Download citation
Download citation
link to html
The mol­ecule of the title compound, C8H6ClNO3S, contains a planar benzisothia­zole ring system. The crystal structure is stabilized by C—H...O inter­molecular inter­actions, with C...O distances of 3.222 (3) and 3.288 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044923/gg2045sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044923/gg2045Isup2.hkl
Contains datablock I

CCDC reference: 663807

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.102
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact O2 .. C7 .. 2.85 Ang.
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Saccharin derivatives have been reported as important biological agents in the treatment of a wide range of diseases for many years (Subramanyam et al., 1994; Groutas et al., 1996; Güzel & Salman, 2006). Chloromethylsaccharin being one of the saccharin derivatives available has already been tested for its activity as human leucocyte elastase (HLE) inhibitor (Groutas et al., 1993). In our recent work we have reported the title compound (I) as an important intermediate in the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives belonging to the oxicam class of non-steroidal anti-inflammatory drugs (NSAIDs) (Siddiqui et al., 2007). Herein, we report the structure of the title compound (I).

In the structure (Fig. 1) the benzisothiazole ring system is essentially planar; the maximum deviation of any atom from the mean plane through S1/O1/N1/C1–C7 being 0.029 (1) Å for S1 and C7 atoms. The molecules are linked via weak C—H···O type hydrogen bonds, thus stabilizing the crystal structure (Fig. 2).

Related literature top

For related literature, see: Groutas et al. (1993, 1996); Güzel & Salman (2006); Siddiqui et al. (2007); Subramanyam et al. (1994).

Experimental top

Crystals of the title compound (I) were grown by slow evaporation from a solution of CHCl3 at 313 K.

Refinement top

Carbon-bound H atoms were included in the refinement at geometrically idealized positions, with C—H = 0.95 and 0.99 Å and Uiso(H) = 1.2Ueq(carrier atom). The final difference map was free of any chemically significant features.

Structure description top

Saccharin derivatives have been reported as important biological agents in the treatment of a wide range of diseases for many years (Subramanyam et al., 1994; Groutas et al., 1996; Güzel & Salman, 2006). Chloromethylsaccharin being one of the saccharin derivatives available has already been tested for its activity as human leucocyte elastase (HLE) inhibitor (Groutas et al., 1993). In our recent work we have reported the title compound (I) as an important intermediate in the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives belonging to the oxicam class of non-steroidal anti-inflammatory drugs (NSAIDs) (Siddiqui et al., 2007). Herein, we report the structure of the title compound (I).

In the structure (Fig. 1) the benzisothiazole ring system is essentially planar; the maximum deviation of any atom from the mean plane through S1/O1/N1/C1–C7 being 0.029 (1) Å for S1 and C7 atoms. The molecules are linked via weak C—H···O type hydrogen bonds, thus stabilizing the crystal structure (Fig. 2).

For related literature, see: Groutas et al. (1993, 1996); Güzel & Salman (2006); Siddiqui et al. (2007); Subramanyam et al. (1994).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound (I), showing the C—H···O interactions as dashed lines.
2-Chloromethyl-1,2-benzisothiazole-1,1,3(2H)-trione top
Crystal data top
C8H6ClNO3SF(000) = 472
Mr = 231.65Dx = 1.627 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4086 reflections
a = 9.208 (5) Åθ = 3.3–27.5°
b = 8.643 (4) ŵ = 0.60 mm1
c = 12.458 (6) ÅT = 173 K
β = 107.46 (2)°Prism, colourless
V = 945.8 (8) Å30.16 × 0.10 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2161 independent reflections
Radiation source: fine-focus sealed tube1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1111
Tmin = 0.910, Tmax = 0.965k = 1111
4086 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.6083P]
where P = (Fo2 + 2Fc2)/3
2161 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C8H6ClNO3SV = 945.8 (8) Å3
Mr = 231.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.208 (5) ŵ = 0.60 mm1
b = 8.643 (4) ÅT = 173 K
c = 12.458 (6) Å0.16 × 0.10 × 0.06 mm
β = 107.46 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2161 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1671 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.965Rint = 0.033
4086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
2161 reflectionsΔρmin = 0.40 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13760 (9)0.96958 (7)0.09257 (6)0.0450 (2)
S10.21025 (6)0.61766 (6)0.09596 (4)0.02421 (16)
O10.17085 (19)0.58867 (19)0.21198 (12)0.0307 (4)
O20.07883 (19)0.5821 (2)0.13012 (13)0.0349 (4)
O30.31276 (19)0.73035 (19)0.16087 (12)0.0311 (4)
N10.1551 (2)0.6681 (2)0.03988 (14)0.0243 (4)
C10.3062 (3)0.4538 (2)0.07062 (17)0.0236 (5)
C20.3863 (3)0.3462 (3)0.14818 (19)0.0320 (6)
H20.39170.35320.22540.038*
C30.4585 (3)0.2278 (3)0.1091 (2)0.0359 (6)
H30.51380.15170.16020.043*
C40.4512 (3)0.2185 (3)0.0042 (2)0.0345 (6)
H40.50300.13720.02860.041*
C50.3699 (3)0.3257 (3)0.08149 (19)0.0280 (5)
H50.36460.31860.15870.034*
C60.2963 (3)0.4440 (2)0.04326 (17)0.0226 (5)
C70.2032 (3)0.5687 (3)0.11165 (17)0.0234 (5)
C80.0460 (3)0.7888 (3)0.08138 (19)0.0296 (5)
H8A0.01690.80170.03000.036*
H8B0.02240.75930.15630.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0490 (5)0.0296 (3)0.0581 (4)0.0029 (3)0.0184 (3)0.0067 (3)
S10.0253 (3)0.0299 (3)0.0174 (3)0.0027 (2)0.0063 (2)0.0028 (2)
O10.0385 (10)0.0359 (9)0.0182 (7)0.0017 (8)0.0092 (7)0.0021 (7)
O20.0295 (10)0.0503 (10)0.0292 (8)0.0062 (8)0.0153 (7)0.0047 (8)
O30.0318 (10)0.0349 (9)0.0238 (8)0.0067 (8)0.0042 (7)0.0086 (7)
N10.0269 (11)0.0276 (9)0.0174 (8)0.0026 (8)0.0053 (7)0.0009 (7)
C10.0247 (12)0.0234 (11)0.0228 (10)0.0038 (9)0.0073 (9)0.0001 (9)
C20.0333 (14)0.0353 (13)0.0257 (11)0.0050 (11)0.0059 (10)0.0079 (10)
C30.0353 (15)0.0259 (11)0.0430 (14)0.0004 (11)0.0064 (11)0.0102 (11)
C40.0319 (14)0.0232 (11)0.0514 (15)0.0001 (11)0.0171 (12)0.0008 (11)
C50.0291 (13)0.0273 (11)0.0299 (11)0.0041 (10)0.0122 (10)0.0033 (9)
C60.0208 (12)0.0234 (10)0.0236 (10)0.0048 (9)0.0066 (9)0.0001 (9)
C70.0250 (12)0.0256 (10)0.0203 (10)0.0030 (9)0.0081 (9)0.0004 (8)
C80.0272 (13)0.0307 (12)0.0281 (11)0.0039 (10)0.0038 (10)0.0004 (10)
Geometric parameters (Å, º) top
Cl1—C81.801 (3)C2—H20.9500
S1—O31.427 (2)C3—C41.394 (4)
S1—O21.431 (2)C3—H30.9500
S1—N11.672 (2)C4—C51.384 (3)
S1—C11.748 (2)C4—H40.9500
O1—C71.207 (3)C5—C61.387 (3)
N1—C71.404 (3)C5—H50.9500
N1—C81.433 (3)C6—C71.478 (3)
C1—C21.384 (3)C8—H8A0.9900
C1—C61.397 (3)C8—H8B0.9900
C2—C31.386 (4)
O3—S1—O2116.90 (10)C5—C4—C3121.2 (2)
O3—S1—N1110.12 (10)C5—C4—H4119.4
O2—S1—N1109.25 (10)C3—C4—H4119.4
O3—S1—C1111.79 (11)C4—C5—C6118.2 (2)
O2—S1—C1113.48 (11)C4—C5—H5120.9
N1—S1—C192.56 (10)C6—C5—H5120.9
C7—N1—C8122.46 (18)C5—C6—C1120.2 (2)
C7—N1—S1115.29 (15)C5—C6—C7126.72 (19)
C8—N1—S1121.46 (15)C1—C6—C7113.05 (19)
C2—C1—C6121.8 (2)O1—C7—N1123.0 (2)
C2—C1—S1127.66 (18)O1—C7—C6128.4 (2)
C6—C1—S1110.49 (16)N1—C7—C6108.55 (17)
C3—C2—C1117.5 (2)N1—C8—Cl1111.45 (17)
C3—C2—H2121.2N1—C8—H8A109.3
C1—C2—H2121.2Cl1—C8—H8A109.3
C2—C3—C4121.0 (2)N1—C8—H8B109.3
C2—C3—H3119.5Cl1—C8—H8B109.3
C4—C3—H3119.5H8A—C8—H8B108.0
O3—S1—N1—C7114.39 (17)C4—C5—C6—C10.6 (3)
O2—S1—N1—C7115.93 (17)C4—C5—C6—C7179.5 (2)
C1—S1—N1—C70.05 (18)C2—C1—C6—C51.1 (3)
O3—S1—N1—C875.6 (2)S1—C1—C6—C5177.41 (18)
O2—S1—N1—C854.1 (2)C2—C1—C6—C7178.9 (2)
C1—S1—N1—C8170.05 (18)S1—C1—C6—C72.5 (2)
O3—S1—C1—C267.0 (2)C8—N1—C7—O19.2 (3)
O2—S1—C1—C267.8 (2)S1—N1—C7—O1179.07 (18)
N1—S1—C1—C2179.9 (2)C8—N1—C7—C6171.3 (2)
O3—S1—C1—C6111.42 (17)S1—N1—C7—C61.4 (2)
O2—S1—C1—C6113.75 (17)C5—C6—C7—O12.1 (4)
N1—S1—C1—C61.45 (18)C1—C6—C7—O1178.0 (2)
C6—C1—C2—C30.6 (3)C5—C6—C7—N1177.4 (2)
S1—C1—C2—C3177.65 (19)C1—C6—C7—N12.5 (3)
C1—C2—C3—C40.4 (4)C7—N1—C8—Cl193.0 (2)
C2—C3—C4—C51.0 (4)S1—N1—C8—Cl197.72 (18)
C3—C4—C5—C60.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.523.222 (3)131
C8—H8B···O3ii0.992.333.288 (3)163
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H6ClNO3S
Mr231.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.208 (5), 8.643 (4), 12.458 (6)
β (°) 107.46 (2)
V3)945.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.16 × 0.10 × 0.06
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.910, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4086, 2161, 1671
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.03
No. of reflections2161
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.40

Computer programs: COLLECT (Nonius, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.523.222 (3)131
C8—H8B···O3ii0.992.333.288 (3)163
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x1/2, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds