Download citation
Download citation
link to html
In the title compound, C25H24N4O2S2, one of the pyrrolidine rings in the pyrrolizine ring system adopts an envelope conformation, whereas the other ring adopts a twist conformation. The five-membered ring in the indolone ring system also adopts a twist conformation. The crystal packing is stabilized by N—H...N and C—H...O inter­molecular hydrogen bonds, and C—H...π inter­actions. The N—H...N hydrogen bonds link the mol­ecules into cyclic centrosymmetric R22(22) dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045072/ci2460sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045072/ci2460Isup2.hkl
Contains datablock I

CCDC reference: 653171

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.051
  • wR factor = 0.160
  • Data-to-parameter ratio = 22.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.59 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C4 PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S2 in Main Residue . ? PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 75.00 A   3
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C5 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C6 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The spiro ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids. Synthetic spiro-pyrrolidine derivatives have activity against aldose reductase enzyme which controls influenza (Stylianakis et al., 2003). The pyrrolizidine alkaloids are well documented for their mutagenic, antineoplastic, carcinogenic, hepatoxic, and many pharmacological activities (Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan, 2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005). Thiazole derivatives possess anti-inflammatory properties (Köysal et al., 2004) and thiazole napthyridine derivatives exibit good antibactrial activity (Kondo et al., 1990). A series of thiazole[3,4–9]benzimidazole derivatives have been evaluated in vitro as antitumor agents against 60 human tumor cell-lines (Chimirri et al., 1994). Indole, being an integral part of many natural products of therapeutic importance, possesses potentially reactive sites for a variety of chemical reactions to generate molecular diversity (Farhanullah et al., 2004). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

In the molecule of the title compound (Fig.1), the C—C and C—N bond lengths in the pyrrolizine ring system are slightly longer than the values reported for similar structures (Seshadri et al., 2003). This may be due to steric forces caused by the bulky substituents on the pyrrolizine ring system. The sum of angles at N1 of the pyrrolizine ring system (341.9°) is in accordance with sp3 hybridization (Beddoes et al., 1986), and the sum of the angles at N15 of the indole moiety (359.9°) is in accordance with sp2 hybridization.

In the pyrrolizine ring system, the pyrrolidine ring A adopts an envelope conformation whereas the ring B adopts a twist conformation. The puckering parameters (q2 and φ; Cremer & Pople, 1975) and the smallest displacement asymmetry parameter (Δ; Nardelli, 1983) are, for the ring A, q2 = 0.371 (2) Å, φ = 79.0 (3)° and Δs(C6) = 4.6 (2)°; for the ring B, q2 = 0.334 (3) Å, φ = 241.9 (4)°, Δ2(C5)=6.7 (3)° and Δs(C3) = 8.5 (3)°. The pyrrolizine ring system is folded about the bridging N1—C5 bond, as observed in related structures (Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan, 2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005). The five-membered ring C in the indolone ring system adopts a twist conformation, with puckering parameters q2 = 0.074 (2) Å, φ = 133.5 (2)°, Δ2(C14) = 2.4 (2)° and Δs(C16) = 1.0 (2)°.

The molecular structure is stabilized by intramolecular C—H···O interactions and the crystal packing is stabilized by C—H···O and N—H···N intermolecular hydrogen bonds. The molecules at (x, y, z) and (1 - x, 2 - y, 1 - z) are linked by N15—H15···N22 hydrogen bonds into cyclic centrosymmetric R22(22) dimers. The dimers are cross-linked via C—H···π interactions involving the S1/C25/C26/N27/C28 ring (centroid Cg).

Related literature top

For general background, see: Chimirri et al. (1994); Farhanullah et al. (2004); Köysal et al. (2004); Kondo et al. (1990); Stylianakis et al. (2003). For ring conformations, see: Cremer & Pople (1975); Nardelli (1983). For related structures, see: Beddoes et al. (1986); Seshadri et al. (2003); Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan (2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran (2005).

Experimental top

A solution of (1E,4E,6Z)-1,7-bis(methylthiazol-5-yl)-4-[(4-methylthiazol -5yl)methylene]hepta-1,6-diene-3,5-dione (1 mmol), isatin (1 mmol) and L-proline (1 mmol) in aqueous methonal (20 ml) was refluxed until the disappearence of starting materials as evidenced by TLC. The solvent was removed under reduced pressure and the crude product was purified by column-chromatography using petroleum ether/ethyl acetate (5:1) as eluent. The final product was recrystallized in ethanol and chloroform (2:8).

Refinement top

H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). PLATON (Spek, 2003) detected a solvent accessible void of approximately 75 Å3 including the position of this peak. This void could have initially contained solvent molecules but these molecules have since evaporated from the structure without degradation of the crystal.

Structure description top

The spiro ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids. Synthetic spiro-pyrrolidine derivatives have activity against aldose reductase enzyme which controls influenza (Stylianakis et al., 2003). The pyrrolizidine alkaloids are well documented for their mutagenic, antineoplastic, carcinogenic, hepatoxic, and many pharmacological activities (Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan, 2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005). Thiazole derivatives possess anti-inflammatory properties (Köysal et al., 2004) and thiazole napthyridine derivatives exibit good antibactrial activity (Kondo et al., 1990). A series of thiazole[3,4–9]benzimidazole derivatives have been evaluated in vitro as antitumor agents against 60 human tumor cell-lines (Chimirri et al., 1994). Indole, being an integral part of many natural products of therapeutic importance, possesses potentially reactive sites for a variety of chemical reactions to generate molecular diversity (Farhanullah et al., 2004). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

In the molecule of the title compound (Fig.1), the C—C and C—N bond lengths in the pyrrolizine ring system are slightly longer than the values reported for similar structures (Seshadri et al., 2003). This may be due to steric forces caused by the bulky substituents on the pyrrolizine ring system. The sum of angles at N1 of the pyrrolizine ring system (341.9°) is in accordance with sp3 hybridization (Beddoes et al., 1986), and the sum of the angles at N15 of the indole moiety (359.9°) is in accordance with sp2 hybridization.

In the pyrrolizine ring system, the pyrrolidine ring A adopts an envelope conformation whereas the ring B adopts a twist conformation. The puckering parameters (q2 and φ; Cremer & Pople, 1975) and the smallest displacement asymmetry parameter (Δ; Nardelli, 1983) are, for the ring A, q2 = 0.371 (2) Å, φ = 79.0 (3)° and Δs(C6) = 4.6 (2)°; for the ring B, q2 = 0.334 (3) Å, φ = 241.9 (4)°, Δ2(C5)=6.7 (3)° and Δs(C3) = 8.5 (3)°. The pyrrolizine ring system is folded about the bridging N1—C5 bond, as observed in related structures (Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan, 2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005). The five-membered ring C in the indolone ring system adopts a twist conformation, with puckering parameters q2 = 0.074 (2) Å, φ = 133.5 (2)°, Δ2(C14) = 2.4 (2)° and Δs(C16) = 1.0 (2)°.

The molecular structure is stabilized by intramolecular C—H···O interactions and the crystal packing is stabilized by C—H···O and N—H···N intermolecular hydrogen bonds. The molecules at (x, y, z) and (1 - x, 2 - y, 1 - z) are linked by N15—H15···N22 hydrogen bonds into cyclic centrosymmetric R22(22) dimers. The dimers are cross-linked via C—H···π interactions involving the S1/C25/C26/N27/C28 ring (centroid Cg).

For general background, see: Chimirri et al. (1994); Farhanullah et al. (2004); Köysal et al. (2004); Kondo et al. (1990); Stylianakis et al. (2003). For ring conformations, see: Cremer & Pople (1975); Nardelli (1983). For related structures, see: Beddoes et al. (1986); Seshadri et al. (2003); Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan (2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
3-(4-methyl-1,3-thiazol-5-yl)-1-[1'-(4-methyl-1,3-thiazol-5-yl)-2-oxo- 2,3,2',3',5',6',7',7a'-octahydro-1H-indole- 3-spiro-3'-1H-pyrrolizin-2'-yl]prop-2-en-1-one top
Crystal data top
C25H24N4O2S2F(000) = 1000
Mr = 476.60Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2850 reflections
a = 10.8362 (3) Åθ = 2.0–25.5°
b = 9.0056 (2) ŵ = 0.25 mm1
c = 24.7698 (5) ÅT = 293 K
β = 95.272 (1)°Block, colourless
V = 2406.97 (10) Å30.26 × 0.21 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6839 independent reflections
Radiation source: fine-focus sealed tube4872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 29.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1515
Tmin = 0.939, Tmax = 0.958k = 1211
29274 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.9857P]
where P = (Fo2 + 2Fc2)/3
6839 reflections(Δ/σ)max = 0.005
300 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C25H24N4O2S2V = 2406.97 (10) Å3
Mr = 476.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8362 (3) ŵ = 0.25 mm1
b = 9.0056 (2) ÅT = 293 K
c = 24.7698 (5) Å0.26 × 0.21 × 0.17 mm
β = 95.272 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6839 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4872 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.958Rint = 0.027
29274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.01Δρmax = 0.56 e Å3
6839 reflectionsΔρmin = 0.53 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40437 (6)0.92038 (8)0.18158 (2)0.0692 (2)
S20.25147 (6)1.26490 (8)0.44224 (2)0.0696 (2)
O10.48783 (12)0.74268 (16)0.36378 (6)0.0506 (3)
O20.08715 (13)0.96110 (17)0.26782 (6)0.0546 (4)
N10.30422 (15)0.55545 (16)0.29597 (6)0.0408 (3)
C20.2387 (3)0.4160 (3)0.30022 (10)0.0762 (8)
H2A0.15120.43300.30310.091*
H2B0.27250.36010.33160.091*
C30.2585 (3)0.3356 (3)0.24902 (10)0.0665 (6)
H3A0.33740.28380.25230.080*
H3B0.19270.26450.23990.080*
C40.2573 (3)0.4542 (3)0.20783 (9)0.0723 (8)
H4A0.17360.47260.19190.087*
H4B0.30860.42730.17930.087*
C50.30954 (19)0.5913 (2)0.23858 (7)0.0445 (4)
H50.39600.60640.23120.053*
C60.23813 (16)0.73706 (19)0.23011 (6)0.0344 (3)
H60.14920.71480.22640.041*
C70.26998 (14)0.81582 (18)0.28429 (6)0.0316 (3)
H70.35360.85720.28430.038*
C80.27434 (15)0.68763 (18)0.32670 (6)0.0330 (3)
C90.16479 (16)0.6752 (2)0.35981 (7)0.0375 (4)
C100.03935 (18)0.6653 (3)0.34481 (9)0.0525 (5)
H100.00950.66370.30840.063*
C110.0415 (2)0.6579 (3)0.38492 (12)0.0742 (7)
H110.12650.65320.37550.089*
C120.0038 (3)0.6573 (4)0.43879 (12)0.0817 (8)
H120.05180.65030.46520.098*
C130.1288 (3)0.6668 (3)0.45480 (9)0.0674 (7)
H130.15840.66590.49120.081*
C140.20798 (19)0.6779 (2)0.41451 (7)0.0441 (4)
N150.33653 (16)0.69457 (19)0.42016 (6)0.0472 (4)
H150.38120.69320.45070.057*
C160.38215 (16)0.71317 (19)0.37152 (7)0.0379 (4)
C170.18303 (16)0.94061 (19)0.29627 (6)0.0358 (3)
C180.21351 (17)1.0351 (2)0.34393 (7)0.0415 (4)
H180.14891.08870.35680.050*
C190.32534 (17)1.05114 (19)0.37045 (7)0.0391 (4)
H190.38950.99570.35810.047*
C200.35632 (18)1.1463 (2)0.41653 (7)0.0423 (4)
C210.3649 (3)1.3260 (3)0.48850 (9)0.0733 (7)
H210.35061.39870.51390.088*
N220.47284 (19)1.2656 (2)0.48645 (7)0.0596 (5)
C230.46987 (19)1.1618 (2)0.44532 (7)0.0450 (4)
C240.5839 (2)1.0779 (3)0.43622 (11)0.0623 (6)
H24A0.56220.97840.42520.093*
H24B0.63781.07530.46920.093*
H24C0.62551.12580.40840.093*
C250.26903 (16)0.8213 (2)0.18115 (6)0.0374 (4)
C260.20859 (17)0.8262 (2)0.13094 (7)0.0416 (4)
N270.26748 (17)0.9047 (2)0.09272 (6)0.0494 (4)
C280.3701 (2)0.9577 (3)0.11439 (8)0.0604 (6)
H280.42271.01320.09470.073*
C290.0868 (2)0.7560 (4)0.11396 (10)0.0760 (8)
H29A0.09980.66600.09450.114*
H29B0.03730.82300.09100.114*
H29C0.04480.73360.14550.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0752 (4)0.0939 (5)0.0364 (2)0.0519 (3)0.0055 (2)0.0098 (3)
S20.0681 (4)0.0850 (5)0.0526 (3)0.0197 (3)0.0103 (3)0.0331 (3)
O10.0369 (7)0.0500 (8)0.0625 (9)0.0037 (6)0.0084 (6)0.0038 (6)
O20.0535 (8)0.0560 (9)0.0501 (8)0.0122 (7)0.0174 (6)0.0026 (6)
N10.0555 (9)0.0313 (7)0.0350 (7)0.0002 (6)0.0006 (6)0.0035 (6)
C20.144 (3)0.0380 (12)0.0490 (12)0.0259 (14)0.0224 (14)0.0036 (9)
C30.0973 (18)0.0446 (12)0.0562 (13)0.0152 (12)0.0011 (12)0.0089 (10)
C40.135 (2)0.0408 (12)0.0410 (10)0.0058 (13)0.0063 (13)0.0106 (9)
C50.0597 (11)0.0361 (9)0.0395 (9)0.0037 (8)0.0139 (8)0.0043 (7)
C60.0407 (8)0.0358 (9)0.0265 (7)0.0085 (6)0.0022 (6)0.0019 (6)
C70.0360 (7)0.0313 (8)0.0267 (7)0.0039 (6)0.0012 (5)0.0002 (6)
C80.0382 (8)0.0319 (8)0.0277 (7)0.0008 (6)0.0026 (6)0.0000 (6)
C90.0433 (9)0.0366 (9)0.0322 (8)0.0021 (7)0.0009 (6)0.0048 (6)
C100.0453 (10)0.0609 (13)0.0509 (11)0.0075 (9)0.0009 (8)0.0108 (9)
C110.0484 (12)0.091 (2)0.0858 (19)0.0083 (12)0.0182 (12)0.0186 (15)
C120.0846 (19)0.097 (2)0.0703 (17)0.0054 (16)0.0413 (15)0.0091 (15)
C130.0881 (18)0.0782 (17)0.0384 (10)0.0047 (14)0.0195 (11)0.0017 (10)
C140.0579 (11)0.0431 (10)0.0311 (8)0.0001 (8)0.0029 (7)0.0014 (7)
N150.0570 (9)0.0519 (10)0.0297 (7)0.0009 (7)0.0119 (6)0.0001 (6)
C160.0428 (9)0.0313 (8)0.0372 (8)0.0062 (7)0.0082 (7)0.0017 (6)
C170.0416 (8)0.0331 (8)0.0316 (7)0.0004 (6)0.0030 (6)0.0020 (6)
C180.0472 (9)0.0393 (9)0.0371 (8)0.0074 (7)0.0012 (7)0.0059 (7)
C190.0495 (9)0.0327 (9)0.0343 (8)0.0018 (7)0.0009 (7)0.0015 (6)
C200.0539 (10)0.0396 (10)0.0321 (8)0.0018 (8)0.0024 (7)0.0027 (7)
C210.0852 (18)0.0872 (19)0.0449 (11)0.0044 (15)0.0087 (11)0.0311 (12)
N220.0730 (12)0.0670 (12)0.0359 (8)0.0090 (10)0.0105 (8)0.0081 (8)
C230.0558 (10)0.0442 (10)0.0337 (8)0.0071 (8)0.0035 (7)0.0028 (7)
C240.0506 (12)0.0630 (14)0.0715 (14)0.0059 (10)0.0036 (10)0.0011 (11)
C250.0436 (9)0.0387 (9)0.0298 (7)0.0099 (7)0.0026 (6)0.0010 (6)
C260.0438 (9)0.0488 (11)0.0318 (8)0.0044 (8)0.0012 (6)0.0007 (7)
N270.0607 (10)0.0569 (10)0.0304 (7)0.0069 (8)0.0038 (7)0.0047 (7)
C280.0780 (15)0.0678 (14)0.0359 (9)0.0287 (12)0.0075 (9)0.0076 (9)
C290.0569 (13)0.118 (2)0.0493 (12)0.0302 (14)0.0145 (10)0.0133 (13)
Geometric parameters (Å, º) top
S1—C281.705 (2)C11—H110.93
S1—C251.7157 (17)C12—C131.379 (4)
S2—C211.694 (2)C12—H120.93
S2—C201.723 (2)C13—C141.378 (3)
O1—C161.208 (2)C13—H130.93
O2—C171.215 (2)C14—N151.395 (3)
N1—C21.451 (3)N15—C161.354 (2)
N1—C51.464 (2)N15—H150.86
N1—C81.465 (2)C16—O11.208 (2)
C2—C31.493 (3)C16—O11.208 (2)
C3—C41.476 (3)C17—C181.468 (2)
C3—H3A0.97C18—C191.332 (2)
C3—H3B0.97C18—H180.93
C4—C51.532 (3)C19—C201.442 (2)
C4—H4A0.97C19—H190.93
C4—H4B0.97C20—C231.371 (3)
C5—C61.529 (3)C21—N221.295 (3)
C5—H50.98C21—H210.93
C6—C251.494 (2)N22—C231.381 (3)
C6—C71.529 (2)C23—C241.483 (3)
C6—H60.98C24—H24A0.96
C7—C171.513 (2)C24—H24B0.96
C7—C81.559 (2)C24—H24C0.96
C7—H70.98C25—C261.352 (2)
C8—C91.508 (2)C26—N271.384 (2)
C8—C161.553 (2)C26—C291.489 (3)
C9—C101.379 (3)N27—C281.282 (3)
C9—C141.392 (2)C28—H280.93
C10—C111.386 (3)C29—H29A0.96
C10—H100.93C29—H29B0.96
C11—C121.379 (4)C29—H29C0.96
C28—S1—C2589.25 (9)C11—C12—H12119.0
C21—S2—C2089.37 (11)C12—C13—C14117.2 (2)
C2—N1—C5108.9 (2)C12—C13—H13121.4
C2—N1—C8122.2 (2)C14—C13—H13121.4
C5—N1—C8110.8 (1)C13—C14—C9121.8 (2)
N1—C2—C3104.38 (19)C13—C14—N15128.1 (2)
N1—C2—H2A110.9C9—C14—N15110.04 (16)
C3—C2—H2A110.9C16—N15—C14111.5 (1)
N1—C2—H2B110.9C16—N15—H15124.2
C3—C2—H2B110.9C14—N15—H15124.2
H2A—C2—H2B108.9O1—C16—N15126.69 (16)
C4—C3—C2104.09 (19)O1—C16—N15126.69 (16)
C4—C3—H3A110.9O1—C16—N15126.69 (16)
C2—C3—H3A110.9O1—C16—C8125.51 (16)
C4—C3—H3B110.9O1—C16—C8125.51 (16)
C2—C3—H3B110.9O1—C16—C8125.51 (16)
H3A—C3—H3B109.0N15—C16—C8107.80 (15)
C3—C4—C5105.07 (18)O2—C17—C18119.71 (16)
C3—C4—H4A110.7O2—C17—C7120.92 (15)
C5—C4—H4A110.7C18—C17—C7119.35 (14)
C3—C4—H4B110.7C19—C18—C17125.91 (17)
C5—C4—H4B110.7C19—C18—H18117.0
H4A—C4—H4B108.8C17—C18—H18117.0
N1—C5—C6104.95 (14)C18—C19—C20126.13 (18)
N1—C5—C4105.04 (15)C18—C19—H19116.9
C6—C5—C4117.69 (18)C20—C19—H19116.9
N1—C5—H5109.6C23—C20—C19127.18 (18)
C6—C5—H5109.6C23—C20—S2109.60 (14)
C4—C5—H5109.6C19—C20—S2123.19 (14)
C25—C6—C7115.30 (14)N22—C21—S2116.02 (17)
C25—C6—C5113.53 (14)N22—C21—H21122.0
C7—C6—C5101.96 (13)S2—C21—H21122.0
C25—C6—H6108.6C21—N22—C23110.71 (18)
C7—C6—H6108.6C20—C23—N22114.30 (19)
C5—C6—H6108.6C20—C23—C24126.11 (18)
C17—C7—C6114.97 (13)N22—C23—C24119.58 (19)
C17—C7—C8113.49 (13)C23—C24—H24A109.5
C6—C7—C8103.79 (13)C23—C24—H24B109.5
C17—C7—H7108.1H24A—C24—H24B109.5
C6—C7—H7108.1C23—C24—H24C109.5
C8—C7—H7108.1H24A—C24—H24C109.5
N1—C8—C9116.42 (14)H24B—C24—H24C109.5
N1—C8—C16107.70 (13)C26—C25—C6129.59 (16)
C9—C8—C16101.55 (13)C26—C25—S1109.29 (13)
N1—C8—C7104.24 (12)C6—C25—S1120.93 (12)
C9—C8—C7116.43 (14)C25—C26—N27115.54 (16)
C16—C8—C7110.26 (13)C25—C26—C29126.01 (18)
C10—C9—C14119.89 (17)N27—C26—C29118.44 (17)
C10—C9—C8131.62 (16)C28—N27—C26109.91 (16)
C14—C9—C8108.48 (15)N27—C28—S1115.99 (15)
C9—C10—C11118.9 (2)N27—C28—H28122.0
C9—C10—H10120.6S1—C28—H28122.0
C11—C10—H10120.6C26—C29—H29A109.5
C12—C11—C10120.1 (2)C26—C29—H29B109.5
C12—C11—H11119.9H29A—C29—H29B109.5
C10—C11—H11119.9C26—C29—H29C109.5
C13—C12—C11122.1 (2)H29A—C29—H29C109.5
C13—C12—H12119.0H29B—C29—H29C109.5
C5—N1—C2—C326.5 (3)O1—O1—C16—N150.0 (2)
C8—N1—C2—C3157.8 (2)O1—O1—C16—C80.0 (2)
N1—C2—C3—C435.7 (3)O1—O1—C16—C80.0 (2)
C2—C3—C4—C531.2 (3)C14—N15—C16—O1173.29 (18)
C2—N1—C5—C6117.7 (2)C14—N15—C16—O1173.29 (18)
C8—N1—C5—C619.43 (19)C14—N15—C16—O1173.29 (18)
C2—N1—C5—C47.0 (3)C14—N15—C16—C87.5 (2)
C8—N1—C5—C4144.16 (18)N1—C8—C16—O164.1 (2)
C3—C4—C5—N115.3 (3)C9—C8—C16—O1173.06 (17)
C3—C4—C5—C6131.6 (2)C7—C8—C16—O149.0 (2)
N1—C5—C6—C25159.30 (14)N1—C8—C16—O164.1 (2)
C4—C5—C6—C2584.4 (2)C9—C8—C16—O1173.06 (17)
N1—C5—C6—C734.64 (17)C7—C8—C16—O149.0 (2)
C4—C5—C6—C7150.96 (17)N1—C8—C16—O164.1 (2)
C25—C6—C7—C1775.27 (19)C9—C8—C16—O1173.06 (17)
C5—C6—C7—C17161.26 (14)C7—C8—C16—O149.0 (2)
C25—C6—C7—C8160.18 (14)N1—C8—C16—N15115.12 (15)
C5—C6—C7—C836.71 (16)C9—C8—C16—N157.70 (18)
C2—N1—C8—C94.7 (3)C7—C8—C16—N15131.73 (15)
C5—N1—C8—C9125.79 (16)C6—C7—C17—O29.2 (2)
C2—N1—C8—C16108.4 (2)C8—C7—C17—O2110.07 (18)
C5—N1—C8—C16121.05 (16)C6—C7—C17—C18172.64 (15)
C2—N1—C8—C7134.4 (2)C8—C7—C17—C1868.1 (2)
C5—N1—C8—C73.91 (18)O2—C17—C18—C19162.21 (19)
C17—C7—C8—N1151.14 (13)C7—C17—C18—C1919.6 (3)
C6—C7—C8—N125.64 (16)C17—C18—C19—C20178.51 (18)
C17—C7—C8—C921.44 (19)C18—C19—C20—C23178.2 (2)
C6—C7—C8—C9104.06 (15)C18—C19—C20—S24.0 (3)
C17—C7—C8—C1693.52 (16)C21—S2—C20—C230.26 (18)
C6—C7—C8—C16140.98 (14)C21—S2—C20—C19177.86 (19)
N1—C8—C9—C1070.0 (3)C20—S2—C21—N220.3 (2)
C16—C8—C9—C10173.3 (2)S2—C21—N22—C230.2 (3)
C7—C8—C9—C1053.6 (3)C19—C20—C23—N22177.81 (19)
N1—C8—C9—C14111.27 (17)S2—C20—C23—N220.2 (2)
C16—C8—C9—C145.35 (18)C19—C20—C23—C242.9 (3)
C7—C8—C9—C14125.11 (16)S2—C20—C23—C24179.10 (18)
C14—C9—C10—C110.2 (3)C21—N22—C23—C200.0 (3)
C8—C9—C10—C11178.7 (2)C21—N22—C23—C24179.3 (2)
C9—C10—C11—C121.3 (4)C7—C6—C25—C26145.1 (2)
C10—C11—C12—C131.3 (5)C5—C6—C25—C2697.8 (2)
C11—C12—C13—C140.3 (5)C7—C6—C25—S140.4 (2)
C12—C13—C14—C91.9 (4)C5—C6—C25—S176.68 (18)
C12—C13—C14—N15177.3 (2)C28—S1—C25—C260.87 (17)
C10—C9—C14—C131.8 (3)C28—S1—C25—C6174.65 (17)
C8—C9—C14—C13179.3 (2)C6—C25—C26—N27174.20 (18)
C10—C9—C14—N15177.48 (18)S1—C25—C26—N270.8 (2)
C8—C9—C14—N151.4 (2)C6—C25—C26—C295.9 (4)
C13—C14—N15—C16175.2 (2)S1—C25—C26—C29179.1 (2)
C9—C14—N15—C164.0 (2)C25—C26—N27—C280.2 (3)
O1—O1—C16—O10.0 (2)C29—C26—N27—C28179.7 (2)
O1—O1—C16—O10.0 (2)C26—N27—C28—S10.5 (3)
O1—O1—C16—N150.0 (2)C25—S1—C28—N270.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···N22i0.862.152.978 (2)162
C7—H7···O10.982.563.005 (2)108
C19—H19···O10.932.513.301 (2)143
C28—H28···O1ii0.932.473.016 (3)118
C24—H24C···Cgii0.962.773.631 (3)149
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H24N4O2S2
Mr476.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.8362 (3), 9.0056 (2), 24.7698 (5)
β (°) 95.272 (1)
V3)2406.97 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.26 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.939, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
29274, 6839, 4872
Rint0.027
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.160, 1.01
No. of reflections6839
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.53

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97 (Sheldrick, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N15—H15···N22i0.862.152.978 (2)162
C7—H7···O10.982.563.005 (2)108
C19—H19···O10.932.513.301 (2)143
C28—H28···O1ii0.932.473.016 (3)118
C24—H24C···Cgii0.962.773.631 (3)149
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds