Download citation
Download citation
link to html
In the title compound, dihydroxido­bis­(2,4,6-triamino-1,3,5-triazine-κN)­zinc(II) monohydrate, [Zn(OH)2(C3N6H6)2]·H2O, ZnII is tetra­hedrally coordinated by two melamine and two hydr­oxy groups; there is also a solvent water mol­ecule. The dihedral angle between the two melamine rings is 86.3 (9)°. Intra­molecular N—H...O and N—H...N hydrogen bonds help to stabilize the mol­ecular conformation. Numerous inter­molecular hydrogen bonds between water, hydr­oxy and melamine groups link the mol­ecules into a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045254/dn2228sup1.cif
Contains datablocks w, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045254/dn2228Isup2.hkl
Contains datablock I

CCDC reference: 663611

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](N-C) = 0.010 Å
  • R factor = 0.053
  • wR factor = 0.143
  • Data-to-parameter ratio = 9.3

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.05 From the CIF: _reflns_number_total 1843 Count of symmetry unique reflns 1230 Completeness (_total/calc) 149.84% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 613 Fraction of Friedel pairs measured 0.498 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 1.71 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The transition metal complexes are potential photo-luminescent, paramagnetic and radioactive materials due to their attractive photochemical and photophysical properties(Ford et al., 1999). Low dimensional metal organic complexes have received great attention in recent years for their potential applications in optics, electronics, magnetics, biology, catalyst and medicine (Tandon et al., 1994). The ligand, melamine, has both acceptor and donnor atoms suitable for hydrogen bonding and is analogous to nucleobases that may lead to some interesting new chemotherapeutic possibilities (Zhu et al., 1999).

In the complex I, the zinc cation is coordinated by two melamine and two hydroxyl ligands, forming a distorted tetrahedral geometry, while intramolecular N—H···O and N—H···H hydrogen bonds help to stabilize the molecular conformation (Fig. 1). The two melamine rings make a dihedral angle of 86.3 (9) °. All of the bond lengths and angles are within normal ranges (Allen et al., 1987). The Zn—N bond lengths (2.021 Å and 2.024 Å) in the title compound are slightly shorter than that (2.039 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004). The Zn—O bond lengths (2.018 Å and 2.041 Å) are slightly longer than that (1.984 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004).

As can be seen from the packing diagram (Fig. 2), intermolecular N—H···O, N—H···N, O—H..O and O—H···N hydrogen bonds(Table 1) link the molecules into a three-dimensional network, which may be effective in the stabilization of the crystal structure.

Related literature top

For general background, see: Ford et al. (1999); Tandon et al. (1994); Zhu et al. (1999). For a related structure, see: Yu et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of zinc chloride (0.136 g, 1 mmol), melamine (0.252 g, 2 mmol), and distilled water(8 ml) was heated at 180°C for 4 days in hydrothermal tube. After being cooled to room temperature, colourless block crystals were obtained. Elemental analysis calcd for compound(I): C 19.58%, H 4.40%, N 45.60%; Found: C 19.51%, H 4.35%, N 45.53%.

Refinement top

H atoms attached to NH2 and hydroxyl groups were positioned geometrically (O—H = 0.84 and N—H = 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,O). H atoms from water were located in a difference map and refined with distance restraints of O—H = 0.84 \%A and Uĩso~(H) = 1.5U~eq~(O).

Structure description top

The transition metal complexes are potential photo-luminescent, paramagnetic and radioactive materials due to their attractive photochemical and photophysical properties(Ford et al., 1999). Low dimensional metal organic complexes have received great attention in recent years for their potential applications in optics, electronics, magnetics, biology, catalyst and medicine (Tandon et al., 1994). The ligand, melamine, has both acceptor and donnor atoms suitable for hydrogen bonding and is analogous to nucleobases that may lead to some interesting new chemotherapeutic possibilities (Zhu et al., 1999).

In the complex I, the zinc cation is coordinated by two melamine and two hydroxyl ligands, forming a distorted tetrahedral geometry, while intramolecular N—H···O and N—H···H hydrogen bonds help to stabilize the molecular conformation (Fig. 1). The two melamine rings make a dihedral angle of 86.3 (9) °. All of the bond lengths and angles are within normal ranges (Allen et al., 1987). The Zn—N bond lengths (2.021 Å and 2.024 Å) in the title compound are slightly shorter than that (2.039 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004). The Zn—O bond lengths (2.018 Å and 2.041 Å) are slightly longer than that (1.984 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004).

As can be seen from the packing diagram (Fig. 2), intermolecular N—H···O, N—H···N, O—H..O and O—H···N hydrogen bonds(Table 1) link the molecules into a three-dimensional network, which may be effective in the stabilization of the crystal structure.

For general background, see: Ford et al. (1999); Tandon et al. (1994); Zhu et al. (1999). For a related structure, see: Yu et al. (2004). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms). Intramolecular hydrogen bonds are shown as double dashed lines.
[Figure 2] Fig. 2. A packing diagram of complex(I). Hydrogen bonds are shown as dashed lines.
Dihydroxidobis(melamine-κN)zinc(II) monohydrate top
Crystal data top
[Zn(OH)2(C3N6H6)2]·H2OF(000) = 760
Mr = 369.70Dx = 1.865 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 17.531 (4) Åθ = 9–13°
b = 6.6251 (13) ŵ = 1.91 mm1
c = 11.335 (2) ÅT = 293 K
V = 1316.5 (5) Å3Block, colourless
Z = 40.40 × 0.40 × 0.22 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1682 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.1°, θmin = 2.3°
ω/2θ scansh = 1120
Absorption correction: ψ scan
(North et al., 1968)
k = 77
Tmin = 0.508, Tmax = 0.657l = 1311
3467 measured reflections3 standard reflections every 200 reflections
1843 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0759P)2 + 5.1018P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1843 reflectionsΔρmax = 0.23 e Å3
199 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 636 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Crystal data top
[Zn(OH)2(C3N6H6)2]·H2OV = 1316.5 (5) Å3
Mr = 369.70Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.531 (4) ŵ = 1.91 mm1
b = 6.6251 (13) ÅT = 293 K
c = 11.335 (2) Å0.40 × 0.40 × 0.22 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1682 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.037
Tmin = 0.508, Tmax = 0.6573 standard reflections every 200 reflections
3467 measured reflections intensity decay: none
1843 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.23 e Å3
S = 1.09Δρmin = 0.38 e Å3
1843 reflectionsAbsolute structure: Flack (1983), 636 Friedel pairs
199 parametersAbsolute structure parameter: 0.06 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0926 (4)0.8133 (12)0.2026 (8)0.0288 (18)
C21.2208 (4)0.9046 (10)0.1426 (11)0.0301 (16)
C31.1128 (4)1.1158 (13)0.0982 (8)0.032 (2)
C40.9359 (4)0.7899 (13)0.0664 (9)0.0327 (19)
C50.8131 (5)0.6933 (14)0.1435 (9)0.035 (2)
C60.8286 (4)0.9887 (13)0.0226 (9)0.0306 (18)
N11.0653 (3)0.9865 (9)0.1520 (9)0.0303 (18)
N21.0510 (3)0.6883 (9)0.2514 (6)0.0264 (16)
H2A1.00260.70810.25470.032*
H2B1.07050.58140.28210.032*
N31.1697 (3)0.7769 (10)0.1947 (7)0.0313 (16)
N41.2893 (2)0.8706 (8)0.1433 (8)0.0246 (13)
H4A1.32050.95580.11240.030*
H4B1.30640.76140.17470.030*
N51.1901 (4)1.0702 (10)0.0957 (7)0.0319 (17)
N61.0884 (4)1.2648 (11)0.0488 (7)0.039 (2)
H6A1.04021.28850.04790.046*
H6B1.11931.34670.01450.046*
N70.9038 (4)0.9458 (10)0.0072 (7)0.0242 (17)
N81.0043 (3)0.7584 (11)0.0641 (8)0.041 (2)
H8A1.03380.83620.02400.050*
H8B1.02320.65820.10250.050*
N90.8892 (4)0.6602 (11)0.1310 (7)0.0329 (17)
N100.7718 (4)0.5743 (10)0.1966 (7)0.0318 (17)
H10A0.72390.59880.20350.038*
H10B0.79090.46650.22690.038*
N110.7853 (4)0.8644 (11)0.0947 (7)0.0338 (16)
N120.7985 (3)1.1327 (10)0.0259 (7)0.0333 (18)
H12A0.82501.21000.07110.040*
H12B0.75091.15680.01490.040*
O10.9360 (3)1.3630 (9)0.1356 (11)0.0580 (17)
H10.93571.40610.20530.087*
O20.8931 (5)0.9344 (13)0.2726 (9)0.051 (3)
H20.91530.95810.33680.077*
O30.8689 (4)0.4538 (10)0.3936 (8)0.053 (2)
H3A0.85210.35340.43070.080*
H3B0.82860.49590.36200.080*
Zn10.95397 (4)1.06209 (11)0.13850 (11)0.0287 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (4)0.027 (4)0.033 (5)0.005 (3)0.001 (3)0.006 (4)
C20.029 (3)0.030 (4)0.031 (4)0.006 (3)0.012 (5)0.002 (5)
C30.026 (4)0.037 (4)0.032 (5)0.001 (3)0.005 (3)0.003 (4)
C40.028 (4)0.033 (4)0.037 (5)0.003 (3)0.001 (4)0.005 (4)
C50.036 (4)0.032 (5)0.038 (5)0.004 (4)0.001 (4)0.0041 (4)
C60.025 (4)0.035 (4)0.033 (5)0.005 (3)0.008 (3)0.000 (4)
N10.020 (2)0.029 (3)0.042 (5)0.004 (2)0.002 (4)0.009 (4)
N20.015 (3)0.021 (3)0.043 (4)0.002 (3)0.007 (3)0.018 (3)
N30.022 (3)0.027 (3)0.045 (4)0.002 (3)0.003 (3)0.009 (3)
N40.009 (2)0.019 (3)0.047 (4)0.0011 (18)0.008 (4)0.004 (4)
N50.026 (3)0.034 (4)0.036 (4)0.001 (3)0.002 (3)0.010 (3)
N60.018 (3)0.025 (4)0.043 (5)0.004 (3)0.011 (3)0.018 (4)
N70.020 (3)0.028 (4)0.025 (5)0.002 (3)0.003 (3)0.008 (3)
N80.020 (3)0.040 (4)0.064 (6)0.008 (3)0.004 (3)0.036 (4)
N90.028 (3)0.035 (4)0.035 (4)0.003 (3)0.001 (3)0.012 (4)
N100.021 (3)0.029 (3)0.045 (5)0.000 (3)0.008 (3)0.022 (3)
N110.028 (3)0.033 (4)0.040 (4)0.004 (3)0.002 (3)0.010 (4)
N120.021 (3)0.034 (4)0.054 (5)0.010 (3)0.009 (3)0.031 (4)
O10.057 (3)0.046 (3)0.071 (5)0.007 (3)0.000 (6)0.009 (6)
O20.055 (5)0.047 (6)0.062 (7)0.011 (4)0.005 (4)0.002 (5)
O30.032 (3)0.058 (4)0.069 (5)0.005 (3)0.008 (3)0.021 (4)
Zn10.0224 (4)0.0304 (5)0.0334 (5)0.0006 (3)0.0005 (5)0.0012 (6)
Geometric parameters (Å, º) top
C1—N21.234 (10)N2—H2A0.8600
C1—N11.369 (11)N2—H2B0.8600
C1—N31.377 (10)N4—H4A0.8600
C2—N41.222 (8)N4—H4B0.8600
C2—N51.334 (10)N6—H6A0.8600
C2—N31.366 (10)N6—H6B0.8600
C3—N61.213 (11)N7—Zn12.024 (8)
C3—N11.341 (11)N8—H8A0.8600
C3—N51.389 (10)N8—H8B0.8600
C4—N81.217 (10)N10—H10A0.8600
C4—N71.354 (11)N10—H10B0.8600
C4—N91.395 (11)N12—H12A0.8600
C5—N101.227 (11)N12—H12B0.8600
C5—N111.353 (12)O1—Zn12.018 (6)
C5—N91.359 (11)O1—H10.8396
C6—N121.221 (11)O2—Zn12.041 (10)
C6—N71.360 (11)O2—H20.8400
C6—N111.387 (11)O3—H3A0.8396
N1—Zn12.021 (6)O3—H3B0.8399
N2—C1—N1122.9 (7)C2—N5—C3124.4 (7)
N2—C1—N3119.5 (7)C3—N6—H6A120.0
N1—C1—N3117.6 (7)C3—N6—H6B120.0
N4—C2—N5123.5 (8)H6A—N6—H6B120.0
N4—C2—N3121.9 (7)C4—N7—C6119.9 (8)
N5—C2—N3114.6 (6)C4—N7—Zn1121.0 (6)
N6—C3—N1120.8 (7)C6—N7—Zn1116.5 (6)
N6—C3—N5120.7 (8)C4—N8—H8A120.0
N1—C3—N5118.4 (8)C4—N8—H8B120.0
N8—C4—N7122.0 (8)H8A—N8—H8B120.0
N8—C4—N9119.0 (8)C5—N9—C4122.2 (7)
N7—C4—N9119.0 (7)C5—N10—H10A120.0
N10—C5—N11121.8 (8)C5—N10—H10B120.0
N10—C5—N9121.8 (8)H10A—N10—H10B120.0
N11—C5—N9116.5 (9)C5—N11—C6122.8 (7)
N12—C6—N7121.7 (8)C6—N12—H12A120.0
N12—C6—N11119.5 (7)C6—N12—H12B120.0
N7—C6—N11118.9 (8)H12A—N12—H12B120.0
C3—N1—C1120.6 (6)Zn1—O1—H1108.8
C3—N1—Zn1114.0 (5)Zn1—O2—H2109.0
C1—N1—Zn1125.2 (5)H3A—O3—H3B100.5
C1—N2—H2A120.0O1—Zn1—N1113.4 (3)
C1—N2—H2B120.0O1—Zn1—N7107.2 (4)
H2A—N2—H2B120.0N1—Zn1—N7112.8 (3)
C2—N3—C1124.3 (7)O1—Zn1—O2109.8 (4)
C2—N4—H4A120.0N1—Zn1—O2110.2 (4)
C2—N4—H4B120.0N7—Zn1—O2102.9 (3)
H4A—N4—H4B120.0
N6—C3—N1—C1176.7 (9)N12—C6—N7—Zn121.0 (12)
N5—C3—N1—C10.4 (14)N11—C6—N7—Zn1158.6 (7)
N6—C3—N1—Zn11.3 (12)N10—C5—N9—C4177.1 (9)
N5—C3—N1—Zn1175.8 (6)N11—C5—N9—C43.0 (13)
N2—C1—N1—C3178.8 (9)N8—C4—N9—C5175.8 (9)
N3—C1—N1—C30.8 (14)N7—C4—N9—C54.9 (13)
N2—C1—N1—Zn13.9 (13)N10—C5—N11—C6172.1 (9)
N3—C1—N1—Zn1174.1 (6)N9—C5—N11—C68.0 (13)
N4—C2—N3—C1176.1 (10)N12—C6—N11—C5174.5 (9)
N5—C2—N3—C11.6 (15)N7—C6—N11—C55.1 (14)
N2—C1—N3—C2180.0 (9)C3—N1—Zn1—O133.1 (9)
N1—C1—N3—C21.8 (14)C1—N1—Zn1—O1151.7 (8)
N4—C2—N5—C3177.3 (10)C3—N1—Zn1—N788.9 (7)
N3—C2—N5—C30.4 (15)C1—N1—Zn1—N786.3 (9)
N6—C3—N5—C2176.5 (10)C3—N1—Zn1—O2156.7 (7)
N1—C3—N5—C20.5 (14)C1—N1—Zn1—O228.1 (9)
N8—C4—N7—C6172.8 (10)C4—N7—Zn1—O1143.5 (7)
N9—C4—N7—C68.0 (13)C6—N7—Zn1—O154.9 (7)
N8—C4—N7—Zn126.2 (13)C4—N7—Zn1—N118.0 (8)
N9—C4—N7—Zn1153.0 (7)C6—N7—Zn1—N1179.6 (6)
N12—C6—N7—C4177.2 (9)C4—N7—Zn1—O2100.7 (7)
N11—C6—N7—C43.2 (13)C6—N7—Zn1—O260.9 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.443.221 (11)151
N2—H2B···N9i0.862.012.865 (9)174
N4—H4A···O1ii0.862.373.120 (8)146
N4—H4B···O2iii0.862.293.089 (11)156
N6—H6A···O10.862.142.921 (10)151
N6—H6B···O3iv0.861.912.670 (9)146
N8—H8A···N10.862.303.070 (12)150
N8—H8B···O3v0.862.032.674 (9)131
N10—H10A···O2vi0.862.343.057 (11)141
N10—H10B···N3v0.861.972.826 (9)176
N12—H12A···O10.862.313.111 (10)155
N12—H12B···N5vii0.862.292.849 (9)123
O1—H1···O3viii0.842.463.209 (14)150
O2—H2···N8ix0.842.603.288 (10)139
O3—H3A···N11x0.842.432.770 (9)105
O3—H3B···N11x0.842.232.770 (9)122
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x+1/2, y+5/2, z; (iii) x+1/2, y+3/2, z; (iv) x+2, y+2, z1/2; (v) x+2, y+1, z1/2; (vi) x+3/2, y1/2, z1/2; (vii) x1/2, y+5/2, z; (viii) x, y+1, z; (ix) x+2, y+2, z+1/2; (x) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(OH)2(C3N6H6)2]·H2O
Mr369.70
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)17.531 (4), 6.6251 (13), 11.335 (2)
V3)1316.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.40 × 0.40 × 0.22
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.508, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
3467, 1843, 1682
Rint0.037
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.143, 1.09
No. of reflections1843
No. of parameters199
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.38
Absolute structureFlack (1983), 636 Friedel pairs
Absolute structure parameter0.06 (3)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.862.443.221 (11)151
N2—H2B···N9i0.862.012.865 (9)174
N4—H4A···O1ii0.862.373.120 (8)146
N4—H4B···O2iii0.862.293.089 (11)156
N6—H6A···O10.862.142.921 (10)151
N6—H6B···O3iv0.861.912.670 (9)146
N8—H8A···N10.862.303.070 (12)150
N8—H8B···O3v0.862.032.674 (9)131
N10—H10A···O2vi0.862.343.057 (11)141
N10—H10B···N3v0.861.972.826 (9)176
N12—H12A···O10.862.313.111 (10)155
N12—H12B···N5vii0.862.292.849 (9)123
O1—H1···O3viii0.842.463.209 (14)150
O2—H2···N8ix0.842.603.288 (10)139
O3—H3A···N11x0.842.432.770 (9)105
O3—H3B···N11x0.842.232.770 (9)122
Symmetry codes: (i) x+2, y+1, z+1/2; (ii) x+1/2, y+5/2, z; (iii) x+1/2, y+3/2, z; (iv) x+2, y+2, z1/2; (v) x+2, y+1, z1/2; (vi) x+3/2, y1/2, z1/2; (vii) x1/2, y+5/2, z; (viii) x, y+1, z; (ix) x+2, y+2, z+1/2; (x) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds