Download citation
Download citation
link to html
The title compound, C30H32ClNO3, was synthesized by the reaction of dimedone with 4-methoxy­benzaldehyde and 4-chloro­benzenamine in water. The dihydro­pyridine ring is in a boat conformation. Both cyclo­hexene rings adopt envelope conformations. The chloro­phenyl and methoxy­phenyl rings form dihedral angles of 81.31 (11) and 88.84 (12)°, respectively, with the planar part of the dihydro­pyridine ring. The crystal packing is stabilized by weak C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042365/ci2452sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042365/ci2452Isup2.hkl
Contains datablock I

CCDC reference: 664191

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.056
  • wR factor = 0.146
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 48 Perc. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C17 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Acridine derivatives containing 1,4-dihydropyridine unit belong to a special class of compounds not only because of their interesting chemical and physical properties but also due to their immense utility in pharmaceutical and dye industry, and they are well known atherapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychey, 1979; Thull & Testa, 1994; Reil et al., 1994; Mandi et al., 1994). We have reported the synthesis of N-hydroxylacridine derivatives, previously, (Tu et al., 2004) and report herein the structure of the title compound.

In the title molecule, the dihydropyridine ring is in a boat conformation, with atoms N1 and C7 deviating from the C1/C6/C8/C13 plane by 0.099 (5) and 0.255 (5) Å, respectively (Fig. 1). Both cyclohexene rings adopt envelope conformations: atom C3 deviaties from the C1/C2/C4/C5/C6 by 0.667 (5) Å and atom C11 deviates from the C8/C9/C10/C12/C13 plane by 0.660 (5) Å. The dihedral angle between the C1/C6/C8/C13 plane and the C14–C29 benzene ring attached at atom N1 is 81.31 (11)° and that between the C1/C6/C8/C13 plane and the C24–C29 benzene ring attached at atom C7 is 88.84 (12)°.

The crystal packing is stabilized by weak C—H···O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Mandi et al. (1994); Nasim & Brychey (1979); Reil et al. (1994); Thull & Testa (1994); Tu et al. (2004); Wysocka-Skrzela & Ledochowski (1976).

Experimental top

The title compound was prepared by the reaction of dimedone (2 mmol) with 4-methoxybenzaldehyde (1 mmol) and 4-chlorobenzenamine (1 mmol) at 413 K under microwave irradiation (maximum power 150 W, initial power 100 W) for 12 min (yield 85%; m.p. 542–543 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Owing to the large number of weak high-angle reflections, the ratio of observed to unique reflections is low (48%).

Structure description top

Acridine derivatives containing 1,4-dihydropyridine unit belong to a special class of compounds not only because of their interesting chemical and physical properties but also due to their immense utility in pharmaceutical and dye industry, and they are well known atherapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychey, 1979; Thull & Testa, 1994; Reil et al., 1994; Mandi et al., 1994). We have reported the synthesis of N-hydroxylacridine derivatives, previously, (Tu et al., 2004) and report herein the structure of the title compound.

In the title molecule, the dihydropyridine ring is in a boat conformation, with atoms N1 and C7 deviating from the C1/C6/C8/C13 plane by 0.099 (5) and 0.255 (5) Å, respectively (Fig. 1). Both cyclohexene rings adopt envelope conformations: atom C3 deviaties from the C1/C2/C4/C5/C6 by 0.667 (5) Å and atom C11 deviates from the C8/C9/C10/C12/C13 plane by 0.660 (5) Å. The dihedral angle between the C1/C6/C8/C13 plane and the C14–C29 benzene ring attached at atom N1 is 81.31 (11)° and that between the C1/C6/C8/C13 plane and the C24–C29 benzene ring attached at atom C7 is 88.84 (12)°.

The crystal packing is stabilized by weak C—H···O hydrogen bonds (Table 1).

For related literature, see: Mandi et al. (1994); Nasim & Brychey (1979); Reil et al. (1994); Thull & Testa (1994); Tu et al. (2004); Wysocka-Skrzela & Ledochowski (1976).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
10-(4-Chlorophenyl)-9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7- tetrahydroacridine-1,8(2H,5H,9H,10H)-dione top
Crystal data top
C30H32ClNO3F(000) = 1040
Mr = 490.02Dx = 1.234 Mg m3
Monoclinic, P21/cMelting point = 542–543 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.227 (2) ÅCell parameters from 2397 reflections
b = 10.883 (2) Åθ = 2.4–25.4°
c = 20.178 (3) ŵ = 0.18 mm1
β = 100.788 (2)°T = 298 K
V = 2637.8 (8) Å3Block, yellow
Z = 40.40 × 0.38 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4516 independent reflections
Radiation source: fine-focus sealed tube2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.933, Tmax = 0.962k = 1212
10435 measured reflectionsl = 2418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.2116P]
where P = (Fo2 + 2Fc2)/3
4516 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C30H32ClNO3V = 2637.8 (8) Å3
Mr = 490.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.227 (2) ŵ = 0.18 mm1
b = 10.883 (2) ÅT = 298 K
c = 20.178 (3) Å0.40 × 0.38 × 0.22 mm
β = 100.788 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2146 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.962Rint = 0.072
10435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
4516 reflectionsΔρmin = 0.37 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63124 (12)0.02238 (10)0.23800 (6)0.0953 (5)
N10.7981 (2)0.4467 (2)0.36849 (14)0.0383 (7)
O10.9443 (2)0.8361 (2)0.32608 (14)0.0679 (8)
O20.9300 (2)0.6883 (2)0.56080 (13)0.0635 (8)
O30.4979 (2)1.0176 (2)0.41504 (13)0.0618 (8)
C10.8330 (3)0.5342 (3)0.32568 (17)0.0358 (8)
C20.8322 (3)0.4956 (3)0.25370 (17)0.0445 (9)
H2A0.76860.44240.23880.053*
H2B0.89890.44840.25210.053*
C30.8266 (3)0.6043 (3)0.20498 (18)0.0458 (10)
C40.9179 (3)0.6935 (3)0.23476 (19)0.0538 (11)
H4A0.98960.65480.23520.065*
H4B0.91340.76530.20590.065*
C50.9121 (3)0.7340 (3)0.30488 (19)0.0456 (10)
C60.8679 (3)0.6463 (3)0.34922 (17)0.0372 (9)
C70.8619 (3)0.6884 (3)0.41955 (17)0.0397 (9)
H70.93160.73090.43810.048*
C80.8520 (3)0.5780 (3)0.46365 (17)0.0387 (9)
C90.8828 (3)0.5939 (3)0.53650 (19)0.0476 (10)
C100.8585 (3)0.4910 (3)0.58209 (18)0.0546 (11)
H10A0.83750.52690.62190.066*
H10B0.92640.44450.59680.066*
C110.7674 (3)0.4030 (3)0.55013 (17)0.0471 (10)
C120.7937 (3)0.3617 (3)0.48203 (17)0.0446 (10)
H12A0.85860.30870.49010.054*
H12B0.73160.31390.45820.054*
C130.8154 (3)0.4675 (3)0.43802 (17)0.0365 (8)
C140.7567 (3)0.3295 (3)0.34056 (17)0.0373 (9)
C150.8265 (3)0.2303 (3)0.34167 (17)0.0423 (9)
H150.90050.23680.36310.051*
C160.7876 (4)0.1206 (3)0.31119 (19)0.0518 (11)
H160.83470.05320.31270.062*
C170.6786 (4)0.1127 (3)0.27868 (19)0.0518 (11)
C180.6075 (4)0.2106 (4)0.27786 (19)0.0592 (11)
H180.53350.20390.25630.071*
C190.6465 (3)0.3196 (3)0.30932 (19)0.0508 (10)
H190.59850.38580.30940.061*
C200.7133 (3)0.6675 (3)0.1972 (2)0.0701 (13)
H20A0.70270.69760.24020.105*
H20B0.65560.60960.18010.105*
H20C0.71040.73490.16620.105*
C210.8439 (4)0.5572 (3)0.13605 (19)0.0729 (14)
H21A0.84410.62550.10590.109*
H21B0.78470.50190.11790.109*
H21C0.91390.51490.14120.109*
C220.6529 (3)0.4660 (4)0.5398 (2)0.0684 (13)
H22A0.63550.48690.58280.103*
H22B0.59720.41120.51640.103*
H22C0.65460.53940.51350.103*
C230.7667 (4)0.2905 (4)0.59582 (19)0.0670 (12)
H23A0.83770.25020.60170.100*
H23B0.70950.23460.57540.100*
H23C0.75260.31640.63890.100*
C240.7657 (3)0.7782 (3)0.41982 (17)0.0383 (9)
C250.7838 (3)0.8957 (3)0.44530 (17)0.0451 (10)
H250.85610.92020.46320.054*
C260.6972 (3)0.9784 (3)0.44502 (18)0.0492 (10)
H260.71141.05670.46290.059*
C270.5906 (3)0.9430 (3)0.41801 (18)0.0465 (10)
C280.5696 (3)0.8255 (3)0.39276 (19)0.0536 (11)
H280.49710.80090.37530.064*
C290.6569 (3)0.7451 (3)0.39361 (19)0.0508 (10)
H290.64240.66650.37610.061*
C300.5146 (4)1.1371 (3)0.4434 (2)0.0681 (13)
H30A0.55511.13110.48890.102*
H30B0.44381.17510.44340.102*
H30C0.55621.18570.41710.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1363 (12)0.0698 (8)0.0820 (9)0.0530 (8)0.0264 (8)0.0276 (6)
N10.047 (2)0.0310 (15)0.0380 (18)0.0046 (14)0.0118 (15)0.0043 (13)
O10.076 (2)0.0475 (16)0.083 (2)0.0252 (15)0.0219 (17)0.0111 (15)
O20.070 (2)0.0567 (17)0.0580 (18)0.0008 (15)0.0039 (15)0.0193 (14)
O30.0567 (19)0.0575 (17)0.070 (2)0.0176 (15)0.0086 (15)0.0048 (14)
C10.036 (2)0.0319 (19)0.041 (2)0.0021 (16)0.0116 (17)0.0006 (16)
C20.059 (3)0.0316 (19)0.046 (2)0.0010 (18)0.0175 (19)0.0008 (16)
C30.060 (3)0.035 (2)0.044 (2)0.0015 (19)0.013 (2)0.0003 (17)
C40.064 (3)0.045 (2)0.055 (3)0.008 (2)0.017 (2)0.0015 (19)
C50.040 (2)0.039 (2)0.059 (3)0.0022 (19)0.011 (2)0.0027 (19)
C60.037 (2)0.0328 (19)0.043 (2)0.0005 (17)0.0107 (18)0.0047 (16)
C70.036 (2)0.037 (2)0.046 (2)0.0039 (17)0.0060 (18)0.0081 (17)
C80.035 (2)0.041 (2)0.039 (2)0.0012 (18)0.0050 (18)0.0076 (17)
C90.041 (3)0.049 (2)0.052 (3)0.010 (2)0.004 (2)0.016 (2)
C100.056 (3)0.063 (3)0.043 (2)0.011 (2)0.004 (2)0.002 (2)
C110.048 (3)0.057 (2)0.037 (2)0.004 (2)0.0087 (19)0.0037 (19)
C120.045 (2)0.042 (2)0.047 (2)0.0017 (18)0.0105 (19)0.0033 (18)
C130.036 (2)0.039 (2)0.035 (2)0.0034 (17)0.0069 (17)0.0060 (17)
C140.040 (3)0.0314 (19)0.041 (2)0.0039 (18)0.0104 (19)0.0031 (16)
C150.042 (2)0.038 (2)0.047 (2)0.0031 (19)0.0085 (19)0.0060 (17)
C160.063 (3)0.037 (2)0.058 (3)0.001 (2)0.020 (2)0.0095 (19)
C170.070 (3)0.045 (2)0.043 (2)0.020 (2)0.017 (2)0.0098 (19)
C180.046 (3)0.078 (3)0.051 (3)0.023 (2)0.002 (2)0.006 (2)
C190.050 (3)0.048 (2)0.054 (3)0.000 (2)0.008 (2)0.001 (2)
C200.072 (3)0.059 (3)0.071 (3)0.007 (2)0.005 (3)0.001 (2)
C210.127 (4)0.049 (2)0.046 (3)0.006 (3)0.026 (3)0.0022 (19)
C220.047 (3)0.091 (3)0.072 (3)0.011 (2)0.023 (2)0.000 (2)
C230.077 (3)0.073 (3)0.053 (3)0.000 (3)0.015 (2)0.012 (2)
C240.041 (3)0.035 (2)0.041 (2)0.0040 (17)0.0114 (19)0.0045 (16)
C250.045 (3)0.039 (2)0.051 (2)0.0023 (19)0.0093 (19)0.0066 (18)
C260.063 (3)0.0286 (19)0.057 (3)0.001 (2)0.015 (2)0.0072 (17)
C270.049 (3)0.044 (2)0.048 (2)0.011 (2)0.012 (2)0.0019 (18)
C280.039 (3)0.061 (3)0.060 (3)0.001 (2)0.008 (2)0.016 (2)
C290.043 (3)0.046 (2)0.064 (3)0.001 (2)0.011 (2)0.0189 (19)
C300.080 (3)0.053 (3)0.072 (3)0.020 (2)0.015 (3)0.006 (2)
Geometric parameters (Å, º) top
Cl1—C171.730 (4)C14—C151.374 (4)
N1—C131.398 (4)C14—C191.380 (5)
N1—C11.405 (4)C15—C161.385 (4)
N1—C141.447 (4)C15—H150.93
O1—C51.228 (4)C16—C171.374 (5)
O2—C91.234 (4)C16—H160.93
O3—C271.387 (4)C17—C181.373 (5)
O3—C301.420 (4)C18—C191.387 (5)
C1—C61.349 (4)C18—H180.93
C1—C21.510 (4)C19—H190.93
C2—C31.532 (4)C20—H20A0.96
C2—H2A0.97C20—H20B0.96
C2—H2B0.97C20—H20C0.96
C3—C41.517 (5)C21—H21A0.96
C3—C201.528 (5)C21—H21B0.96
C3—C211.534 (5)C21—H21C0.96
C4—C51.496 (5)C22—H22A0.96
C4—H4A0.97C22—H22B0.96
C4—H4B0.97C22—H22C0.96
C5—C61.478 (5)C23—H23A0.96
C6—C71.506 (4)C23—H23B0.96
C7—C81.513 (4)C23—H23C0.96
C7—C241.530 (4)C24—C251.381 (4)
C7—H70.98C24—C291.384 (5)
C8—C131.352 (4)C25—C261.388 (4)
C8—C91.458 (5)C25—H250.93
C9—C101.513 (5)C26—C271.370 (5)
C10—C111.519 (5)C26—H260.93
C10—H10A0.97C27—C281.383 (5)
C10—H10B0.97C28—C291.377 (5)
C11—C231.533 (5)C28—H280.93
C11—C121.536 (5)C29—H290.93
C11—C221.537 (5)C30—H30A0.96
C12—C131.508 (4)C30—H30B0.96
C12—H12A0.97C30—H30C0.96
C12—H12B0.97
C13—N1—C1120.1 (3)C15—C14—N1121.0 (3)
C13—N1—C14120.6 (3)C19—C14—N1119.2 (3)
C1—N1—C14118.8 (3)C14—C15—C16120.6 (4)
C27—O3—C30117.6 (3)C14—C15—H15119.7
C6—C1—N1120.6 (3)C16—C15—H15119.7
C6—C1—C2122.4 (3)C17—C16—C15119.1 (4)
N1—C1—C2117.0 (3)C17—C16—H16120.4
C1—C2—C3113.2 (3)C15—C16—H16120.4
C1—C2—H2A108.9C18—C17—C16120.9 (3)
C3—C2—H2A108.9C18—C17—Cl1119.9 (3)
C1—C2—H2B108.9C16—C17—Cl1119.2 (3)
C3—C2—H2B108.9C17—C18—C19119.7 (4)
H2A—C2—H2B107.8C17—C18—H18120.2
C4—C3—C20109.8 (3)C19—C18—H18120.2
C4—C3—C2107.4 (3)C14—C19—C18119.9 (4)
C20—C3—C2110.2 (3)C14—C19—H19120.0
C4—C3—C21110.9 (3)C18—C19—H19120.0
C20—C3—C21109.5 (3)C3—C20—H20A109.5
C2—C3—C21109.1 (3)C3—C20—H20B109.5
C5—C4—C3113.7 (3)H20A—C20—H20B109.5
C5—C4—H4A108.8C3—C20—H20C109.5
C3—C4—H4A108.8H20A—C20—H20C109.5
C5—C4—H4B108.8H20B—C20—H20C109.5
C3—C4—H4B108.8C3—C21—H21A109.5
H4A—C4—H4B107.7C3—C21—H21B109.5
O1—C5—C6120.2 (3)H21A—C21—H21B109.5
O1—C5—C4121.8 (3)C3—C21—H21C109.5
C6—C5—C4118.0 (3)H21A—C21—H21C109.5
C1—C6—C5119.9 (3)H21B—C21—H21C109.5
C1—C6—C7122.6 (3)C11—C22—H22A109.5
C5—C6—C7117.5 (3)C11—C22—H22B109.5
C6—C7—C8109.6 (3)H22A—C22—H22B109.5
C6—C7—C24111.8 (3)C11—C22—H22C109.5
C8—C7—C24111.0 (3)H22A—C22—H22C109.5
C6—C7—H7108.1H22B—C22—H22C109.5
C8—C7—H7108.1C11—C23—H23A109.5
C24—C7—H7108.1C11—C23—H23B109.5
C13—C8—C9119.7 (3)H23A—C23—H23B109.5
C13—C8—C7122.6 (3)C11—C23—H23C109.5
C9—C8—C7117.7 (3)H23A—C23—H23C109.5
O2—C9—C8120.8 (4)H23B—C23—H23C109.5
O2—C9—C10120.3 (3)C25—C24—C29117.3 (3)
C8—C9—C10118.8 (3)C25—C24—C7121.6 (3)
C9—C10—C11114.9 (3)C29—C24—C7121.2 (3)
C9—C10—H10A108.6C24—C25—C26122.0 (4)
C11—C10—H10A108.6C24—C25—H25119.0
C9—C10—H10B108.6C26—C25—H25119.0
C11—C10—H10B108.6C27—C26—C25119.1 (3)
H10A—C10—H10B107.5C27—C26—H26120.4
C10—C11—C23109.5 (3)C25—C26—H26120.4
C10—C11—C12107.7 (3)C26—C27—C28120.3 (4)
C23—C11—C12109.3 (3)C26—C27—O3124.2 (3)
C10—C11—C22110.7 (3)C28—C27—O3115.6 (4)
C23—C11—C22109.4 (3)C29—C28—C27119.5 (4)
C12—C11—C22110.3 (3)C29—C28—H28120.3
C13—C12—C11113.1 (3)C27—C28—H28120.3
C13—C12—H12A109.0C28—C29—C24121.8 (3)
C11—C12—H12A109.0C28—C29—H29119.1
C13—C12—H12B109.0C24—C29—H29119.1
C11—C12—H12B109.0O3—C30—H30A109.5
H12A—C12—H12B107.8O3—C30—H30B109.5
C8—C13—N1120.3 (3)H30A—C30—H30B109.5
C8—C13—C12122.4 (3)O3—C30—H30C109.5
N1—C13—C12117.2 (3)H30A—C30—H30C109.5
C15—C14—C19119.7 (3)H30B—C30—H30C109.5
C13—N1—C1—C610.0 (5)C22—C11—C12—C1369.6 (4)
C14—N1—C1—C6177.3 (3)C9—C8—C13—N1172.4 (3)
C13—N1—C1—C2168.5 (3)C7—C8—C13—N18.0 (5)
C14—N1—C1—C24.2 (4)C9—C8—C13—C126.4 (5)
C6—C1—C2—C323.9 (5)C7—C8—C13—C12173.2 (3)
N1—C1—C2—C3157.6 (3)C1—N1—C13—C88.8 (5)
C1—C2—C3—C451.3 (4)C14—N1—C13—C8178.7 (3)
C1—C2—C3—C2068.3 (4)C1—N1—C13—C12170.0 (3)
C1—C2—C3—C21171.5 (3)C14—N1—C13—C122.5 (5)
C20—C3—C4—C564.3 (4)C11—C12—C13—C825.0 (5)
C2—C3—C4—C555.5 (4)C11—C12—C13—N1156.2 (3)
C21—C3—C4—C5174.6 (3)C13—N1—C14—C1579.9 (4)
C3—C4—C5—O1149.3 (4)C1—N1—C14—C1592.7 (4)
C3—C4—C5—C631.8 (5)C13—N1—C14—C19103.4 (4)
N1—C1—C6—C5175.5 (3)C1—N1—C14—C1984.0 (4)
C2—C1—C6—C52.9 (5)C19—C14—C15—C160.6 (5)
N1—C1—C6—C75.7 (5)N1—C14—C15—C16176.0 (3)
C2—C1—C6—C7175.9 (3)C14—C15—C16—C171.1 (5)
O1—C5—C6—C1179.8 (3)C15—C16—C17—C182.0 (6)
C4—C5—C6—C10.9 (5)C15—C16—C17—Cl1177.7 (3)
O1—C5—C6—C71.4 (5)C16—C17—C18—C191.0 (6)
C4—C5—C6—C7179.7 (3)Cl1—C17—C18—C19178.6 (3)
C1—C6—C7—C819.8 (5)C15—C14—C19—C181.5 (5)
C5—C6—C7—C8161.5 (3)N1—C14—C19—C18175.2 (3)
C1—C6—C7—C24103.8 (4)C17—C18—C19—C140.7 (6)
C5—C6—C7—C2475.0 (4)C6—C7—C24—C25120.9 (4)
C6—C7—C8—C1321.0 (5)C8—C7—C24—C25116.4 (4)
C24—C7—C8—C13103.0 (4)C6—C7—C24—C2958.3 (4)
C6—C7—C8—C9159.5 (3)C8—C7—C24—C2964.5 (4)
C24—C7—C8—C976.5 (4)C29—C24—C25—C260.0 (5)
C13—C8—C9—O2170.4 (3)C7—C24—C25—C26179.2 (3)
C7—C8—C9—O210.1 (5)C24—C25—C26—C270.7 (5)
C13—C8—C9—C108.1 (5)C25—C26—C27—C281.4 (5)
C7—C8—C9—C10171.5 (3)C25—C26—C27—O3180.0 (3)
O2—C9—C10—C11159.4 (3)C30—O3—C27—C261.7 (5)
C8—C9—C10—C1122.2 (5)C30—O3—C27—C28177.0 (3)
C9—C10—C11—C23168.9 (3)C26—C27—C28—C291.4 (6)
C9—C10—C11—C1250.2 (4)O3—C27—C28—C29179.9 (3)
C9—C10—C11—C2270.4 (4)C27—C28—C29—C240.7 (6)
C10—C11—C12—C1351.3 (4)C25—C24—C29—C280.0 (5)
C23—C11—C12—C13170.2 (3)C7—C24—C29—C28179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.932.483.366 (4)161
C21—H21A···O2ii0.962.533.418 (4)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC30H32ClNO3
Mr490.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.227 (2), 10.883 (2), 20.178 (3)
β (°) 100.788 (2)
V3)2637.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.38 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.933, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
10435, 4516, 2146
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.146, 1.02
No. of reflections4516
No. of parameters321
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.37

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O2i0.932.483.366 (4)161
C21—H21A···O2ii0.962.533.418 (4)154
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds