Download citation
Download citation
link to html
The title compound, C17H13N3O3·C3H7NO, was synthesized by the one-pot reaction of isatin, malononitrile and cyclo­hexane-1,3-dione in water. The cyclo­hexene ring adopts a half-chair conformation and the five-membered ring of the indolinone ring system is in a twist conformation. N—H...O and N—H...N inter­molecular hydrogen bonds link the spiro­oxindole mol­ecules into a chain along the b axis, and the N,N-dimethyl­formamide solvent mol­ecules are linked to the chain via N—H...O and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047083/ci2470sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047083/ci2470Isup2.hkl
Contains datablock I

CCDC reference: 631308

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.114
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.802 0.971 Tmin(prime) and Tmax expected: 0.942 0.971 RR(prime) = 0.851 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.85 PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 - C17 .. 5.21 su PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C4 - C17 ... 1.42 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The indole nucleus is a well known heterocycle (Da-Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and antifungal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our program devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of isatins together with malononitrile and cyclohexane-1,3-dione in water. We report here the crystal structure of the title compound.

In the title molecule (Fig.1), the atoms of the pyran ring (C1—C5/O1) are almost coplanar with the largest deviation being 0.029 (2) Å for atom C2. The five-membered ring of the dihydroindolone ring system adopts a twist conformation. The cyclohexene ring adopts a half-chair conformation, with atoms C7 and C8 deviating from the C1/C2/C6/C9 plane by -0.222 (3) and 0.453 (3) Å, respectively.

The N—H···O and N—H···N hydrogen bonds link the spirooxindole molecules into a chain along the b axis. The N,N-dimethylformamide solvent molecules are linked to the chain via N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For general background, see: Da-Silva et al. (2001); Joshi & Chand (1982); Abdel-Rahman et al. (2004); Zhu et al. (2007).

Experimental top

The title compound was prepared by the reaction of isatin (1 mmol), malononitrile (1 mmol) and cyclohexane-1,3-dione (1 mmol) in water. The reaction was catalyzed by TEBA (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 3 h, the reaction mixture was cooled and washed with small amount ethanol. The crude product was filtered and single crystals of the title compound, suitable for X-ray diffraction, were obtained from N,N-dimethylformamide solution by slow evaporation (yield 88%; m.p. 573–575 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 33372, 3287, 3133, 2955, 2191, 1698, 1613, 1466, 1350, 1211, 1011, 933, 764, 679 1H NMR (400 MHz, DMSO-d6): 10.39 (s, 1H, NH), 7.21 (br s, 2H, NH2), 7.13 (t, 1H, J = 7.6 Hz, ArH), 7.01(d, 1H, J = 7.6 Hz, ArH), 6.88 (t, 1H, J = 7.6 Hz, ArH), 6.77(d, 1H, J = 8.0 Hz, ArH), 2.63–2.67 (m, 2H, CH2), 2.30–2.37 (m, 2H, CH2), 1.90–1.93 (m, 2H, CH2).

Refinement top

H atoms were placed in the idealized positions and allowed to ride on their parent atoms, with N—H = 0.88 Å, C—H = 0.95–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for others.

Structure description top

The indole nucleus is a well known heterocycle (Da-Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and antifungal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our program devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of isatins together with malononitrile and cyclohexane-1,3-dione in water. We report here the crystal structure of the title compound.

In the title molecule (Fig.1), the atoms of the pyran ring (C1—C5/O1) are almost coplanar with the largest deviation being 0.029 (2) Å for atom C2. The five-membered ring of the dihydroindolone ring system adopts a twist conformation. The cyclohexene ring adopts a half-chair conformation, with atoms C7 and C8 deviating from the C1/C2/C6/C9 plane by -0.222 (3) and 0.453 (3) Å, respectively.

The N—H···O and N—H···N hydrogen bonds link the spirooxindole molecules into a chain along the b axis. The N,N-dimethylformamide solvent molecules are linked to the chain via N—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2).

For general background, see: Da-Silva et al. (2001); Joshi & Chand (1982); Abdel-Rahman et al. (2004); Zhu et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
2-Amino-2',5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3'-indoline]- 3-carbonitrile N,N-dimethylformamide solvate top
Crystal data top
C17H13N3O3·C3H7NOZ = 2
Mr = 380.40F(000) = 400
Triclinic, P1Dx = 1.368 Mg m3
Hall symbol: -P 1Melting point = 573–575 K
a = 7.1833 (14) ÅMo Kα radiation, λ = 0.71070 Å
b = 8.8173 (18) ÅCell parameters from 3696 reflections
c = 15.351 (3) Åθ = 3.3–25.3°
α = 77.907 (13)°µ = 0.10 mm1
β = 77.691 (13)°T = 193 K
γ = 81.392 (14)°Block, colourless
V = 923.3 (3) Å30.60 × 0.30 × 0.30 mm
Data collection top
Rigaku Mercury
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1010
Tmin = 0.802, Tmax = 0.971l = 1818
9034 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3215P]
where P = (Fo2 + 2Fc2)/3
3358 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H13N3O3·C3H7NOγ = 81.392 (14)°
Mr = 380.40V = 923.3 (3) Å3
Triclinic, P1Z = 2
a = 7.1833 (14) ÅMo Kα radiation
b = 8.8173 (18) ŵ = 0.10 mm1
c = 15.351 (3) ÅT = 193 K
α = 77.907 (13)°0.60 × 0.30 × 0.30 mm
β = 77.691 (13)°
Data collection top
Rigaku Mercury
diffractometer
3358 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2961 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.971Rint = 0.023
9034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.09Δρmax = 0.23 e Å3
3358 reflectionsΔρmin = 0.29 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75602 (16)0.52904 (12)0.00607 (7)0.0249 (3)
O20.50301 (19)0.52756 (14)0.30435 (8)0.0367 (3)
O30.98417 (17)0.42893 (14)0.22839 (8)0.0293 (3)
O40.06193 (19)0.22731 (16)0.47536 (9)0.0418 (4)
N10.8164 (2)0.23025 (16)0.31563 (9)0.0254 (3)
H10.88640.19950.35800.030*
N20.9859 (2)0.00722 (18)0.10933 (11)0.0399 (4)
N30.9162 (2)0.33299 (16)0.07013 (9)0.0272 (3)
H3A0.97120.23700.07100.033*
H3B0.91630.40060.12120.033*
N40.1442 (2)0.31623 (18)0.54114 (10)0.0338 (4)
C10.6547 (2)0.59323 (18)0.06719 (11)0.0217 (4)
C20.6263 (2)0.51357 (18)0.15212 (11)0.0212 (4)
C30.7133 (2)0.34806 (18)0.17859 (11)0.0214 (4)
C40.8191 (2)0.28850 (18)0.09332 (11)0.0219 (4)
C50.8330 (2)0.37603 (18)0.00864 (11)0.0213 (4)
C60.5133 (2)0.59234 (19)0.22550 (11)0.0256 (4)
C70.4122 (3)0.7513 (2)0.19830 (12)0.0327 (4)
H7A0.38590.80740.24990.039*
H7B0.28770.74050.18360.039*
C80.5300 (3)0.8459 (2)0.11697 (13)0.0348 (4)
H8A0.64770.86730.13390.042*
H8B0.45530.94710.09870.042*
C90.5850 (2)0.75999 (19)0.03733 (11)0.0265 (4)
H9A0.47230.76610.00870.032*
H9B0.68680.81100.00860.032*
C100.8564 (2)0.34412 (18)0.24291 (11)0.0230 (4)
C110.6486 (2)0.16690 (19)0.31519 (11)0.0236 (4)
C120.5570 (3)0.0556 (2)0.38021 (12)0.0291 (4)
H120.60910.00650.43240.035*
C130.3851 (3)0.0174 (2)0.36679 (12)0.0312 (4)
H130.31890.05920.41050.037*
C140.3093 (2)0.0893 (2)0.29071 (12)0.0292 (4)
H140.19050.06320.28360.035*
C150.4053 (2)0.19930 (19)0.22472 (11)0.0252 (4)
H150.35440.24740.17210.030*
C160.5758 (2)0.23715 (18)0.23728 (11)0.0215 (4)
C170.9110 (2)0.1332 (2)0.10209 (11)0.0266 (4)
C180.0839 (3)0.2885 (2)0.47086 (12)0.0325 (4)
H180.15900.31820.41240.039*
C190.0350 (3)0.2783 (3)0.63242 (14)0.0517 (6)
H19A0.08730.24440.62990.077*
H19B0.01060.37080.66090.077*
H19C0.10790.19420.66810.077*
C200.3197 (3)0.3875 (3)0.52988 (16)0.0454 (5)
H20A0.37790.40900.46540.068*
H20B0.40930.31620.56340.068*
H20C0.29000.48530.55320.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (6)0.0231 (6)0.0189 (6)0.0024 (5)0.0024 (5)0.0025 (5)
O20.0511 (8)0.0345 (7)0.0211 (7)0.0021 (6)0.0031 (6)0.0063 (5)
O30.0283 (6)0.0318 (7)0.0287 (7)0.0089 (5)0.0069 (5)0.0026 (5)
O40.0434 (8)0.0536 (9)0.0340 (8)0.0151 (7)0.0133 (6)0.0074 (6)
N10.0259 (7)0.0292 (8)0.0208 (7)0.0042 (6)0.0076 (6)0.0001 (6)
N20.0497 (10)0.0302 (9)0.0351 (9)0.0039 (8)0.0022 (8)0.0071 (7)
N30.0333 (8)0.0256 (7)0.0209 (7)0.0034 (6)0.0001 (6)0.0052 (6)
N40.0357 (8)0.0396 (9)0.0281 (8)0.0114 (7)0.0049 (7)0.0070 (7)
C10.0208 (8)0.0237 (8)0.0219 (8)0.0039 (6)0.0043 (6)0.0057 (6)
C20.0214 (8)0.0211 (8)0.0221 (8)0.0027 (6)0.0052 (7)0.0051 (6)
C30.0226 (8)0.0212 (8)0.0196 (8)0.0033 (7)0.0022 (6)0.0031 (6)
C40.0221 (8)0.0226 (8)0.0208 (8)0.0026 (7)0.0025 (6)0.0048 (6)
C50.0196 (8)0.0216 (8)0.0239 (9)0.0057 (6)0.0029 (6)0.0059 (7)
C60.0273 (9)0.0263 (9)0.0241 (9)0.0035 (7)0.0041 (7)0.0069 (7)
C70.0372 (10)0.0304 (10)0.0292 (10)0.0043 (8)0.0048 (8)0.0097 (8)
C80.0466 (11)0.0217 (9)0.0353 (10)0.0013 (8)0.0097 (9)0.0053 (7)
C90.0282 (9)0.0235 (9)0.0261 (9)0.0026 (7)0.0068 (7)0.0009 (7)
C100.0228 (8)0.0236 (8)0.0214 (8)0.0004 (7)0.0021 (7)0.0052 (7)
C110.0245 (8)0.0239 (8)0.0214 (9)0.0012 (7)0.0010 (7)0.0063 (7)
C120.0351 (10)0.0273 (9)0.0210 (9)0.0029 (8)0.0017 (7)0.0002 (7)
C130.0337 (10)0.0273 (9)0.0291 (10)0.0089 (8)0.0042 (8)0.0039 (7)
C140.0242 (9)0.0302 (9)0.0343 (10)0.0063 (7)0.0006 (7)0.0125 (8)
C150.0246 (8)0.0262 (9)0.0245 (9)0.0000 (7)0.0024 (7)0.0082 (7)
C160.0234 (8)0.0198 (8)0.0194 (8)0.0006 (7)0.0006 (6)0.0042 (6)
C170.0285 (9)0.0286 (10)0.0218 (9)0.0036 (8)0.0015 (7)0.0057 (7)
C180.0370 (10)0.0337 (10)0.0264 (10)0.0039 (8)0.0054 (8)0.0050 (7)
C190.0602 (14)0.0711 (16)0.0292 (11)0.0247 (12)0.0036 (10)0.0141 (10)
C200.0410 (11)0.0483 (12)0.0520 (13)0.0158 (10)0.0110 (10)0.0109 (10)
Geometric parameters (Å, º) top
O1—C51.3708 (19)C7—C81.515 (3)
O1—C11.3818 (19)C7—H7A0.99
O2—C61.217 (2)C7—H7B0.99
O3—C101.224 (2)C8—C91.522 (2)
O4—C181.232 (2)C8—H8A0.99
N1—C101.348 (2)C8—H8B0.99
N1—C111.404 (2)C9—H9A0.99
N1—H10.88C9—H9B0.99
N2—C171.154 (2)C11—C121.377 (2)
N3—C51.334 (2)C11—C161.395 (2)
N3—H3A0.88C12—C131.394 (3)
N3—H3B0.88C12—H120.95
N4—C181.324 (2)C13—C141.386 (3)
N4—C191.451 (3)C13—H130.95
N4—C201.453 (2)C14—C151.390 (2)
C1—C21.334 (2)C14—H140.95
C1—C91.489 (2)C15—C161.378 (2)
C2—C61.476 (2)C15—H150.95
C2—C31.507 (2)C18—H180.95
C3—C161.512 (2)C19—H19A0.98
C3—C41.520 (2)C19—H19B0.98
C3—C101.562 (2)C19—H19C0.98
C4—C51.358 (2)C20—H20A0.98
C4—C171.421 (2)C20—H20B0.98
C6—C71.499 (2)C20—H20C0.98
C5—O1—C1118.78 (12)C1—C9—C8111.18 (14)
C10—N1—C11111.37 (13)C1—C9—H9A109.4
C10—N1—H1124.3C8—C9—H9A109.4
C11—N1—H1124.3C1—C9—H9B109.4
C5—N3—H3A120.0C8—C9—H9B109.4
C5—N3—H3B120.0H9A—C9—H9B108.0
H3A—N3—H3B120.0O3—C10—N1126.42 (15)
C18—N4—C19120.87 (16)O3—C10—C3125.40 (14)
C18—N4—C20121.55 (16)N1—C10—C3108.17 (13)
C19—N4—C20117.58 (16)C12—C11—C16121.73 (16)
C2—C1—O1123.37 (14)C12—C11—N1128.21 (15)
C2—C1—C9126.10 (15)C16—C11—N1110.03 (14)
O1—C1—C9110.52 (13)C11—C12—C13117.63 (16)
C1—C2—C6119.15 (14)C11—C12—H12121.2
C1—C2—C3123.28 (14)C13—C12—H12121.2
C6—C2—C3117.47 (14)C14—C13—C12121.03 (16)
C2—C3—C16115.35 (13)C14—C13—H13119.5
C2—C3—C4108.87 (13)C12—C13—H13119.5
C16—C3—C4111.96 (13)C13—C14—C15120.71 (16)
C2—C3—C10109.40 (13)C13—C14—H14119.6
C16—C3—C10101.15 (12)C15—C14—H14119.6
C4—C3—C10109.80 (13)C16—C15—C14118.60 (16)
C5—C4—C17117.66 (15)C16—C15—H15120.7
C5—C4—C3123.70 (14)C14—C15—H15120.7
C17—C4—C3118.63 (14)C15—C16—C11120.26 (15)
N3—C5—C4128.14 (15)C15—C16—C3131.25 (15)
N3—C5—O1110.07 (13)C11—C16—C3108.49 (14)
C4—C5—O1121.79 (14)N2—C17—C4179.8 (2)
O2—C6—C2120.16 (15)O4—C18—N4125.09 (17)
O2—C6—C7122.53 (15)O4—C18—H18117.5
C2—C6—C7117.30 (14)N4—C18—H18117.5
C6—C7—C8111.72 (14)N4—C19—H19A109.5
C6—C7—H7A109.3N4—C19—H19B109.5
C8—C7—H7A109.3H19A—C19—H19B109.5
C6—C7—H7B109.3N4—C19—H19C109.5
C8—C7—H7B109.3H19A—C19—H19C109.5
H7A—C7—H7B107.9H19B—C19—H19C109.5
C7—C8—C9111.41 (14)N4—C20—H20A109.5
C7—C8—H8A109.3N4—C20—H20B109.5
C9—C8—H8A109.3H20A—C20—H20B109.5
C7—C8—H8B109.3N4—C20—H20C109.5
C9—C8—H8B109.3H20A—C20—H20C109.5
H8A—C8—H8B108.0H20B—C20—H20C109.5
C5—O1—C1—C20.4 (2)O1—C1—C9—C8162.11 (14)
C5—O1—C1—C9179.39 (13)C7—C8—C9—C145.1 (2)
O1—C1—C2—C6179.06 (14)C11—N1—C10—O3173.86 (15)
C9—C1—C2—C61.1 (2)C11—N1—C10—C37.13 (18)
O1—C1—C2—C34.5 (2)C2—C3—C10—O350.0 (2)
C9—C1—C2—C3175.34 (15)C16—C3—C10—O3172.14 (15)
C1—C2—C3—C16131.48 (16)C4—C3—C10—O369.4 (2)
C6—C2—C3—C1652.0 (2)C2—C3—C10—N1130.99 (14)
C1—C2—C3—C44.7 (2)C16—C3—C10—N18.84 (16)
C6—C2—C3—C4178.81 (13)C4—C3—C10—N1109.59 (14)
C1—C2—C3—C10115.34 (17)C10—N1—C11—C12176.03 (16)
C6—C2—C3—C1061.19 (17)C10—N1—C11—C162.15 (19)
C2—C3—C4—C51.5 (2)C16—C11—C12—C131.5 (2)
C16—C3—C4—C5130.23 (16)N1—C11—C12—C13176.47 (16)
C10—C3—C4—C5118.26 (17)C11—C12—C13—C140.1 (3)
C2—C3—C4—C17179.28 (14)C12—C13—C14—C151.4 (3)
C16—C3—C4—C1750.54 (19)C13—C14—C15—C161.1 (2)
C10—C3—C4—C1760.97 (18)C14—C15—C16—C110.5 (2)
C17—C4—C5—N33.3 (3)C14—C15—C16—C3178.92 (15)
C3—C4—C5—N3177.44 (15)C12—C11—C16—C151.9 (2)
C17—C4—C5—O1177.17 (14)N1—C11—C16—C15176.44 (14)
C3—C4—C5—O12.1 (2)C12—C11—C16—C3177.70 (14)
C1—O1—C5—N3176.78 (13)N1—C11—C16—C33.99 (18)
C1—O1—C5—C42.8 (2)C2—C3—C16—C1555.1 (2)
C1—C2—C6—O2172.10 (16)C4—C3—C16—C1570.2 (2)
C3—C2—C6—O24.6 (2)C10—C3—C16—C15172.96 (17)
C1—C2—C6—C78.8 (2)C2—C3—C16—C11125.43 (15)
C3—C2—C6—C7174.53 (14)C4—C3—C16—C11109.32 (15)
O2—C6—C7—C8143.83 (18)C10—C3—C16—C117.52 (16)
C2—C6—C7—C837.1 (2)C19—N4—C18—O41.7 (3)
C6—C7—C8—C955.4 (2)C20—N4—C18—O4179.26 (18)
C2—C1—C9—C817.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.881.992.767 (2)147
N3—H3A···N2ii0.882.313.130 (2)155
N3—H3B···O3iii0.882.062.897 (2)158
C20—H20A···O20.982.503.464 (3)167
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H13N3O3·C3H7NO
Mr380.40
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)7.1833 (14), 8.8173 (18), 15.351 (3)
α, β, γ (°)77.907 (13), 77.691 (13), 81.392 (14)
V3)923.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.30 × 0.30
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.802, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
9034, 3358, 2961
Rint0.023
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.114, 1.09
No. of reflections3358
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.881.992.767 (2)147
N3—H3A···N2ii0.882.313.130 (2)155
N3—H3B···O3iii0.882.062.897 (2)158
C20—H20A···O20.982.503.464 (3)167
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x+2, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds