Download citation
Download citation
link to html
The title compound, C12H19O5P, was obtained by the reaction of 4-methoxy­benzaldehyde and diethyl phospho­nate. Inter­molecular O—H...O hydrogen bonds between the phosphoryl O atom and the hydr­oxy group result in the formation of an infinite chain connecting the mol­ecules along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043280/dn2226sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043280/dn2226Isup2.hkl
Contains datablock I

CCDC reference: 659488

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.064
  • wR factor = 0.159
  • Data-to-parameter ratio = 17.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C8 PLAT360_ALERT_2_B Short C(sp3)-C(sp3) Bond C8 - C10 ... 1.31 Ang.
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.86 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.07 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for O3 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C9 - C11 ... 1.42 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C1 = ... S
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In recent years \a-hydroxyphosphonic acids esters have attracted much attention due to their wide biological activity (Stowasser et al., 1992) and pharmaceutical interest (Chen et al., 1995). They are useful reagents for the synthesis of enol ethers and \a-ketophosphonates (Babak et al., 2001). Bond lengths and angles in the title compound, (I), are in agreement with the values reported for related compounds (Smaardijk et al., 1985). Intermolecular O—H···O hydrogen bond between the phosphoryl O atom and the hydroxy group results in the formation of an infinite chain connecting the molecules along the b axis (Table 1 and Fig. 3).

Related literature top

For related literature, see: Babak & Rahman (2001); Chen et al. (1995); Martine et al. (1995); Smaardijk et al. (1985); Stowasser et al. (1992).

Experimental top

To a solution of 4-methoxybenzaldehyde (5 mmol, 0.68 g) and diethyl phosphonate (5 mmol, 0.69 g) in tetrahydrofuran (5 ml) at 0 \%C was added aqueous ammonia (25%, 1.6 ml). The mixture was left to stand at ambient temperature for 2 h, during which time a precipitate separated. The precipitate was filtered off and washed rapidly with cold diethyl ether (Martine et al., 1995). Single crystals were obtained by crystallization of a dichloromethane/ petroleum ether (v/v = 1/4) solution (Fig. 1). CHN analysis, calculated for C~12~H~19Õ~5~P: C, 52.55%; H, 6.98%; Found: C, 52.41%; H, 6.96%.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms, with C—H = 0.93 (aromatic), 0.96 (CH3), 0.97 (CH2) or 0.98 (CH), O—H = 0.82 \%A and Uiso(H) = 1.2Ueq (aromatic C, CH and CH2) or 1.5Ueq (methyl C and O).

Structure description top

In recent years \a-hydroxyphosphonic acids esters have attracted much attention due to their wide biological activity (Stowasser et al., 1992) and pharmaceutical interest (Chen et al., 1995). They are useful reagents for the synthesis of enol ethers and \a-ketophosphonates (Babak et al., 2001). Bond lengths and angles in the title compound, (I), are in agreement with the values reported for related compounds (Smaardijk et al., 1985). Intermolecular O—H···O hydrogen bond between the phosphoryl O atom and the hydroxy group results in the formation of an infinite chain connecting the molecules along the b axis (Table 1 and Fig. 3).

For related literature, see: Babak & Rahman (2001); Chen et al. (1995); Martine et al. (1995); Smaardijk et al. (1985); Stowasser et al. (1992).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. Molecular view of I with the atom-numbering scheme. Displacement ellipsoids are drawn atthe 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Packing diagram of title compound showing the O—H···O interactions as dashed lines. The H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) -x + 1/2, y + 1/2, -z + 1/2)]
diethyl hydroxy(4-methoxyphenyl)methylphosphonate top
Crystal data top
C12H19O5PF(000) = 584
Mr = 274.24Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1884 reflections
a = 10.454 (4) Åθ = 2.6–25.1°
b = 7.745 (3) ŵ = 0.21 mm1
c = 18.021 (7) ÅT = 273 K
β = 105.228 (7)°Block, colourless
V = 1407.8 (9) Å30.30 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2891 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scanθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1213
Tmin = 0.941, Tmax = 0.964k = 99
7612 measured reflectionsl = 1822
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.210P]
where P = (Fo2 + 2Fc2)/3
2891 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H19O5PV = 1407.8 (9) Å3
Mr = 274.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.454 (4) ŵ = 0.21 mm1
b = 7.745 (3) ÅT = 273 K
c = 18.021 (7) Å0.30 × 0.20 × 0.18 mm
β = 105.228 (7)°
Data collection top
Bruker APEX area-detector
diffractometer
2891 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1818 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.964Rint = 0.068
7612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
2891 reflectionsΔρmin = 0.23 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.14301 (7)0.22551 (10)0.12858 (4)0.0579 (3)
C10.1690 (2)0.3440 (4)0.21623 (17)0.0585 (8)
H1A0.17830.46650.20510.070*
O10.29092 (16)0.2847 (3)0.26315 (12)0.0686 (6)
H1B0.32200.35740.29600.103*
C20.0569 (2)0.3249 (3)0.25236 (16)0.0538 (7)
O20.12622 (17)0.0406 (2)0.13491 (10)0.0610 (5)
O30.2581 (2)0.2753 (3)0.09399 (13)0.0794 (7)
C30.0574 (3)0.2032 (4)0.30721 (17)0.0631 (8)
H3A0.12830.12680.32170.076*
O40.0233 (2)0.3229 (3)0.07794 (13)0.0766 (6)
C40.0443 (3)0.1923 (4)0.34103 (18)0.0711 (9)
H4A0.04130.11030.37920.085*
O50.2459 (2)0.2769 (3)0.35739 (14)0.0913 (8)
C50.1500 (3)0.2997 (4)0.31971 (18)0.0643 (8)
C60.1545 (3)0.4176 (5)0.2642 (2)0.0738 (9)
H6A0.22760.48980.24830.089*
C70.0514 (3)0.4306 (4)0.23163 (19)0.0683 (8)
H7A0.05470.51390.19400.082*
C80.3671 (5)0.1724 (7)0.0963 (4)0.154 (2)
H8A0.41570.16050.14990.185*
H8B0.33420.05850.07850.185*
C90.0663 (4)0.2564 (5)0.0107 (2)0.1039 (13)
H9A0.06280.13120.01150.125*
H9B0.04070.29600.03440.125*
C100.4525 (5)0.2167 (7)0.0581 (3)0.143 (2)
H10B0.52300.13350.06720.215*
H10C0.48830.32840.07500.215*
H10D0.40890.22060.00420.215*
C110.1979 (4)0.3120 (7)0.0065 (3)0.142 (2)
H11A0.25760.26580.03900.214*
H11B0.20160.43590.00480.214*
H11C0.22330.27190.05100.214*
C120.3571 (3)0.3881 (6)0.3378 (3)0.1105 (14)
H12A0.41720.35920.36810.166*
H12B0.40120.37510.28420.166*
H12C0.32830.50550.34790.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0565 (5)0.0514 (5)0.0661 (5)0.0027 (4)0.0168 (4)0.0044 (4)
C10.0453 (15)0.0469 (17)0.081 (2)0.0007 (13)0.0119 (14)0.0014 (14)
O10.0438 (11)0.0669 (14)0.0886 (15)0.0018 (9)0.0057 (10)0.0180 (11)
C20.0452 (15)0.0466 (17)0.0645 (18)0.0029 (12)0.0056 (13)0.0098 (13)
O20.0687 (12)0.0461 (12)0.0671 (13)0.0026 (9)0.0157 (10)0.0039 (9)
O30.0787 (14)0.0681 (15)0.1036 (18)0.0080 (12)0.0456 (13)0.0170 (12)
C30.0542 (17)0.067 (2)0.0642 (19)0.0183 (15)0.0087 (15)0.0023 (15)
O40.0772 (14)0.0683 (16)0.0764 (15)0.0111 (11)0.0065 (12)0.0024 (11)
C40.0676 (19)0.078 (2)0.070 (2)0.0145 (17)0.0220 (17)0.0075 (16)
O50.0689 (14)0.116 (2)0.0976 (18)0.0117 (14)0.0382 (13)0.0108 (14)
C50.0498 (17)0.077 (2)0.066 (2)0.0040 (16)0.0162 (15)0.0154 (17)
C60.0543 (17)0.075 (2)0.090 (2)0.0214 (16)0.0157 (17)0.0023 (19)
C70.0574 (17)0.057 (2)0.090 (2)0.0149 (15)0.0186 (16)0.0101 (16)
C80.111 (3)0.140 (5)0.249 (7)0.039 (3)0.114 (4)0.073 (4)
C90.109 (3)0.098 (3)0.086 (3)0.014 (2)0.009 (2)0.010 (2)
C100.126 (4)0.155 (5)0.172 (5)0.025 (4)0.082 (4)0.017 (4)
C110.089 (3)0.140 (5)0.163 (5)0.002 (3)0.030 (3)0.025 (4)
C120.067 (2)0.129 (4)0.147 (4)0.020 (2)0.049 (2)0.025 (3)
Geometric parameters (Å, º) top
P1—O21.451 (2)C6—C71.359 (4)
P1—O41.539 (2)C6—H6A0.9300
P1—O31.543 (2)C7—H7A0.9300
P1—C11.785 (3)C8—C101.308 (5)
C1—O11.408 (3)C8—H8A0.9700
C1—C21.490 (4)C8—H8B0.9700
C1—H1A0.9800C9—C111.425 (5)
O1—H1B0.8200C9—H9A0.9700
C2—C31.364 (4)C9—H9B0.9700
C2—C71.367 (4)C10—H10B0.9600
O3—C81.382 (4)C10—H10C0.9600
C3—C41.360 (4)C10—H10D0.9600
C3—H3A0.9300C11—H11A0.9600
O4—C91.420 (4)C11—H11B0.9600
C4—C51.356 (4)C11—H11C0.9600
C4—H4A0.9300C12—H12A0.9600
O5—C51.362 (3)C12—H12B0.9600
O5—C121.415 (4)C12—H12C0.9600
C5—C61.346 (5)
O2—P1—O4115.73 (12)C6—C7—H7A119.0
O2—P1—O3113.70 (12)C2—C7—H7A119.0
O4—P1—O3103.71 (13)C10—C8—O3120.3 (4)
O2—P1—C1115.56 (13)C10—C8—H8A107.3
O4—P1—C1100.60 (13)O3—C8—H8A107.3
O3—P1—C1105.98 (13)C10—C8—H8B107.3
O1—C1—C2113.4 (2)O3—C8—H8B107.3
O1—C1—P1105.49 (18)H8A—C8—H8B106.9
C2—C1—P1112.39 (18)O4—C9—C11110.3 (3)
O1—C1—H1A108.5O4—C9—H9A109.6
C2—C1—H1A108.5C11—C9—H9A109.6
P1—C1—H1A108.5O4—C9—H9B109.6
C1—O1—H1B109.5C11—C9—H9B109.6
C3—C2—C7117.2 (3)H9A—C9—H9B108.1
C3—C2—C1122.1 (2)C8—C10—H10B109.5
C7—C2—C1120.7 (3)C8—C10—H10C109.5
C8—O3—P1124.6 (2)H10B—C10—H10C109.5
C4—C3—C2120.8 (3)C8—C10—H10D109.5
C4—C3—H3A119.6H10B—C10—H10D109.5
C2—C3—H3A119.6H10C—C10—H10D109.5
C9—O4—P1125.4 (2)C9—C11—H11A109.5
C5—C4—C3120.6 (3)C9—C11—H11B109.5
C5—C4—H4A119.7H11A—C11—H11B109.5
C3—C4—H4A119.7C9—C11—H11C109.5
C5—O5—C12117.4 (3)H11A—C11—H11C109.5
C6—C5—C4119.6 (3)H11B—C11—H11C109.5
C6—C5—O5124.9 (3)O5—C12—H12A109.5
C4—C5—O5115.5 (3)O5—C12—H12B109.5
C5—C6—C7119.6 (3)H12A—C12—H12B109.5
C5—C6—H6A120.2O5—C12—H12C109.5
C7—C6—H6A120.2H12A—C12—H12C109.5
C6—C7—C2122.1 (3)H12B—C12—H12C109.5
O2—P1—C1—O164.4 (2)O2—P1—O4—C933.9 (3)
O4—P1—C1—O1170.20 (17)O3—P1—O4—C991.3 (3)
O3—P1—C1—O162.5 (2)C1—P1—O4—C9159.2 (3)
O2—P1—C1—C259.6 (2)C2—C3—C4—C51.5 (5)
O4—P1—C1—C265.8 (2)C3—C4—C5—C60.4 (5)
O3—P1—C1—C2173.50 (19)C3—C4—C5—O5179.9 (3)
O1—C1—C2—C325.5 (4)C12—O5—C5—C61.5 (5)
P1—C1—C2—C394.0 (3)C12—O5—C5—C4179.0 (3)
O1—C1—C2—C7154.2 (3)C4—C5—C6—C71.7 (5)
P1—C1—C2—C786.3 (3)O5—C5—C6—C7178.8 (3)
O2—P1—O3—C824.8 (4)C5—C6—C7—C21.2 (5)
O4—P1—O3—C8151.3 (4)C3—C2—C7—C60.6 (4)
C1—P1—O3—C8103.2 (4)C1—C2—C7—C6179.2 (3)
C7—C2—C3—C41.9 (4)P1—O3—C8—C10172.4 (4)
C1—C2—C3—C4177.8 (3)P1—O4—C9—C11142.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.821.872.687 (3)173
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H19O5P
Mr274.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)10.454 (4), 7.745 (3), 18.021 (7)
β (°) 105.228 (7)
V3)1407.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.941, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
7612, 2891, 1818
Rint0.068
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.159, 1.06
No. of reflections2891
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.821.872.687 (3)172.7
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds