Download citation
Download citation
link to html
The title compound, C8H17NO2·C8H8O3, exists as a complex with the base (pregabalin) in the predicted zwitterion form, based on the pKa differences between the acid and base. The asymmetric unit consists of two molecules of each component. The -NH3 group adopts the standard propeller conformation. The structure forms pairs of hydro­phobic and hydro­philic inter­actions along both the a and c axes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041803/cs2049sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041803/cs2049Isup2.hkl
Contains datablock I

CCDC reference: 663673

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.058
  • wR factor = 0.148
  • Data-to-parameter ratio = 10.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.75 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.26 Ratio PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.59 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.69 Ratio PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT432_ALERT_2_C Short Inter X...Y Contact O2 .. C4 .. 3.00 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O8 .. C9 .. 3.01 Ang.
Alert level G HYDTR01_ALERT_1_G Extra text has been found in the _refine_ls_hydrogen_treatment fi Explanatory text should be in the _publ_section_refinement field. Hydrogen treatment given as constr' Hydrogen treatment identified as constr REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.23 From the CIF: _reflns_number_total 4159 Count of symmetry unique reflns 4368 Completeness (_total/calc) 95.22% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C1 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C11 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title complex, (I), is an important intermediate in the overall synthesis of pregabalin. Pregabalin, marketed as Lyrica by Pfizer (see https://www.lyrica.com), is an approved drug for the treatment of diabetic nerve and shingle pain amongst others.

Taking advantage of the complex's unusual physio-chemical properties, mandelic acid is used to resolve racemic pregabalin on industrial scale. A crystallization of 1:1 mandelic acid to pregabalin results in the free form. Complex (I) forms only with an excess of mandelic acid.

The complex is resolved by either 1) adding two molar equivalents of the acid or 2) adding a slight excess of mandelic acid combined with an inorganic acid, the method of Pope and Peachy (Pope & Peachey, 1899). The resolved pregabalin–mandelic acid complex is isolated and recrystallized to remove the complexed mandelic acid and recover the free form (Hoekstra et al., 1997; Mulhern, 1996). At ratios of 1:1 pregabalin with mandelic acid, the free form was isolated from both slurries and crystallizations. However, with 1:2 pregabalin:mandelic acid, (I) was isolated under both conditions.

All strong hydrogen bond acceptors and donors are utilized. The ratio of donors to acceptors is 5 to 3. Two extra donating protons donate to the same acceptor; resulting in one hydrogen bond acceptor (delocalized carbonyl) accepting three protons. This is an unusual finding. While there are many examples of carbonyl with three hydrogen bonds, it is unusual for a carboxylate to accept three hydrogen bonds.

Some close contacts between the carboxylate group and protons (D—H···A) on the NH3 group were not hydrogen bonds (e.g. N2—H2B—O8). In these cases, the hydrogen bond angles were very bent and the geometry of the accepting OH group did not appear to favor accepting a hydrogen bond. The closeness of these accepting and donating groups could be a function of the forced propeller NH3 conformation or the opposite charges of carboxylate and NH3 groups.

Related literature top

For related literature, see: Hoekstra et al. (1997); Mulhern (1996); Pope & Peachey (1899).

Experimental top

Attempts to crystallize a suitable diffraction quality crystal took some time. Many of the crystals grown were non-merohedrally twinned at a ratio of 10:1. With careful technique, sheets of crystal could be removed from the twinned crystals. The sheets were high quality single crystals, yet were not of acceptable volume to diffract well. The twinned structures did not refine as well as this untwinned structure. We choose a untwinned crystal and collected for long exposures. The chirality of pregabalin was determined by relative configuration from the fixed chiral center of the mandelic acid.

Refinement top

Friedel pairs were merged in the absence of signifcant anomalous scattering effects. H atoms bound to carbon were positioned geometrically, with C—H distances of 0.95 Å, and refined using a riding model.

Structure description top

The title complex, (I), is an important intermediate in the overall synthesis of pregabalin. Pregabalin, marketed as Lyrica by Pfizer (see https://www.lyrica.com), is an approved drug for the treatment of diabetic nerve and shingle pain amongst others.

Taking advantage of the complex's unusual physio-chemical properties, mandelic acid is used to resolve racemic pregabalin on industrial scale. A crystallization of 1:1 mandelic acid to pregabalin results in the free form. Complex (I) forms only with an excess of mandelic acid.

The complex is resolved by either 1) adding two molar equivalents of the acid or 2) adding a slight excess of mandelic acid combined with an inorganic acid, the method of Pope and Peachy (Pope & Peachey, 1899). The resolved pregabalin–mandelic acid complex is isolated and recrystallized to remove the complexed mandelic acid and recover the free form (Hoekstra et al., 1997; Mulhern, 1996). At ratios of 1:1 pregabalin with mandelic acid, the free form was isolated from both slurries and crystallizations. However, with 1:2 pregabalin:mandelic acid, (I) was isolated under both conditions.

All strong hydrogen bond acceptors and donors are utilized. The ratio of donors to acceptors is 5 to 3. Two extra donating protons donate to the same acceptor; resulting in one hydrogen bond acceptor (delocalized carbonyl) accepting three protons. This is an unusual finding. While there are many examples of carbonyl with three hydrogen bonds, it is unusual for a carboxylate to accept three hydrogen bonds.

Some close contacts between the carboxylate group and protons (D—H···A) on the NH3 group were not hydrogen bonds (e.g. N2—H2B—O8). In these cases, the hydrogen bond angles were very bent and the geometry of the accepting OH group did not appear to favor accepting a hydrogen bond. The closeness of these accepting and donating groups could be a function of the forced propeller NH3 conformation or the opposite charges of carboxylate and NH3 groups.

For related literature, see: Hoekstra et al. (1997); Mulhern (1996); Pope & Peachey (1899).

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS (Siemens, 1991); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEP diagram. Atomic displacement ellipsoids are at 30% probability, hydrogen atoms are given as arbritary radii.
[Figure 2] Fig. 2. Hydrophilic/hydrophobic interactions visible by looking down the a axis. Protons involoved in hydrogen bonding are shown in green.
(S)-3-(ammoniomethyl)-5-methylhexanoate–(S)-mandelic acid (1/1) top
Crystal data top
C8H17NO2·C8H8O3F(000) = 672
Mr = 311.37Dx = 1.198 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 815 reflections
a = 6.2922 (13) Åθ = 3.0–18.4°
b = 27.423 (6) ŵ = 0.09 mm1
c = 10.009 (2) ÅT = 296 K
β = 90.84 (3)°Plate, colourless
V = 1726.9 (6) Å30.22 × 0.11 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX2 CCD
diffractometer
4159 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
φ and ω scansθmax = 28.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.956, Tmax = 0.996k = 3636
38738 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0842P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
4159 reflectionsΔρmax = 0.58 e Å3
407 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), with 3849 Friedel pairs
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H17NO2·C8H8O3V = 1726.9 (6) Å3
Mr = 311.37Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.2922 (13) ŵ = 0.09 mm1
b = 27.423 (6) ÅT = 296 K
c = 10.009 (2) Å0.22 × 0.11 × 0.05 mm
β = 90.84 (3)°
Data collection top
Bruker SMART APEX2 CCD
diffractometer
4159 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2488 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.996Rint = 0.096
38738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.148H-atom parameters constrained
S = 0.92Δρmax = 0.58 e Å3
4159 reflectionsΔρmin = 0.21 e Å3
407 parametersAbsolute structure: Flack (1983), with 3849 Friedel pairs
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1574 (8)0.34998 (17)0.3221 (4)0.0322 (10)
H10.01600.33980.35110.039*
O70.8185 (5)0.41070 (11)1.0833 (3)0.0319 (7)
O40.2132 (5)0.38722 (12)0.5318 (3)0.0329 (7)
H40.23840.41260.57230.049*
O100.3202 (5)0.46157 (11)0.6609 (3)0.0312 (7)
O10.7161 (5)0.48461 (11)0.2123 (3)0.0314 (7)
H1A0.73780.45910.17210.047*
O90.0740 (5)0.44728 (11)0.8170 (3)0.0309 (7)
C20.7324 (7)0.47677 (17)0.3419 (4)0.0260 (10)
O80.5720 (5)0.42446 (11)0.9265 (3)0.0306 (7)
O20.7914 (5)0.43870 (12)0.3910 (3)0.0316 (7)
N10.2478 (6)0.46247 (13)1.0859 (3)0.0280 (8)
H1B0.35200.45321.03230.042*
H1C0.12540.44981.05680.042*
H1D0.27540.45201.16850.042*
O50.2925 (5)0.43222 (12)0.3533 (3)0.0337 (7)
N20.7488 (6)0.40986 (13)0.6580 (3)0.0300 (9)
H2A0.84320.41930.71980.045*
H2B0.62200.42230.67670.045*
H2C0.78910.42030.57810.045*
C30.7354 (7)0.35569 (17)0.6570 (4)0.0305 (10)
H3A0.87560.34230.64170.037*
H3B0.64290.34540.58400.037*
O30.6535 (6)0.51155 (13)0.5613 (3)0.0378 (8)
H30.53720.49930.57600.057*
C40.2282 (7)0.39496 (17)0.4026 (4)0.0276 (10)
O60.1506 (6)0.35999 (13)0.1826 (3)0.0449 (9)
H60.04030.37450.16360.067*
C50.2322 (7)0.51655 (17)1.0857 (4)0.0309 (10)
H5A0.37170.53031.10380.037*
H5B0.13900.52671.15680.037*
C60.7182 (7)0.39958 (15)0.9754 (4)0.0245 (9)
C70.6390 (7)0.27979 (16)0.7801 (4)0.0289 (10)
H7A0.78300.26710.78080.035*
H7B0.57410.27110.69490.035*
C80.1473 (7)0.53650 (16)0.9530 (4)0.0278 (10)
H80.00230.52430.93900.033*
C90.2197 (7)0.47262 (16)0.7684 (4)0.0248 (9)
C100.6498 (7)0.33543 (16)0.7893 (4)0.0263 (9)
H100.50470.34770.79990.032*
C110.6697 (7)0.52180 (16)0.4222 (4)0.0280 (9)
H110.53290.53410.38840.034*
C120.2836 (7)0.52008 (16)0.8331 (4)0.0274 (9)
H12A0.27790.54550.76560.033*
H12B0.43020.51730.86340.033*
C130.7829 (7)0.35234 (16)0.9105 (4)0.0271 (9)
H13A0.77870.32690.97770.032*
H13B0.92930.35550.88290.032*
C140.8380 (7)0.56137 (16)0.4073 (4)0.0273 (9)
C150.3129 (7)0.30842 (18)0.3442 (4)0.0317 (10)
C160.1376 (8)0.59252 (15)0.9640 (4)0.0299 (10)
H16A0.28190.60500.96700.036*
H16B0.07210.60091.04810.036*
C171.0324 (7)0.55679 (19)0.4744 (4)0.0365 (11)
H171.06170.52890.52450.044*
C180.7999 (8)0.60233 (18)0.3304 (5)0.0367 (11)
H180.67150.60600.28420.044*
C190.5152 (8)0.31030 (19)0.2856 (5)0.0384 (11)
H190.55570.33790.23850.046*
C200.0145 (8)0.61907 (18)0.8497 (5)0.0399 (12)
H200.08880.61280.76600.048*
C210.5157 (9)0.25445 (18)0.8912 (5)0.0428 (12)
H210.59050.26100.97590.051*
C221.1817 (8)0.59351 (18)0.4668 (4)0.0376 (12)
H221.31000.59020.51320.045*
C230.2604 (9)0.26761 (19)0.4164 (5)0.0402 (12)
H230.12880.26630.45740.048*
C240.5162 (10)0.19979 (18)0.8693 (6)0.0511 (15)
H24A0.66010.18820.86840.077*
H24B0.44760.19240.78540.077*
H24C0.44110.18410.94030.077*
C250.9565 (9)0.6381 (2)0.3230 (5)0.0482 (14)
H250.93220.66520.26920.058*
C260.5924 (11)0.2306 (2)0.3709 (5)0.0581 (16)
H260.68590.20450.37960.070*
C270.0182 (11)0.6735 (2)0.8746 (6)0.0572 (15)
H27A0.05470.68070.95590.086*
H27B0.05110.69000.80140.086*
H27C0.16280.68450.88220.086*
C281.1461 (9)0.63459 (19)0.3927 (5)0.0438 (13)
H281.24660.65940.38950.053*
C290.6519 (9)0.2718 (2)0.2975 (5)0.0416 (12)
H290.78400.27290.25710.050*
C300.2121 (10)0.6011 (2)0.8329 (7)0.0638 (18)
H30A0.28910.62260.77410.096*
H30B0.27930.60040.91840.096*
H30C0.21150.56880.79570.096*
C310.3978 (11)0.2285 (2)0.4298 (5)0.0567 (16)
H310.35830.20110.47830.068*
C320.2890 (11)0.2730 (2)0.9043 (9)0.079 (3)
H32A0.20920.26510.82480.118*
H32B0.29070.30770.91650.118*
H32C0.22410.25780.98000.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (3)0.036 (3)0.027 (2)0.006 (2)0.0049 (18)0.0074 (18)
O70.0370 (18)0.0379 (19)0.0205 (15)0.0059 (14)0.0067 (12)0.0043 (12)
O40.0414 (19)0.0353 (18)0.0218 (15)0.0024 (15)0.0011 (13)0.0026 (12)
O100.0360 (18)0.0360 (19)0.0217 (15)0.0011 (14)0.0076 (12)0.0036 (12)
O10.041 (2)0.0336 (18)0.0199 (15)0.0036 (15)0.0018 (13)0.0023 (12)
O90.0288 (17)0.0393 (19)0.0248 (15)0.0096 (14)0.0014 (12)0.0033 (13)
C20.021 (2)0.034 (3)0.023 (2)0.0046 (19)0.0009 (16)0.0015 (17)
O80.0279 (16)0.0377 (19)0.0260 (15)0.0076 (14)0.0030 (12)0.0009 (13)
O20.0337 (18)0.0352 (19)0.0258 (15)0.0051 (14)0.0005 (12)0.0009 (13)
N10.0240 (19)0.037 (2)0.0232 (18)0.0005 (17)0.0012 (14)0.0012 (15)
O50.0374 (19)0.039 (2)0.0242 (16)0.0067 (15)0.0007 (12)0.0009 (13)
N20.029 (2)0.035 (2)0.0262 (19)0.0013 (17)0.0017 (15)0.0020 (15)
C30.029 (3)0.038 (3)0.024 (2)0.001 (2)0.0017 (17)0.0009 (18)
O30.044 (2)0.046 (2)0.0234 (15)0.0087 (17)0.0108 (13)0.0042 (13)
C40.021 (2)0.039 (3)0.023 (2)0.005 (2)0.0016 (16)0.0005 (18)
O60.055 (2)0.052 (2)0.0273 (17)0.0177 (18)0.0158 (15)0.0076 (15)
C50.028 (2)0.036 (3)0.028 (2)0.001 (2)0.0014 (17)0.0052 (18)
C60.026 (2)0.029 (2)0.0177 (19)0.0035 (18)0.0016 (15)0.0002 (15)
C70.024 (2)0.032 (3)0.030 (2)0.0041 (19)0.0001 (18)0.0045 (17)
C80.025 (2)0.032 (3)0.026 (2)0.0004 (19)0.0006 (17)0.0038 (17)
C90.025 (2)0.029 (2)0.020 (2)0.0009 (19)0.0022 (15)0.0003 (16)
C100.026 (2)0.030 (2)0.023 (2)0.0022 (18)0.0001 (16)0.0024 (16)
C110.026 (2)0.033 (3)0.025 (2)0.0010 (19)0.0031 (16)0.0037 (17)
C120.027 (2)0.030 (3)0.025 (2)0.0011 (19)0.0061 (16)0.0040 (17)
C130.026 (2)0.031 (3)0.024 (2)0.0010 (19)0.0047 (16)0.0030 (17)
C140.032 (2)0.029 (2)0.021 (2)0.000 (2)0.0030 (17)0.0027 (17)
C150.037 (3)0.033 (3)0.024 (2)0.002 (2)0.0084 (18)0.0072 (18)
C160.034 (3)0.027 (3)0.029 (2)0.004 (2)0.0043 (18)0.0050 (17)
C170.035 (3)0.047 (3)0.027 (2)0.000 (2)0.0001 (19)0.000 (2)
C180.039 (3)0.033 (3)0.037 (3)0.001 (2)0.006 (2)0.008 (2)
C190.039 (3)0.034 (3)0.042 (3)0.005 (2)0.003 (2)0.001 (2)
C200.043 (3)0.036 (3)0.040 (3)0.006 (2)0.004 (2)0.000 (2)
C210.050 (3)0.032 (3)0.046 (3)0.012 (2)0.012 (2)0.001 (2)
C220.037 (3)0.048 (3)0.028 (2)0.008 (2)0.0046 (19)0.010 (2)
C230.041 (3)0.041 (3)0.039 (3)0.001 (2)0.000 (2)0.002 (2)
C240.051 (4)0.031 (3)0.072 (4)0.005 (3)0.008 (3)0.006 (3)
C250.059 (4)0.037 (3)0.049 (3)0.011 (3)0.012 (3)0.004 (2)
C260.072 (5)0.057 (4)0.044 (3)0.021 (3)0.015 (3)0.001 (3)
C270.070 (4)0.038 (3)0.064 (4)0.007 (3)0.004 (3)0.001 (3)
C280.052 (3)0.038 (3)0.041 (3)0.013 (3)0.011 (2)0.007 (2)
C290.040 (3)0.049 (3)0.035 (3)0.009 (2)0.003 (2)0.010 (2)
C300.054 (4)0.039 (4)0.097 (5)0.003 (3)0.031 (3)0.006 (3)
C310.080 (5)0.045 (4)0.044 (3)0.006 (3)0.008 (3)0.010 (3)
C320.051 (4)0.043 (4)0.145 (7)0.005 (3)0.050 (4)0.010 (4)
Geometric parameters (Å, º) top
C1—O61.424 (5)C12—H12B0.9700
C1—C151.516 (7)C13—H13A0.9700
C1—C41.535 (6)C13—H13B0.9700
C1—H10.9800C14—C181.381 (6)
O7—C61.279 (5)C14—C171.392 (6)
O4—C41.315 (5)C15—C231.375 (7)
O4—H40.8200C15—C191.410 (7)
O10—C91.292 (5)C16—C201.554 (7)
O1—C21.317 (5)C16—H16A0.9700
O1—H1A0.8200C16—H16B0.9700
O9—C91.255 (5)C17—C221.380 (7)
C2—O21.210 (5)C17—H170.9300
C2—C111.528 (6)C18—C251.393 (7)
O8—C61.240 (5)C18—H180.9300
N1—C51.486 (6)C19—C291.366 (7)
N1—H1B0.8900C19—H190.9300
N1—H1C0.8900C20—C271.515 (8)
N1—H1D0.8900C20—C301.516 (8)
O5—C41.207 (5)C20—H200.9800
N2—C31.488 (6)C21—C241.515 (7)
N2—H2A0.8900C21—C321.522 (8)
N2—H2B0.8900C21—H210.9800
N2—H2C0.8900C22—C281.365 (7)
C3—C101.540 (6)C22—H220.9300
C3—H3A0.9700C23—C311.384 (8)
C3—H3B0.9700C23—H230.9300
O3—C111.426 (5)C24—H24A0.9600
O3—H30.8200C24—H24B0.9600
O6—H60.8200C24—H24C0.9600
C5—C81.526 (6)C25—C281.377 (8)
C5—H5A0.9700C25—H250.9300
C5—H5B0.9700C26—C311.368 (9)
C6—C131.508 (6)C26—C291.402 (8)
C7—C101.530 (6)C26—H260.9300
C7—C211.532 (6)C27—H27A0.9600
C7—H7A0.9700C27—H27B0.9600
C7—H7B0.9700C27—H27C0.9600
C8—C161.541 (6)C28—H280.9300
C8—C121.552 (6)C29—H290.9300
C8—H80.9800C30—H30A0.9600
C9—C121.506 (6)C30—H30B0.9600
C10—C131.536 (6)C30—H30C0.9600
C10—H100.9800C31—H310.9300
C11—C141.525 (6)C32—H32A0.9600
C11—H110.9800C32—H32B0.9600
C12—H12A0.9700C32—H32C0.9600
O6—C1—C15107.3 (3)C10—C13—H13B108.1
O6—C1—C4111.3 (4)H13A—C13—H13B107.3
C15—C1—C4110.2 (4)C18—C14—C17119.1 (4)
O6—C1—H1109.3C18—C14—C11121.2 (4)
C15—C1—H1109.3C17—C14—C11119.7 (4)
C4—C1—H1109.3C23—C15—C19118.3 (5)
C4—O4—H4109.5C23—C15—C1121.9 (4)
C2—O1—H1A109.5C19—C15—C1119.8 (4)
O2—C2—O1124.0 (4)C8—C16—C20115.7 (4)
O2—C2—C11124.4 (4)C8—C16—H16A108.3
O1—C2—C11111.6 (4)C20—C16—H16A108.3
C5—N1—H1B109.5C8—C16—H16B108.3
C5—N1—H1C109.5C20—C16—H16B108.3
H1B—N1—H1C109.5H16A—C16—H16B107.4
C5—N1—H1D109.5C22—C17—C14120.1 (5)
H1B—N1—H1D109.5C22—C17—H17119.9
H1C—N1—H1D109.5C14—C17—H17119.9
C3—N2—H2A109.5C14—C18—C25119.0 (5)
C3—N2—H2B109.5C14—C18—H18120.5
H2A—N2—H2B109.5C25—C18—H18120.5
C3—N2—H2C109.5C29—C19—C15120.4 (5)
H2A—N2—H2C109.5C29—C19—H19119.8
H2B—N2—H2C109.5C15—C19—H19119.8
N2—C3—C10112.0 (3)C27—C20—C30110.6 (5)
N2—C3—H3A109.2C27—C20—C16109.6 (4)
C10—C3—H3A109.2C30—C20—C16112.8 (4)
N2—C3—H3B109.2C27—C20—H20107.9
C10—C3—H3B109.2C30—C20—H20107.9
H3A—C3—H3B107.9C16—C20—H20107.9
C11—O3—H3109.5C24—C21—C32110.3 (5)
O5—C4—O4124.6 (4)C24—C21—C7110.0 (4)
O5—C4—C1124.2 (4)C32—C21—C7113.4 (5)
O4—C4—C1111.2 (4)C24—C21—H21107.7
C1—O6—H6109.5C32—C21—H21107.7
N1—C5—C8112.4 (3)C7—C21—H21107.7
N1—C5—H5A109.1C28—C22—C17121.7 (5)
C8—C5—H5A109.1C28—C22—H22119.1
N1—C5—H5B109.1C17—C22—H22119.1
C8—C5—H5B109.1C15—C23—C31121.8 (5)
H5A—C5—H5B107.9C15—C23—H23119.1
O8—C6—O7123.8 (4)C31—C23—H23119.1
O8—C6—C13120.4 (4)C21—C24—H24A109.5
O7—C6—C13115.8 (4)C21—C24—H24B109.5
C10—C7—C21115.5 (4)H24A—C24—H24B109.5
C10—C7—H7A108.4C21—C24—H24C109.5
C21—C7—H7A108.4H24A—C24—H24C109.5
C10—C7—H7B108.4H24B—C24—H24C109.5
C21—C7—H7B108.4C28—C25—C18122.1 (5)
H7A—C7—H7B107.5C28—C25—H25118.9
C5—C8—C16108.0 (3)C18—C25—H25118.9
C5—C8—C12112.2 (4)C31—C26—C29120.5 (6)
C16—C8—C12111.5 (4)C31—C26—H26119.7
C5—C8—H8108.3C29—C26—H26119.7
C16—C8—H8108.3C20—C27—H27A109.5
C12—C8—H8108.3C20—C27—H27B109.5
O9—C9—O10124.2 (4)H27A—C27—H27B109.5
O9—C9—C12120.3 (4)C20—C27—H27C109.5
O10—C9—C12115.5 (4)H27A—C27—H27C109.5
C7—C10—C13111.8 (4)H27B—C27—H27C109.5
C7—C10—C3108.9 (3)C22—C28—C25117.9 (5)
C13—C10—C3112.1 (4)C22—C28—H28121.1
C7—C10—H10108.0C25—C28—H28121.1
C13—C10—H10108.0C19—C29—C26119.7 (5)
C3—C10—H10108.0C19—C29—H29120.1
O3—C11—C14107.2 (3)C26—C29—H29120.1
O3—C11—C2112.1 (4)C20—C30—H30A109.5
C14—C11—C2109.8 (3)C20—C30—H30B109.5
O3—C11—H11109.2H30A—C30—H30B109.5
C14—C11—H11109.2C20—C30—H30C109.5
C2—C11—H11109.2H30A—C30—H30C109.5
C9—C12—C8115.9 (4)H30B—C30—H30C109.5
C9—C12—H12A108.3C26—C31—C23119.1 (5)
C8—C12—H12A108.3C26—C31—H31120.4
C9—C12—H12B108.3C23—C31—H31120.4
C8—C12—H12B108.3C21—C32—H32A109.5
H12A—C12—H12B107.4C21—C32—H32B109.5
C6—C13—C10116.9 (4)H32A—C32—H32B109.5
C6—C13—H13A108.1C21—C32—H32C109.5
C10—C13—H13A108.1H32A—C32—H32C109.5
C6—C13—H13B108.1H32B—C32—H32C109.5
O6—C1—C4—O57.7 (6)O6—C1—C15—C23129.1 (5)
C15—C1—C4—O5111.3 (5)C4—C1—C15—C23109.5 (5)
O6—C1—C4—O4173.5 (4)O6—C1—C15—C1948.5 (5)
C15—C1—C4—O467.5 (5)C4—C1—C15—C1972.9 (5)
N1—C5—C8—C16180.0 (4)C5—C8—C16—C20168.5 (4)
N1—C5—C8—C1256.7 (5)C12—C8—C16—C2067.7 (5)
C21—C7—C10—C1367.5 (5)C18—C14—C17—C221.9 (6)
C21—C7—C10—C3168.1 (4)C11—C14—C17—C22176.9 (4)
N2—C3—C10—C7179.5 (4)C17—C14—C18—C250.5 (7)
N2—C3—C10—C1356.2 (5)C11—C14—C18—C25178.2 (4)
O2—C2—C11—O310.0 (6)C23—C15—C19—C291.9 (7)
O1—C2—C11—O3170.5 (4)C1—C15—C19—C29175.9 (4)
O2—C2—C11—C14109.0 (5)C8—C16—C20—C27179.8 (4)
O1—C2—C11—C1470.4 (4)C8—C16—C20—C3056.2 (6)
O9—C9—C12—C84.7 (6)C10—C7—C21—C24179.5 (5)
O10—C9—C12—C8173.5 (4)C10—C7—C21—C3255.6 (6)
C5—C8—C12—C989.1 (5)C14—C17—C22—C281.0 (7)
C16—C8—C12—C9149.6 (4)C19—C15—C23—C311.6 (7)
O8—C6—C13—C104.2 (6)C1—C15—C23—C31176.1 (5)
O7—C6—C13—C10173.8 (4)C14—C18—C25—C281.8 (8)
C7—C10—C13—C6148.1 (4)C17—C22—C28—C251.2 (7)
C3—C10—C13—C689.3 (5)C18—C25—C28—C222.6 (8)
O3—C11—C14—C18131.2 (4)C15—C19—C29—C261.3 (7)
C2—C11—C14—C18106.8 (5)C31—C26—C29—C190.5 (8)
O3—C11—C14—C1747.6 (5)C29—C26—C31—C230.2 (9)
C2—C11—C14—C1774.5 (5)C15—C23—C31—C260.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O100.821.692.501 (4)173
O1—H1A···O7i0.821.682.493 (4)171
N1—H1B···O80.891.922.808 (5)172
N1—H1C···O7ii0.892.233.052 (5)154
N1—H1D···O5iii0.891.932.812 (5)172
N2—H2A···O9iv0.891.902.771 (5)167
N2—H2B···O100.892.193.048 (5)163
N2—H2C···O20.891.942.804 (4)163
O3—H3···O100.821.922.708 (4)160
O6—H6···O7v0.821.882.689 (4)167
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC8H17NO2·C8H8O3
Mr311.37
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.2922 (13), 27.423 (6), 10.009 (2)
β (°) 90.84 (3)
V3)1726.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.11 × 0.05
Data collection
DiffractometerBruker SMART APEX2 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.956, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
38738, 4159, 2488
Rint0.096
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.148, 0.92
No. of reflections4159
No. of parameters407
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.21
Absolute structureFlack (1983), with 3849 Friedel pairs

Computer programs: XSCANS (Siemens, 1991), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O100.821.692.501 (4)172.7
O1—H1A···O7i0.821.682.493 (4)171.1
N1—H1B···O80.891.922.808 (5)172.2
N1—H1C···O7ii0.892.233.052 (5)153.8
N1—H1D···O5iii0.891.932.812 (5)171.5
N2—H2A···O9iv0.891.902.771 (5)166.5
N2—H2B···O100.892.193.048 (5)162.5
N2—H2C···O20.891.942.804 (4)163.2
O3—H3···O100.821.922.708 (4)160.3
O6—H6···O7v0.821.882.689 (4)166.9
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x1, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds