690.52340.085*
C10.0777 (4)0.1153 (2)0.25096 (19)0.0559 (7)
H1A0.20160.11270.28950.067*
H1B0.02170.08340.27760.067*
C20.0755 (4)0.2349 (2)0.2665 (2)0.0549 (7)
H2A0.04910.23890.23020.066*
H2B0.09980.27930.33980.066*
C30.2114 (3)0.36991 (18)0.19976 (17)0.0422 (6)
C40.1180 (4)0.4490 (2)0.24718 (19)0.0525 (6)
H4A0.05940.43950.29780.063*
C50.1116 (4)0.5422 (2)0.2196 (2)0.0642 (8)
H50.04740.59490.25100.077*
C60.1997 (5)0.5569 (2)0.1459 (2)0.0708 (8)
H6A0.19540.61960.12720.085*
C70.2950 (4)0.4788 (2)0.0994 (2)0.0599 (7)
H70.35450.49000.04960.072*
C80.3046 (3)0.38399 (18)0.12474 (17)0.0419 (6)
C90.4140 (3)0.30379 (19)0.07534 (17)0.0413 (6)
C100.6086 (4)0.3426 (2)0.08374 (19)0.0550 (7)
H100.66970.41820.12290.066*
C110.7144 (4)0.2715 (3)0.0352 (2)0.0614 (7)
H110.84410.29950.04130.074*
C120.6259 (4)0.1602 (2)0.0215 (2)0.0606 (7)
H120.69580.11200.05400.073*
C130.4345 (4)0.1191 (2)0.03062 (18)0.0508 (6)
H130.37570.04290.06850.061*
C140.3284 (3)0.19018 (19)0.01615 (17)0.0410 (5)
C150.6137 (5)0.5472 (3)0.3989 (3)0.0881 (11)
H15A0.49210.49830.39300.106*
H15B0.63070.53170.32960.106*
C160.6050 (4)0.6646 (3)0.4432 (3)0.0827 (10)
H16A0.51200.68070.39400.099*
H16B0.56120.67620.50570.099*
C170.8592 (5)0.7621 (2)0.3902 (2)0.0602 (7)
C180.7459 (6)0.7352 (2)0.2908 (2)0.0853 (11)
H180.61610.69770.27170.102*
C190.8302 (8)0.7657 (3)0.2196 (3)0.1014 (14)
H190.75580.74680.15220.122*
C201.0166 (8)0.8217 (3)0.2467 (3)0.0997 (13)
H201.06950.84240.19860.120*
C211.1299 (6)0.8487 (2)0.3464 (3)0.0802 (10)
H211.25830.88830.36480.096*
C221.0549 (4)0.8175 (2)0.4192 (2)0.0568 (7)
C231.1798 (4)0.84402 (19)0.52450 (19)0.0495 (6)
C241.2675 (4)0.9555 (2)0.5899 (2)0.0637 (7)
H241.24291.01380.56800.076*
C251.3902 (4)0.9814 (3)0.6867 (3)0.0731 (9)
H251.44731.05660.72920.088*
C261.4279 (4)0.8967 (3)0.7198 (2)0.0700 (8)
H261.51030.91440.78510.084*
C271.3445 (4)0.7853 (2)0.6571 (2)0.0588 (7)
H271.37030.72770.67980.071*
C281.2219 (3)0.75958 (19)0.56005 (19)0.0471 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0995 (15)0.0516 (11)0.0570 (12)0.0078 (10)0.0310 (11)0.0106 (9)
O20.0470 (10)0.0498 (9)0.0476 (10)0.0121 (7)0.0190 (8)0.0190 (8)
O30.0447 (10)0.0479 (9)0.0491 (10)0.0026 (7)0.0147 (8)0.0079 (8)
O40.0594 (12)0.0650 (12)0.1080 (16)0.0071 (10)0.0061 (12)0.0444 (12)
O50.0576 (12)0.0642 (11)0.0653 (12)0.0134 (9)0.0122 (10)0.0253 (10)
O60.0612 (11)0.0449 (10)0.0614 (11)0.0136 (8)0.0100 (9)0.0205 (9)
C10.0592 (17)0.0593 (16)0.0518 (16)0.0098 (13)0.0225 (13)0.0217 (13)
C20.0526 (16)0.0650 (17)0.0493 (15)0.0121 (13)0.0221 (13)0.0200 (13)
C30.0383 (13)0.0395 (13)0.0392 (13)0.0050 (10)0.0036 (11)0.0078 (10)
C40.0495 (15)0.0521 (15)0.0483 (15)0.0118 (12)0.0164 (12)0.0069 (12)
C50.0654 (19)0.0471 (15)0.0738 (19)0.0219 (13)0.0188 (16)0.0099 (14)
C60.087 (2)0.0508 (16)0.082 (2)0.0236 (15)0.0246 (18)0.0288 (16)
C70.0723 (19)0.0528 (16)0.0603 (17)0.0145 (14)0.0246 (15)0.0244 (14)
C80.0367 (13)0.0420 (13)0.0404 (13)0.0040 (10)0.0081 (11)0.0106 (11)
C90.0410 (14)0.0480 (14)0.0347 (12)0.0062 (11)0.0108 (11)0.0165 (11)
C100.0448 (16)0.0615 (16)0.0503 (15)0.0009 (13)0.0113 (13)0.0164 (13)
C110.0361 (14)0.091 (2)0.0560 (17)0.0121 (14)0.0159 (13)0.0244 (16)
C120.0534 (17)0.077 (2)0.0546 (16)0.0274 (15)0.0190 (14)0.0200 (15)
C130.0548 (17)0.0523 (14)0.0456 (14)0.0167 (12)0.0168 (12)0.0147 (12)
C140.0395 (14)0.0501 (14)0.0361 (12)0.0105 (11)0.0117 (11)0.0184 (11)
C150.066 (2)0.077 (2)0.106 (3)0.0042 (17)0.0099 (19)0.038 (2)
C160.0533 (19)0.083 (2)0.110 (3)0.0160 (16)0.0113 (18)0.038 (2)
C170.086 (2)0.0436 (14)0.0533 (17)0.0297 (14)0.0099 (16)0.0193 (13)
C180.122 (3)0.0630 (19)0.066 (2)0.0372 (19)0.003 (2)0.0255 (17)
C190.167 (4)0.080 (2)0.058 (2)0.054 (3)0.003 (3)0.031 (2)
C200.175 (4)0.080 (2)0.072 (3)0.049 (3)0.048 (3)0.048 (2)
C210.129 (3)0.0599 (18)0.074 (2)0.0314 (18)0.047 (2)0.0384 (16)
C220.084 (2)0.0393 (13)0.0572 (17)0.0232 (14)0.0291 (16)0.0212 (13)
C230.0540 (15)0.0460 (14)0.0515 (15)0.0119 (12)0.0261 (13)0.0150 (12)
C240.0678 (19)0.0490 (16)0.075 (2)0.0118 (14)0.0310 (17)0.0173 (15)
C250.0573 (18)0.0591 (18)0.077 (2)0.0004 (15)0.0205 (17)0.0027 (16)
C260.0497 (17)0.083 (2)0.0596 (18)0.0192 (15)0.0131 (14)0.0032 (17)
C270.0483 (16)0.0710 (18)0.0564 (17)0.0211 (14)0.0159 (14)0.0179 (15)
C280.0430 (14)0.0458 (14)0.0515 (15)0.0103 (11)0.0201 (12)0.0126 (12)
Geometric parameters (Å, º) top
O1—C11.428 (3)C11—C121.365 (4)
O1—H10.82C11—H110.93
O2—C31.370 (3)C12—C131.372 (3)
O2—C21.442 (3)C12—H120.93
O3—C141.374 (3)C13—C141.383 (3)
O3—H30.82C13—H130.93
O4—C151.398 (3)C15—C161.455 (4)
O4—H40.82C15—H15A0.97
O5—C171.378 (3)C15—H15B0.97
O5—C161.430 (3)C16—H16A0.97
O6—C281.371 (3)C16—H16B0.97
O6—H60.82C17—C181.382 (4)
C1—C21.488 (3)C17—C221.399 (4)
C1—H1A0.97C18—C191.397 (5)
C1—H1B0.97C18—H180.93
C2—H2A0.97C19—C201.344 (5)
C2—H2B0.97C19—H190.93
C3—C41.383 (3)C20—C211.385 (5)
C3—C81.405 (3)C20—H200.93
C4—C51.382 (4)C21—C221.388 (4)
C4—H4A0.93C21—H210.93
C5—C61.368 (4)C22—C231.482 (4)
C5—H50.93C23—C281.390 (3)
C6—C71.381 (4)C23—C241.390 (3)
C6—H6A0.93C24—C251.381 (4)
C7—C81.387 (3)C24—H240.93
C7—H70.93C25—C261.366 (4)
C8—C91.486 (3)C25—H250.93
C9—C101.391 (3)C26—C271.376 (4)
C9—C141.391 (3)C26—H260.93
C10—C111.390 (4)C27—C281.385 (3)
C10—H100.93C27—H270.93
C1—O1—H1109.5O3—C14—C13121.1 (2)
C3—O2—C2116.93 (18)O3—C14—C9117.9 (2)
C14—O3—H3109.5C13—C14—C9120.9 (2)
C15—O4—H4109.5O4—C15—C16112.6 (3)
C17—O5—C16120.3 (2)O4—C15—H15A109.1
C28—O6—H6109.5C16—C15—H15A109.1
O1—C1—C2110.9 (2)O4—C15—H15B109.1
O1—C1—H1A109.5C16—C15—H15B109.1
C2—C1—H1A109.5H15A—C15—H15B107.8
O1—C1—H1B109.5O5—C16—C15111.7 (3)
C2—C1—H1B109.5O5—C16—H16A109.3
H1A—C1—H1B108.0C15—C16—H16A109.3
O2—C2—C1106.8 (2)O5—C16—H16B109.3
O2—C2—H2A110.4C15—C16—H16B109.3
C1—C2—H2A110.4H16A—C16—H16B107.9
O2—C2—H2B110.4O5—C17—C18123.5 (3)
C1—C2—H2B110.4O5—C17—C22115.5 (2)
H2A—C2—H2B108.6C18—C17—C22121.0 (3)
O2—C3—C4122.7 (2)C17—C18—C19118.7 (4)
O2—C3—C8116.4 (2)C17—C18—H18120.7
C4—C3—C8120.8 (2)C19—C18—H18120.7
C5—C4—C3120.2 (2)C20—C19—C18121.3 (3)
C5—C4—H4A119.9C20—C19—H19119.3
C3—C4—H4A119.9C18—C19—H19119.3
C6—C5—C4119.9 (3)C19—C20—C21120.0 (4)
C6—C5—H5120.1C19—C20—H20120.0
C4—C5—H5120.1C21—C20—H20120.0
C5—C6—C7120.0 (2)C20—C21—C22121.1 (4)
C5—C6—H6A120.0C20—C21—H21119.4
C7—C6—H6A120.0C22—C21—H21119.4
C6—C7—C8122.0 (2)C21—C22—C17117.9 (3)
C6—C7—H7119.0C21—C22—C23120.4 (3)
C8—C7—H7119.0C17—C22—C23121.7 (2)
C7—C8—C3117.1 (2)C28—C23—C24117.3 (2)
C7—C8—C9120.3 (2)C28—C23—C22121.9 (2)
C3—C8—C9122.58 (19)C24—C23—C22120.7 (2)
C10—C9—C14117.2 (2)C25—C24—C23121.4 (3)
C10—C9—C8119.9 (2)C25—C24—H24119.3
C14—C9—C8122.8 (2)C23—C24—H24119.3
C11—C10—C9121.8 (2)C26—C25—C24120.0 (3)
C11—C10—H10119.1C26—C25—H25120.0
C9—C10—H10119.1C24—C25—H25120.0
C12—C11—C10119.3 (2)C25—C26—C27120.3 (3)
C12—C11—H11120.3C25—C26—H26119.8
C10—C11—H11120.3C27—C26—H26119.8
C11—C12—C13120.3 (3)C26—C27—C28119.5 (3)
C11—C12—H12119.8C26—C27—H27120.2
C13—C12—H12119.8C28—C27—H27120.2
C12—C13—C14120.4 (2)O6—C28—C27121.0 (2)
C12—C13—H13119.8O6—C28—C23117.6 (2)
C14—C13—H13119.8C27—C28—C23121.4 (2)
C3—O2—C2—C1159.09 (19)C17—O5—C16—C1575.7 (3)
O1—C1—C2—O259.1 (3)O4—C15—C16—O550.4 (4)
C2—O2—C3—C427.2 (3)C16—O5—C17—C1815.8 (3)
C2—O2—C3—C8155.41 (19)C16—O5—C17—C22166.6 (2)
O2—C3—C4—C5178.6 (2)O5—C17—C18—C19176.9 (3)
C8—C3—C4—C51.4 (3)C22—C17—C18—C190.5 (4)
C3—C4—C5—C60.7 (4)C17—C18—C19—C201.6 (5)
C4—C5—C6—C70.1 (4)C18—C19—C20—C211.7 (6)
C5—C6—C7—C80.2 (4)C19—C20—C21—C220.3 (5)
C6—C7—C8—C30.5 (4)C20—C21—C22—C172.4 (4)
C6—C7—C8—C9178.0 (2)C20—C21—C22—C23178.3 (3)
O2—C3—C8—C7178.7 (2)O5—C17—C22—C21175.2 (2)
C4—C3—C8—C71.3 (3)C18—C17—C22—C212.4 (4)
O2—C3—C8—C90.2 (3)O5—C17—C22—C234.2 (3)
C4—C3—C8—C9177.2 (2)C18—C17—C22—C23178.2 (2)
C7—C8—C9—C1057.1 (3)C21—C22—C23—C28115.6 (3)
C3—C8—C9—C10121.3 (2)C17—C22—C23—C2865.0 (3)
C7—C8—C9—C14120.1 (2)C21—C22—C23—C2461.3 (3)
C3—C8—C9—C1461.4 (3)C17—C22—C23—C24118.1 (3)
C14—C9—C10—C110.0 (3)C28—C23—C24—C250.5 (4)
C8—C9—C10—C11177.4 (2)C22—C23—C24—C25177.5 (2)
C9—C10—C11—C120.7 (4)C23—C24—C25—C260.1 (4)
C10—C11—C12—C130.2 (4)C24—C25—C26—C270.2 (4)
C11—C12—C13—C140.9 (4)C25—C26—C27—C280.1 (4)
C12—C13—C14—O3176.7 (2)C26—C27—C28—O6179.0 (2)
C12—C13—C14—C91.5 (3)C26—C27—C28—C230.4 (4)
C10—C9—C14—O3177.20 (19)C24—C23—C28—O6178.8 (2)
C8—C9—C14—O30.1 (3)C22—C23—C28—O61.8 (3)
C10—C9—C14—C131.1 (3)C24—C23—C28—C270.6 (4)
C8—C9—C14—C13178.4 (2)C22—C23—C28—C27177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.822.022.821 (3)164
O3—H3···O1i0.821.872.660 (3)160
O4—H4···O60.821.992.797 (3)169
O6—H6···O4ii0.821.872.661 (3)161
C1—H1B···Cg1iii0.972.753.584 (3)144
C5—H5···Cg2iv0.932.713.602 (3)160
C11—H11···Cg3v0.932.933.742 (3)146
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14O3
Mr230.25
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2804 (15), 12.8846 (18), 14.106 (2)
α, β, γ (°)108.870 (3), 101.160 (2), 99.516 (2)
V3)1190.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.59 × 0.53 × 0.44
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
6226, 4133, 2562
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.145, 1.02
No. of reflections4133
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected torsion angles (º) top
C3—O2—C2—C1159.09 (19)C17—O5—C16—C1575.7 (3)
O1—C1—C2—O259.1 (3)O4—C15—C16—O550.4 (4)
C2—O2—C3—C427.2 (3)C16—O5—C17—C1815.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.822.022.821 (3)164
O3—H3···O1i0.821.872.660 (3)160
O4—H4···O60.821.992.797 (3)169
O6—H6···O4ii0.821.872.661 (3)161
C1—H1B···Cg1iii0.972.753.584 (3)144
C5—H5···Cg2iv0.932.713.602 (3)160
C11—H11···Cg3v0.932.933.742 (3)146
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds