supplementary materials


dn3064 scheme

Acta Cryst. (2007). E63, o4165    [ doi:10.1107/S1600536807046533 ]

3-Bromo-4-methoxybenzaldehyde 4-nitrophenylhydrazone

C.-X. Zhang, Z.-G. Yin, H.-Y. Qian, J. Hu and Y.-L. Feng

Abstract top

In the title compound, C14H12BrN3O3, the two benzene rings are slightly twisted, making a dihedral angle of 9.9 (3)°. The crystal packing is stabilized by weak intermolecular N-H...O and C-H...O hydrogen bonds.

Comment top

4-Nitrophenylhydrazine has applications in organic synthesis and some of its derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al.,1993). As a continuation of this work, we report the synthesis and crystal structure of the title compound(I).

The 4-nitrophenyl group and the methyl benzene rings areslightly twisted making a dihedral angle of 9.9 (3)° (Fig. 1). The N1/O1/O2 nitro group is co-planar with its attached benzene ring [dihedral angle =1.4 (2)°].

The intermolecular N—H···O and C—H···O hydrogen bonds can help stabilizing the molecular structure·(Table 1, Fig.2)

Related literature top

For related literature, see: Okabe et al. (1993).

Experimental top

4-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous methanol, H2SO4 (98% 0.5 ml) was added to this, the mixture was stirred for several minitutes at 351 K, 3-Bromo-4-methoxybenzaldehyde (1 mmol 0.215 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized in dichloromethane, brown single crystals of (I) was obtained after 1 d.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93Å (aromatic) or 0.96Å (methy) and N—H = 0.86Å with Uiso(H) = 1.2Ueq(Caromatic, N) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of (I), showing the intermolecular hydrogen bonds as dashed lines.
3-Bromo-4-methoxybenzaldehyde 4-nitrophenylhydrazone top
Crystal data top
C14H12BrN3O3F000 = 1408
Mr = 350.18Dx = 1.591 Mg m3
Orthorhombic, PccnMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1248 reflections
a = 7.2800 (15) Åθ = 2.5–27.8º
b = 14.678 (3) ŵ = 2.82 mm1
c = 27.368 (6) ÅT = 298 (2) K
V = 2924.4 (10) Å3Block, brown
Z = 80.27 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2980 independent reflections
Radiation source: fine-focus sealed tube2456 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.060
T = 298(2) Kθmax = 26.5º
ω scansθmin = 2.8º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 9→8
Tmin = 0.486, Tmax = 0.548k = 18→18
30041 measured reflectionsl = 34→34
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.091H-atom parameters constrained
wR(F2) = 0.176  w = 1/[σ2(Fo2) + (0.045P)2 + 6.3175P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2980 reflectionsΔρmax = 0.93 e Å3
191 parametersΔρmin = 0.58 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C14H12BrN3O3V = 2924.4 (10) Å3
Mr = 350.18Z = 8
Orthorhombic, PccnMo Kα
a = 7.2800 (15) ŵ = 2.82 mm1
b = 14.678 (3) ÅT = 298 (2) K
c = 27.368 (6) Å0.27 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2980 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2456 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.548Rint = 0.060
30041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.091191 parameters
wR(F2) = 0.176H-atom parameters constrained
S = 1.22Δρmax = 0.93 e Å3
2980 reflectionsΔρmin = 0.58 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11817 (15)0.97770 (5)0.17684 (2)0.1058 (4)
O10.3606 (7)1.1359 (3)0.58357 (17)0.0930 (14)
O20.4495 (6)1.2106 (3)0.51958 (19)0.0857 (13)
O30.0204 (7)0.7930 (3)0.14235 (15)0.0887 (14)
N10.3772 (7)1.1431 (3)0.5392 (2)0.0687 (13)
N20.1160 (7)0.8638 (3)0.42050 (15)0.0642 (12)
H20.07860.81420.43400.077*
N30.1076 (6)0.8735 (3)0.37049 (16)0.0630 (12)
C10.3092 (7)1.0709 (4)0.50809 (19)0.0556 (13)
C20.2439 (8)0.9916 (4)0.5293 (2)0.0602 (13)
H2A0.24210.98490.56300.072*
C30.1816 (7)0.9227 (4)0.49932 (18)0.0573 (13)
H30.13780.86900.51310.069*
C40.1836 (7)0.9327 (3)0.44878 (18)0.0509 (12)
C50.2542 (8)1.0125 (4)0.42843 (19)0.0591 (13)
H50.25771.01960.39470.071*
C60.3184 (8)1.0802 (4)0.4581 (2)0.0615 (14)
H60.36831.13280.44450.074*
C70.0422 (8)0.8060 (4)0.3473 (2)0.0666 (15)
H70.00150.75570.36480.080*
C80.0284 (8)0.8046 (4)0.2942 (2)0.0622 (14)
C90.0654 (8)0.8806 (4)0.2657 (2)0.0621 (14)
H90.09430.93580.28050.075*
C100.0594 (8)0.8745 (4)0.2153 (2)0.0648 (15)
C110.0189 (8)0.7920 (4)0.1923 (2)0.0656 (15)
C120.0173 (9)0.7173 (4)0.2203 (3)0.0802 (19)
H120.04490.66200.20550.096*
C130.0130 (9)0.7237 (4)0.2705 (2)0.0745 (17)
H130.03880.67220.28910.089*
C140.0039 (13)0.7075 (5)0.1180 (3)0.112 (3)
H14A0.09000.66580.12840.167*
H14B0.00440.71630.08330.167*
H14C0.12240.68300.12600.167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1924 (10)0.0635 (4)0.0616 (4)0.0057 (5)0.0070 (5)0.0025 (3)
O10.119 (4)0.090 (3)0.069 (3)0.005 (3)0.008 (3)0.017 (2)
O20.091 (3)0.057 (2)0.108 (3)0.012 (2)0.009 (3)0.005 (2)
O30.126 (4)0.075 (3)0.064 (2)0.023 (3)0.029 (3)0.030 (2)
N10.063 (3)0.061 (3)0.082 (4)0.008 (3)0.007 (3)0.009 (3)
N20.082 (3)0.059 (3)0.052 (2)0.010 (3)0.002 (2)0.008 (2)
N30.071 (3)0.067 (3)0.051 (2)0.003 (2)0.003 (2)0.002 (2)
C10.053 (3)0.052 (3)0.062 (3)0.006 (2)0.011 (3)0.002 (2)
C20.063 (3)0.066 (3)0.052 (3)0.009 (3)0.001 (3)0.006 (3)
C30.062 (3)0.054 (3)0.055 (3)0.000 (3)0.003 (3)0.009 (2)
C40.045 (3)0.053 (3)0.055 (3)0.002 (2)0.003 (2)0.002 (2)
C50.066 (3)0.060 (3)0.050 (3)0.009 (3)0.003 (3)0.009 (2)
C60.062 (3)0.050 (3)0.072 (4)0.003 (3)0.004 (3)0.014 (3)
C70.071 (4)0.057 (3)0.071 (4)0.006 (3)0.010 (3)0.002 (3)
C80.056 (3)0.065 (4)0.065 (3)0.004 (3)0.007 (3)0.010 (3)
C90.075 (4)0.053 (3)0.059 (3)0.006 (3)0.015 (3)0.012 (3)
C100.083 (4)0.052 (3)0.060 (3)0.016 (3)0.013 (3)0.012 (3)
C110.065 (4)0.066 (4)0.066 (3)0.014 (3)0.019 (3)0.019 (3)
C120.088 (5)0.055 (3)0.098 (5)0.005 (3)0.023 (4)0.028 (3)
C130.083 (4)0.062 (4)0.078 (4)0.010 (3)0.012 (3)0.004 (3)
C140.161 (8)0.086 (5)0.088 (5)0.034 (5)0.040 (5)0.044 (4)
Geometric parameters (Å, °) top
Br1—C101.893 (6)C5—C61.366 (7)
O1—N11.226 (6)C5—H50.9300
O2—N11.244 (6)C6—H60.9300
O3—C111.367 (7)C7—C81.456 (8)
O3—C141.432 (7)C7—H70.9300
N1—C11.447 (7)C8—C131.385 (8)
N2—C41.364 (6)C8—C91.389 (8)
N2—N31.377 (6)C9—C101.382 (7)
N2—H20.8600C9—H90.9300
N3—C71.269 (7)C10—C111.398 (7)
C1—C61.376 (7)C11—C121.363 (9)
C1—C21.384 (7)C12—C131.379 (9)
C2—C31.379 (7)C12—H120.9300
C2—H2A0.9300C13—H130.9300
C3—C41.391 (7)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—C51.396 (7)C14—H14C0.9600
C11—O3—C14117.0 (5)N3—C7—H7118.8
O1—N1—O2122.5 (5)C8—C7—H7118.8
O1—N1—C1119.1 (5)C13—C8—C9117.8 (5)
O2—N1—C1118.4 (5)C13—C8—C7119.6 (6)
C4—N2—N3120.3 (4)C9—C8—C7122.4 (5)
C4—N2—H2119.9C10—C9—C8120.2 (5)
N3—N2—H2119.9C10—C9—H9119.9
C7—N3—N2115.7 (5)C8—C9—H9119.9
C6—C1—C2121.1 (5)C9—C10—C11120.8 (6)
C6—C1—N1119.7 (5)C9—C10—Br1119.7 (4)
C2—C1—N1119.2 (5)C11—C10—Br1119.4 (4)
C3—C2—C1118.8 (5)C12—C11—O3125.0 (5)
C3—C2—H2A120.6C12—C11—C10118.9 (5)
C1—C2—H2A120.6O3—C11—C10116.1 (6)
C2—C3—C4120.7 (5)C11—C12—C13120.1 (5)
C2—C3—H3119.7C11—C12—H12119.9
C4—C3—H3119.7C13—C12—H12119.9
N2—C4—C3118.8 (5)C12—C13—C8122.0 (6)
N2—C4—C5121.9 (5)C12—C13—H13119.0
C3—C4—C5119.3 (5)C8—C13—H13119.0
C6—C5—C4120.0 (5)O3—C14—H14A109.5
C6—C5—H5120.0O3—C14—H14B109.5
C4—C5—H5120.0H14A—C14—H14B109.5
C5—C6—C1120.2 (5)O3—C14—H14C109.5
C5—C6—H6119.9H14A—C14—H14C109.5
C1—C6—H6119.9H14B—C14—H14C109.5
N3—C7—C8122.5 (5)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.193.035 (6)166
C7—H7···O1i0.932.483.400 (8)172
Symmetry codes: (i) x−1/2, y−1/2, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.193.035 (6)166
C7—H7···O1i0.932.483.400 (8)172
Symmetry codes: (i) x−1/2, y−1/2, −z+1.
Acknowledgements top

The authors are grateful to the Startup Fund for PhD Students of the Natural Scientific Research Council? of Zhengzhou University of Light Industry (grant No. 2005001) and the Startup Fund for Masters Students of the Natural Scientific Research Council? of Zhengzhou University of Light Industry (grant No. 000455).

references
References top

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.

Sheldrick, G. M. (1996). SADABS. Version 6.10. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.