supplementary materials


Acta Cryst. (2007). E63, o4101    [ doi:10.1107/S1600536807045205 ]

Tetraammonium benzene-1,2,4,5-tetracarboxylate dihydrate

G. Dutkiewicz, T. Borowiak, M. Pietraszkiewicz and O. Pietraszkiewicz

Abstract top

In the crystal structure of 4NH4+·C10H2O84-·2H2O, the tetracarboxylate anion resides on a twofold crystallographic axis. The supramolecular structure arises from eight N-H...O [N...O ranges from 2.783 (2) to 3.003 (2) Å] and two O-H...O [O...O distances of 2.7313 (18) and 2.9102 (18) Å] hydrogen bonds.

Comment top

The compound (I) crystallizes in the space group C2, with two water molecules of crystallization. The crystal structure of the tetrahydrate was determined previously (Bergstrom et al., 2000).

The asymmetric unit of (I) (Fig. 1) contains two cations, one half-anion, and a water molecule; the anion lies on a twofold axis of symmetry. All carboxylic H atoms are transferred to the N atoms, thus forming ammonium cations. The conformation of pyromellitate anion is similar to that in the crystal structures determined previously (Bergstrom et al., 2000; Zheng et al., 2002; Wang et al., 2005; Ejsmont & Zaleski, 2006; Rafizadeh et al., 2006) where one pair of carboxylate groups is almost coplanar with the aromatic ring (8.1°) while the other one is almost perpendicular (82.6°).

The molecules form two different types of hydrogen-bonded layers. In one of them each ammonium cation is connected to four pyromellitate anions via four distinct N1+—H···O hydrogen bonds (Table 1) that make a kind of a patchwork (Fig. 2, Fig. 3). The second type is formed via three different hydrogen bonds: NH···Ocarboxylate, N—H···Owater, OwaterH···Ocarboxylate (Fig. 4). These layers are parallel to the ab crystallographic plane.

The two kinds of layers are placed alternately, thus forming the supramolecular structure (Fig. 5).

Related literature top

For related literature, see: Allen (2002); Bergstrom et al. (2000); Borowiak, Dutkiewicz et al. (2005); Borowiak, Kubicki et al. (2005); Ejsmont & Zaleski (2006); Rafizadeh et al. (2006); Wang et al. (2005); Zheng et al. (2002).

Experimental top

The 0.047 g (~ 0.1 mM) of the macrocyclic amine (Borowiak, Dutkiewicz et al., 2005a; Borowiak, Kubicki et al., 2005b), was dissolved in 2 ml of ethanol. Then 0.025 g (~0.1 mM) of pyromellitic acid dissolved in 1 ml of water was added. The white precipitate was not dissolved after refluxing the reaction mixture. The 1 ml of formamide was added to the mixture and was warmed until dissolution of the product. The solution was cooled down slowly and after two days colorless crystals were deposited. We expected the adduct of macrocyclic amine and pyromellitic acid, instead crystals comprised both pyromellitic anion and ammonium cation. It can be explained in this way that formamide was hydrolyzed in slightly basic conditions to form ammonia that substituted for the macrocyclic amine cation.

Refinement top

Initial trials to refine the structural model of (I) in the centrosymmetric space group C2/m (No. 12) provided a solution that did not provide a satisfactory refinement convergence. A satisfactory convergence was achieved in the non-centrosymmetric space group C2 (No. 5).

Hydrogen atoms were located in difference Fourier maps and refined except for the hydrogen atoms of the water molecule, which were constrained to ride on their parent O atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation (Siemens 1989); Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with 50% probability displacement ellipsoids (Siemens, 1989).
[Figure 2] Fig. 2. The molecular layer in (I) generated by four N1+—H(11,12,13,14)···O hydrogen bonds with a view along the c axis (Macrae et al., 2006).
[Figure 3] Fig. 3. The molecular layer in (I) generated by four N1+—H(11,12,13,14)···O hydrogen bonds with a view along the a axis (Macrae et al., 2006).
[Figure 4] Fig. 4. A second type of the molecular layer in (I) generated by NH···Ocarboxylate, N—H···Owater, OwaterH···Ocarboxylate hydrogen bonds with a view along the a axis (Macrae et al., 2006).
[Figure 5] Fig. 5. Three types of hydrogen bonds: NH···Ocarboxylate, N—H···Owater, OwaterH···Ocarboxylate connect layers (see Fig. 2a, 2 b, 2c) into the supramolecular structure (Macrae et al., 2006).
Tetraammonium benzene-1,2,4,5-tetracarboxylate dihydrate top
Crystal data top
4NH4+·C10H2O84·2H2OF(000) = 380
Mr = 358.32Dx = 1.482 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 11.6054 (10) ÅCell parameters from 2581 reflections
b = 6.7122 (6) Åθ = 2.4–29.1°
c = 10.5718 (8) ŵ = 0.13 mm1
β = 102.821 (7)°T = 130 K
V = 802.99 (12) Å3Block, colourless
Z = 20.5 × 0.2 × 0.1 mm
Data collection top
Kuma KM-4 CCD
diffractometer
1088 independent reflections
Radiation source: fine-focus sealed tube1042 reflections with I > 2σ(I)
graphiteRint = 0.011
Detector resolution: 8.1929 pixels mm-1θmax = 29.1°, θmin = 3.5°
ω–scanh = 1515
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction (CrysAlis RED; Oxford Diffraction, 2007)]
k = 96
Tmin = 0.972, Tmax = 1.000l = 1413
3224 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.094P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1088 reflectionsΔρmax = 0.28 e Å3
147 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: [Flack, H. D. (1983). Acta Cryst. A39, 876–881]
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.1 (12)
Crystal data top
4NH4+·C10H2O84·2H2OV = 802.99 (12) Å3
Mr = 358.32Z = 2
Monoclinic, C2Mo Kα radiation
a = 11.6054 (10) ŵ = 0.13 mm1
b = 6.7122 (6) ÅT = 130 K
c = 10.5718 (8) Å0.5 × 0.2 × 0.1 mm
β = 102.821 (7)°
Data collection top
Kuma KM-4 CCD
diffractometer
1088 independent reflections
Absorption correction: multi-scan
[empirical (using intensity measurements) absorption correction (CrysAlis RED; Oxford Diffraction, 2007)]
1042 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 1.000Rint = 0.011
3224 measured reflectionsθmax = 29.1°
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.28 e Å3
S = 1.11Δρmin = 0.20 e Å3
1088 reflectionsAbsolute structure: [Flack, H. D. (1983). Acta Cryst. A39, 876–881]
147 parametersFlack parameter: 0.1 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71490 (12)0.5340 (3)0.39876 (13)0.0140 (3)
O10.70464 (10)0.50819 (19)0.27848 (11)0.0194 (3)
O20.81107 (9)0.5530 (2)0.47862 (10)0.0221 (3)
C20.60214 (11)0.5412 (3)0.44879 (12)0.0124 (3)
C30.61053 (11)0.5420 (3)0.58230 (12)0.0130 (3)
H30.6911 (17)0.541 (4)0.6365 (18)0.014 (4)*
C40.51014 (12)0.5424 (2)0.63515 (13)0.0122 (3)
C50.53202 (12)0.5467 (3)0.78232 (12)0.0137 (3)
O30.55778 (11)0.38518 (19)0.84174 (11)0.0187 (3)
O40.53126 (12)0.71429 (19)0.83520 (11)0.0208 (3)
N10.51699 (11)1.0495 (3)0.67757 (12)0.0167 (3)
H110.444 (2)1.058 (4)0.619 (2)0.027 (5)*
H120.519 (2)0.936 (4)0.726 (2)0.021 (6)*
H130.580 (2)1.041 (5)0.632 (2)0.035 (6)*
H140.531 (2)1.166 (5)0.733 (3)0.034 (7)*
N20.68683 (14)0.7804 (3)0.07294 (14)0.0221 (3)
H210.618 (2)0.744 (5)0.005 (3)0.038 (7)*
H220.687 (2)0.701 (5)0.138 (3)0.037 (7)*
H230.664 (3)0.901 (6)0.091 (3)0.041 (8)*
H240.766 (3)0.775 (6)0.052 (3)0.066 (10)*
O50.65381 (12)0.1966 (2)0.10908 (16)0.0304 (3)
H510.69100.27400.17520.088 (13)*
H520.58390.24240.11950.101 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (6)0.0137 (6)0.0161 (6)0.0009 (6)0.0050 (5)0.0016 (7)
O10.0190 (5)0.0253 (7)0.0154 (5)0.0009 (5)0.0071 (4)0.0001 (5)
O20.0127 (5)0.0342 (7)0.0191 (5)0.0008 (6)0.0032 (4)0.0011 (6)
C20.0126 (6)0.0125 (6)0.0124 (6)0.0000 (6)0.0035 (4)0.0002 (6)
C30.0121 (6)0.0145 (6)0.0120 (6)0.0003 (6)0.0016 (4)0.0007 (6)
C40.0142 (6)0.0113 (6)0.0111 (5)0.0001 (6)0.0029 (4)0.0001 (6)
C50.0119 (6)0.0178 (7)0.0111 (6)0.0006 (6)0.0019 (4)0.0003 (6)
O30.0235 (6)0.0183 (6)0.0146 (6)0.0035 (5)0.0047 (4)0.0033 (4)
O40.0325 (7)0.0166 (6)0.0129 (5)0.0024 (5)0.0039 (4)0.0018 (5)
N10.0145 (6)0.0179 (6)0.0178 (6)0.0003 (6)0.0036 (4)0.0021 (6)
N20.0292 (8)0.0211 (7)0.0164 (6)0.0028 (6)0.0059 (6)0.0008 (6)
O50.0254 (7)0.0240 (7)0.0425 (8)0.0017 (6)0.0089 (5)0.0101 (6)
Geometric parameters (Å, °) top
C1—O11.2625 (18)N1—H110.94 (2)
C1—O21.2476 (18)N1—H120.91 (3)
C1—C21.5172 (17)N1—H130.96 (2)
C2—C31.3931 (17)N1—H140.97 (3)
C2—C4i1.4043 (18)N2—H211.04 (3)
C3—C41.3994 (18)N2—H220.87 (3)
C3—H30.98 (2)N2—H230.88 (4)
C4—C51.5202 (17)N2—H240.99 (4)
C5—O31.256 (2)O5—H510.90
C5—O41.257 (2)O5—H520.90
O1—C1—O2124.46 (13)O4—C5—C4117.15 (15)
O2—C1—C2118.18 (12)H11—N1—H12109 (2)
O1—C1—C2117.36 (12)H11—N1—H13110.2 (18)
C3—C2—C4i119.12 (12)H12—N1—H13108 (2)
C1—C2—C3118.79 (12)H11—N1—H14111 (2)
C4i—C2—C1122.08 (11)H12—N1—H14110.7 (18)
C2—C3—C4121.82 (12)H13—N1—H14108 (2)
C2—C3—H3115.8 (11)H21—N2—H22110 (2)
C4—C3—H3122.4 (11)H21—N2—H23100 (3)
C3—C4—C2i119.06 (12)H22—N2—H23109 (3)
C3—C4—C5116.35 (11)H21—N2—H24114 (2)
C2i—C4—C5124.58 (12)H22—N2—H24108 (3)
O3—C5—O4125.08 (12)H23—N2—H24115 (3)
O3—C5—C4117.55 (15)H51—O5—H5290
O2—C1—C2—C38.4 (2)C2—C3—C4—C2i0.2 (2)
O1—C1—C2—C3171.32 (16)C2—C3—C4—C5179.04 (16)
O2—C1—C2—C4i173.12 (16)C3—C4—C5—O380.29 (19)
O1—C1—C2—C4i7.2 (2)C2i—C4—C5—O3100.51 (18)
C4i—C2—C3—C40.5 (2)C3—C4—C5—O494.68 (18)
C1—C2—C3—C4178.02 (16)C2i—C4—C5—O484.5 (2)
Symmetry codes: (i) −x+1, y, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2ii0.94 (2)1.88 (2)2.8114 (16)170 (2)
N1—H12···O40.91 (3)1.87 (3)2.783 (2)175 (2)
N1—H13···O2iii0.96 (2)1.91 (2)2.8585 (16)171 (2)
N1—H14···O3iv0.97 (3)1.85 (3)2.819 (2)179 (3)
N2—H21···O4v1.04 (3)1.78 (3)2.786 (2)163 (2)
N2—H22···O10.87 (3)1.94 (3)2.811 (2)172 (3)
N2—H23···O5iv0.88 (4)2.00 (4)2.857 (2)162 (3)
N2—H24···O5vi0.99 (4)2.18 (3)3.003 (2)139 (2)
N2—H24···O3iii0.99 (4)2.23 (3)2.984 (2)132 (3)
O5—H51···O10.901.902.7313 (18)153
O5—H52···O3i0.902.022.9102 (18)170
Symmetry codes: (ii) x−1/2, y+1/2, z; (iii) −x+3/2, y+1/2, −z+1; (iv) x, y+1, z; (v) x, y, z−1; (vi) −x+3/2, y+1/2, −z; (i) −x+1, y, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.94 (2)1.88 (2)2.8114 (16)170 (2)
N1—H12···O40.91 (3)1.87 (3)2.783 (2)175 (2)
N1—H13···O2ii0.96 (2)1.91 (2)2.8585 (16)171 (2)
N1—H14···O3iii0.97 (3)1.85 (3)2.819 (2)179 (3)
N2—H21···O4iv1.04 (3)1.78 (3)2.786 (2)163 (2)
N2—H22···O10.87 (3)1.94 (3)2.811 (2)172 (3)
N2—H23···O5iii0.88 (4)2.00 (4)2.857 (2)162 (3)
N2—H24···O5v0.99 (4)2.18 (3)3.003 (2)139 (2)
N2—H24···O3ii0.99 (4)2.23 (3)2.984 (2)132 (3)
O5—H51···O10.901.902.7313 (18)153
O5—H52···O3vi0.902.022.9102 (18)170
Symmetry codes: (i) x−1/2, y+1/2, z; (ii) −x+3/2, y+1/2, −z+1; (iii) x, y+1, z; (iv) x, y, z−1; (v) −x+3/2, y+1/2, −z; (vi) −x+1, y, −z+1.
Acknowledgements top

This work was supported by funds from Adam Mickiewicz University, Faculty of Chemistry, and the Institute of Physical Chemistry of the Polish Academy of Sciences.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Bergstrom, C. L., Luck, R. L. & Luehrs, D. C. (2000). Acta Cryst. C56, e591–?.

Borowiak, T., Dutkiewicz, G., Kubicki, M., Pietraszkiewicz, M., Gil, A. & Mattes, R. (2005). Beilst. J. Org. Chem. 1, 16–?.

Borowiak, T., Kubicki, M., Dutkiewicz, G., Pietraszkiewicz, M. & Pietraszkiewicz, O. (2005). J. Incl. Phenom. Macro. Chem. 51, 181–189.

Ejsmont, K. & Zaleski, J. (2006). Acta Cryst. E62, o2672–o2674.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Version 1.171.32.5. Oxford Diffraction, Wrocław, Poland.

Rafizadeh, M., Aghayan, H. & Amani, V. (2006). Acta Cryst. E62, o5034–o5035.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1989). Stereochemical Workstation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Wang, D.-Y., Liu, G., Zheng, B., Lu, J. & Hu, H.-M. (2005). Acta Cryst. E61, m925–m927.

Zheng, S.-L., Tong, M.-L., Chen, X.-M. & Ng, S.-W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364.