Download citation
Download citation
link to html
In the polymeric title compound, {[Ag(C12H10N4)](CF3SO3)}n, the Ag atom lies within an almost linear N2 geometry and the topology of the polymer is linear. Weak Ag...O inter­actions lead to supra­molecular chains that pack into layers, with connections between layers being of types Ag...Ag and Ag...O.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041888/hb2524sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041888/hb2524Isup2.hkl
Contains datablock I

CCDC reference: 663539

Key indicators

  • Single-crystal X-ray study
  • T = 98 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.025
  • wR factor = 0.068
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.845 1.000 Tmin and Tmax expected: 0.544 0.738 RR = 1.147 Please check that your absorption correction is appropriate. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.15 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.74 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C13 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.12
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.738 Tmax scaled 0.738 Tmin scaled 0.623 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag (9) 0.89
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The polymeric title compound, [Ag(C12H10N4)]n.n(CF3SO3), or [Ag(4—PA)(CF3SO3)]n (I), was investigated as a part of an on-going study of the structural chemistry of the Ag salts of isomeric n-pyridinealdazine molecules, n = 2, 3 and 4 (Broker & Tiekink, 2007a,b,c). The 4-pyridinealdazine (4-PA) ligand in (I) is bidentate bridging which results in the formation of polymeric chains and a near linear AgN2 geometry for the silver atom (Fig. 1 & Table 1).

The linear chains are connected into supramolecular double chains (Fig. 2) via a combination of C—H···O interactions (Table 2) and a weak Ag···O3i (i = 1 - x, 1 - y, 1 - z) contact of 2.759 (3) Å. The chains stack side by side to form layers in the ac plane and these layers are connected to adjacent layers on either side via Ag···Agii (ii = 1 - x, 1 - y, -z) agentophilic interactions [3.2738 (13) Å] as well as Ag···O2iii (iii = x, y, -1 + z) contacts of 2.854 (3) Å.

Similar polymeric structures to those in (I) are found in the following salts: perchlorate, tetrafluoroborate (as acetonitrile solvates, Kennedy et al., 2005), hexafluoroantimonate (as the acetonitrile water solvate, Kennedy et al., 2005), methanesulfonate (Broker & Tiekink, 2007c), and nitrate, for which two polymorphs have been reported (Shi et al., 2002; Patra & Goldberg, 2003; Kennedy et al., 2005). In all but the nitrate polymorphs, the chains are essentially flat. Only in (I) and the methanesulfonate salt (Broker & Tiekink, 2007c) are Ag···Ag interactions found.

Related literature top

For related polymeric silver salts containing the 4-pyridinealdazine ligand, see: Kennedy et al. (2005); Broker & Tiekink (2007c); Shi et al. (2002); Patra & Goldberg (2003). For related literature, see: Broker & Tiekink (2007a,b).

Experimental top

Ag(CF3SO3) (Aldrich, 0.05 g, 0.19 mmol) was dissolved in CH3CN (20 ml) and layered on top of a CH2Cl2 solution (20 ml) containing 0.04 g (0.19 mmol) of 4-pyridinealdazine (Aldrich). After three days, yellow blocks of (I) were observed at the interface between the two layers; m.p. 522–524 K.

Refinement top

All the H atoms were included in the riding-model approximation, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

The polymeric title compound, [Ag(C12H10N4)]n.n(CF3SO3), or [Ag(4—PA)(CF3SO3)]n (I), was investigated as a part of an on-going study of the structural chemistry of the Ag salts of isomeric n-pyridinealdazine molecules, n = 2, 3 and 4 (Broker & Tiekink, 2007a,b,c). The 4-pyridinealdazine (4-PA) ligand in (I) is bidentate bridging which results in the formation of polymeric chains and a near linear AgN2 geometry for the silver atom (Fig. 1 & Table 1).

The linear chains are connected into supramolecular double chains (Fig. 2) via a combination of C—H···O interactions (Table 2) and a weak Ag···O3i (i = 1 - x, 1 - y, 1 - z) contact of 2.759 (3) Å. The chains stack side by side to form layers in the ac plane and these layers are connected to adjacent layers on either side via Ag···Agii (ii = 1 - x, 1 - y, -z) agentophilic interactions [3.2738 (13) Å] as well as Ag···O2iii (iii = x, y, -1 + z) contacts of 2.854 (3) Å.

Similar polymeric structures to those in (I) are found in the following salts: perchlorate, tetrafluoroborate (as acetonitrile solvates, Kennedy et al., 2005), hexafluoroantimonate (as the acetonitrile water solvate, Kennedy et al., 2005), methanesulfonate (Broker & Tiekink, 2007c), and nitrate, for which two polymorphs have been reported (Shi et al., 2002; Patra & Goldberg, 2003; Kennedy et al., 2005). In all but the nitrate polymorphs, the chains are essentially flat. Only in (I) and the methanesulfonate salt (Broker & Tiekink, 2007c) are Ag···Ag interactions found.

For related polymeric silver salts containing the 4-pyridinealdazine ligand, see: Kennedy et al. (2005); Broker & Tiekink (2007c); Shi et al. (2002); Patra & Goldberg (2003). For related literature, see: Broker & Tiekink (2007a,b).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing displacement ellipsoids at the 70% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of the layers in (I) down the b axis highlighting the Ag···O interactions (orange dashed lines) leading to supramolecular double chains. Colour code: orange (silver), yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).
[Figure 3] Fig. 3. View of the stacking of layers in (I) highlighting the aregentophilic interactions (black dotted lines). Colour code as for Fig. 2.
catena-Poly[[silver(I)-µ-1,4-di-4-pyridyl-2,3-diazabuta-1,3-diene] trifluoromethanesulfonate] top
Crystal data top
[Ag(C12H10N4)](CF3SO3)Z = 2
Mr = 467.18F(000) = 460
Triclinic, P1Dx = 1.946 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.9608 (18) ÅCell parameters from 1270 reflections
b = 8.9816 (18) Åθ = 3.3–30.2°
c = 10.804 (2) ŵ = 1.45 mm1
α = 75.99 (3)°T = 98 K
β = 71.09 (3)°Block, yellow
γ = 83.30 (3)°0.45 × 0.36 × 0.21 mm
V = 797.4 (3) Å3
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2695 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.845, Tmax = 1.000k = 1010
7718 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.6435P]
where P = (Fo2 + 2Fc2)/3
2695 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ag(C12H10N4)](CF3SO3)γ = 83.30 (3)°
Mr = 467.18V = 797.4 (3) Å3
Triclinic, P1Z = 2
a = 8.9608 (18) ÅMo Kα radiation
b = 8.9816 (18) ŵ = 1.45 mm1
c = 10.804 (2) ÅT = 98 K
α = 75.99 (3)°0.45 × 0.36 × 0.21 mm
β = 71.09 (3)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
2695 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2654 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 1.000Rint = 0.036
7718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
2695 reflectionsΔρmin = 0.55 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.36832 (2)0.36786 (2)0.060832 (18)0.02608 (10)
S10.26232 (8)0.68538 (8)0.79915 (7)0.02863 (17)
F10.0358 (2)0.7776 (2)0.8486 (2)0.0571 (5)
F20.1221 (3)0.9605 (2)0.7756 (2)0.0600 (6)
F30.0766 (3)0.8337 (2)0.9775 (2)0.0568 (6)
O10.2826 (3)0.7020 (3)0.6605 (2)0.0583 (7)
O20.2017 (3)0.5404 (2)0.8843 (3)0.0469 (6)
O30.3899 (3)0.7370 (3)0.8300 (2)0.0436 (5)
N10.2426 (3)0.4890 (2)0.2149 (2)0.0215 (4)
N20.1451 (3)0.8152 (2)0.5065 (2)0.0247 (5)
N30.1980 (3)0.8996 (3)0.6078 (2)0.0273 (5)
N40.5349 (3)1.2325 (2)0.9117 (2)0.0219 (4)
C10.3015 (3)0.5068 (3)0.3104 (3)0.0234 (5)
H10.40070.45810.31320.028*
C20.2238 (3)0.5927 (3)0.4042 (3)0.0223 (5)
H20.26900.60280.47000.027*
C30.0771 (3)0.6650 (3)0.4012 (2)0.0215 (5)
C40.0148 (3)0.6433 (3)0.3041 (3)0.0236 (5)
H40.08550.68820.30050.028*
C50.1001 (3)0.5563 (3)0.2138 (3)0.0251 (5)
H50.05680.54300.14790.030*
C60.0050 (3)0.7582 (3)0.4990 (3)0.0231 (5)
H60.04620.77680.55800.028*
C70.3364 (3)0.9599 (3)0.6199 (3)0.0277 (6)
H70.39410.94490.56440.033*
C80.4057 (3)1.0528 (3)0.7210 (3)0.0237 (5)
C90.3297 (3)1.0618 (3)0.8132 (3)0.0225 (5)
H90.23201.00710.81180.027*
C100.3976 (3)1.1503 (3)0.9058 (2)0.0216 (5)
H100.34551.15400.96890.026*
C110.6086 (3)1.2238 (3)0.8233 (3)0.0289 (6)
H110.70581.28030.82660.035*
C120.5486 (3)1.1358 (3)0.7276 (3)0.0299 (6)
H120.60421.13210.66710.036*
C130.0992 (3)0.8217 (3)0.8526 (3)0.0298 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.02502 (14)0.02762 (14)0.02719 (15)0.00420 (9)0.00387 (9)0.01708 (9)
S10.0247 (3)0.0372 (4)0.0324 (4)0.0105 (3)0.0154 (3)0.0196 (3)
F10.0286 (10)0.0531 (12)0.0942 (16)0.0092 (8)0.0254 (10)0.0210 (11)
F20.0581 (13)0.0333 (10)0.0737 (14)0.0066 (9)0.0168 (11)0.0070 (9)
F30.0611 (14)0.0662 (13)0.0445 (11)0.0323 (11)0.0170 (10)0.0297 (10)
O10.0528 (15)0.094 (2)0.0380 (13)0.0212 (14)0.0215 (11)0.0332 (13)
O20.0479 (14)0.0324 (11)0.0642 (15)0.0117 (10)0.0236 (12)0.0152 (10)
O30.0281 (11)0.0606 (14)0.0547 (14)0.0096 (10)0.0201 (10)0.0310 (11)
N10.0208 (11)0.0224 (10)0.0211 (11)0.0022 (8)0.0043 (8)0.0087 (8)
N20.0292 (12)0.0236 (11)0.0215 (11)0.0036 (9)0.0039 (9)0.0126 (9)
N30.0296 (13)0.0289 (11)0.0254 (12)0.0069 (9)0.0061 (9)0.0166 (9)
N40.0208 (11)0.0218 (10)0.0234 (11)0.0020 (8)0.0044 (9)0.0098 (8)
C10.0213 (13)0.0236 (12)0.0236 (13)0.0038 (10)0.0054 (10)0.0062 (10)
C20.0233 (13)0.0233 (12)0.0200 (13)0.0002 (10)0.0065 (10)0.0048 (10)
C30.0239 (13)0.0198 (12)0.0187 (12)0.0001 (10)0.0021 (10)0.0067 (10)
C40.0177 (12)0.0290 (13)0.0244 (13)0.0051 (10)0.0060 (10)0.0098 (10)
C50.0252 (13)0.0286 (13)0.0226 (13)0.0023 (10)0.0077 (11)0.0086 (10)
C60.0246 (13)0.0232 (12)0.0225 (13)0.0001 (10)0.0054 (10)0.0099 (10)
C70.0281 (15)0.0302 (13)0.0287 (14)0.0063 (11)0.0105 (11)0.0147 (11)
C80.0235 (13)0.0217 (12)0.0272 (14)0.0039 (10)0.0063 (11)0.0124 (10)
C90.0223 (13)0.0227 (12)0.0230 (13)0.0037 (10)0.0069 (10)0.0080 (10)
C100.0213 (12)0.0232 (12)0.0213 (12)0.0016 (10)0.0062 (10)0.0084 (10)
C110.0207 (13)0.0335 (14)0.0383 (16)0.0088 (11)0.0110 (12)0.0206 (12)
C120.0267 (14)0.0375 (15)0.0364 (15)0.0097 (12)0.0166 (12)0.0240 (12)
C130.0247 (14)0.0297 (14)0.0369 (16)0.0058 (11)0.0138 (12)0.0077 (11)
Geometric parameters (Å, º) top
Ag—N12.144 (2)C1—H10.9500
Ag—N4i2.150 (2)C2—C31.403 (4)
Ag—Agii3.2738 (13)C2—H20.9500
S1—O11.422 (2)C3—C41.397 (4)
S1—O31.442 (2)C3—C61.463 (3)
S1—O21.449 (3)C4—C51.376 (4)
S1—C131.830 (3)C4—H40.9500
F1—C131.333 (3)C5—H50.9500
F2—C131.317 (3)C6—H60.9500
F3—C131.328 (3)C7—C81.469 (4)
N1—C51.350 (3)C7—H70.9500
N1—C11.351 (3)C8—C121.395 (4)
N2—C61.284 (4)C8—C91.397 (4)
N2—N31.407 (3)C9—C101.372 (4)
N3—C71.273 (4)C9—H90.9500
N4—C111.346 (3)C10—H100.9500
N4—C101.350 (3)C11—C121.385 (4)
N4—Agiii2.150 (2)C11—H110.9500
C1—C21.379 (4)C12—H120.9500
N1—Ag—N4i172.36 (8)N1—C5—H5118.6
N1—Ag—Agii89.29 (6)C4—C5—H5118.6
N4i—Ag—Agii97.80 (6)N2—C6—C3121.0 (2)
O1—S1—O3115.54 (16)N2—C6—H6119.5
O1—S1—O2115.44 (17)C3—C6—H6119.5
O3—S1—O2113.75 (15)N3—C7—C8119.1 (2)
O1—S1—C13103.95 (14)N3—C7—H7120.4
O3—S1—C13103.31 (13)C8—C7—H7120.4
O2—S1—C13102.47 (14)C12—C8—C9117.9 (2)
C5—N1—C1118.0 (2)C12—C8—C7121.2 (2)
C5—N1—Ag118.75 (17)C9—C8—C7121.0 (2)
C1—N1—Ag123.24 (17)C10—C9—C8119.4 (2)
C6—N2—N3110.3 (2)C10—C9—H9120.3
C7—N3—N2113.4 (2)C8—C9—H9120.3
C11—N4—C10117.7 (2)N4—C10—C9123.1 (2)
C11—N4—Agiii122.05 (17)N4—C10—H10118.4
C10—N4—Agiii120.26 (17)C9—C10—H10118.4
N1—C1—C2122.8 (2)N4—C11—C12122.7 (2)
N1—C1—H1118.6N4—C11—H11118.6
C2—C1—H1118.6C12—C11—H11118.6
C1—C2—C3119.1 (2)C11—C12—C8119.3 (2)
C1—C2—H2120.5C11—C12—H12120.4
C3—C2—H2120.5C8—C12—H12120.4
C4—C3—C2118.0 (2)F2—C13—F3107.5 (2)
C4—C3—C6122.6 (2)F2—C13—F1106.6 (2)
C2—C3—C6119.4 (2)F3—C13—F1107.1 (3)
C5—C4—C3119.4 (2)F2—C13—S1112.5 (2)
C5—C4—H4120.3F3—C13—S1111.70 (18)
C3—C4—H4120.3F1—C13—S1111.1 (2)
N1—C5—C4122.8 (2)
Agii—Ag—N1—C5111.84 (19)C12—C8—C9—C100.2 (4)
Agii—Ag—N1—C165.45 (19)C7—C8—C9—C10179.7 (2)
C6—N2—N3—C7179.7 (2)C11—N4—C10—C91.2 (4)
C5—N1—C1—C21.3 (4)Agiii—N4—C10—C9179.98 (19)
Ag—N1—C1—C2176.01 (19)C8—C9—C10—N41.0 (4)
N1—C1—C2—C30.1 (4)C10—N4—C11—C120.5 (4)
C1—C2—C3—C41.4 (4)Agiii—N4—C11—C12179.3 (2)
C1—C2—C3—C6179.1 (2)N4—C11—C12—C80.3 (4)
C2—C3—C4—C51.7 (4)C9—C8—C12—C110.5 (4)
C6—C3—C4—C5178.9 (2)C7—C8—C12—C11179.1 (3)
C1—N1—C5—C41.0 (4)O1—S1—C13—F251.7 (3)
Ag—N1—C5—C4176.4 (2)O3—S1—C13—F269.4 (2)
C3—C4—C5—N10.4 (4)O2—S1—C13—F2172.2 (2)
N3—N2—C6—C3180.0 (2)O1—S1—C13—F3172.7 (2)
C4—C3—C6—N25.4 (4)O3—S1—C13—F351.7 (2)
C2—C3—C6—N2174.0 (2)O2—S1—C13—F366.7 (2)
N2—N3—C7—C8179.3 (2)O1—S1—C13—F167.8 (2)
N3—C7—C8—C12172.3 (3)O3—S1—C13—F1171.2 (2)
N3—C7—C8—C97.2 (4)O2—S1—C13—F152.7 (2)
Symmetry codes: (i) x+1, y1, z1; (ii) x+1, y+1, z; (iii) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.952.473.360 (4)155
C10—H10···O3iv0.952.493.274 (3)139
C11—H11···O2v0.952.543.235 (4)130
Symmetry codes: (iv) x, y+2, z+2; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C12H10N4)](CF3SO3)
Mr467.18
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)8.9608 (18), 8.9816 (18), 10.804 (2)
α, β, γ (°)75.99 (3), 71.09 (3), 83.30 (3)
V3)797.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.45 × 0.36 × 0.21
Data collection
DiffractometerRigaku AFC12κ/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.845, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7718, 2695, 2654
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.07
No. of reflections2695
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.55

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Ag—N12.144 (2)Ag—N4i2.150 (2)
N1—Ag—N4i172.36 (8)
Symmetry code: (i) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.952.473.360 (4)155
C10—H10···O3ii0.952.493.274 (3)139
C11—H11···O2iii0.952.543.235 (4)130
Symmetry codes: (ii) x, y+2, z+2; (iii) x1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds