supplementary materials


Acta Cryst. (2007). E63, m2595    [ doi:10.1107/S1600536807046909 ]

catena-Poly[[diaquacadmium(II)]-[mu]-3,3'-(p-phenylene)diacrylato]

C.-B. Liu, L. Lu, Z.-L. Xu and Q.-W. Wang

Abstract top

In the title compound, [Cd(C12H10O4)(H2O)2], each CdII atom lies on a crystallographic twofold rotation axis and is six-coordinated by four carboxylate O atoms from two different 3,3'-(p-phenylene)diacrylate ligands, and two cis water molecules in a very distorted octahedral CdO6 environment. Each 3,3'-(p-phenylene)diacrylate dianion is centrosymmetric and acts as a bis-chelating ligand that binds two CdII atoms, thus forming a zigzag chain. The chain is decorated with water molecules and O-H...O hydrogen bonds link the chains together, forming a three-dimensional supramolecular structure.

Comment top

The supramolecular networks formed by metal 1,4-benzenedicarboxylates (1,4-bdc) have been widely studied (Qi et al., 2003). However, so far, less attention has been given to the participation of p-phenylenediacrylic acid (H2pda) in such networks. The pda dianion, as an important analogue of 1,4-bdc may be a good candidate for the construction of metal–organic helical architectures. We selected pda as a bridging ligand and CdII as a central metal, generating a new zigzag chain coordination polymer, [Cd(pda)(H2O)2], (I), which is reported here.

In compound (I), the CdII atom is six-coordinated by four carboxylate atoms from two different pda ligands, and two water molecules in a very distorted octahedral environment (Fig. 1). The O1, O2, O2i and O1Wi atoms comprise the basal plane, whereas O1W and O1i occupy the axial positions of the octahedron. The Cd—O(carboxylate) distances range from 2.3251 (16) to 2.3846 (16) Å (Table 1).

As shown in Fig. 2, each pda acts as a bis-chelating ligand that binds two CdII atoms, forming a zigzag chain. The chain is decorated with water molecules which participate in O—H···O hydrogen bonds (Table 2) to link the chains together, thus forming a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For a related structure, see: Fang et al. (2006). For background, see: Qi et al. (2003).

Experimental top

A mixture of CdCl2·2H2O (0.5 mmol), H2pda (0.5 mmol), and H2O (500 mmol) was adjusted to pH = 7 by addition of aqueous NaOH solution, and heated at 453 K for 6 days. After the mixture was slowly cooled to room temperature, colorless blocks of (I) resulted (38% yield).

Refinement top

All the C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The water H-atoms were located in a difference Fourier map, and were refined freely.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level. (H atoms have been omitted). Symmetry codes: (i) 2 − x, y, 1.5 − z; (ii) 2.5 − x, 0.5 − y, 2 − z.
[Figure 2] Fig. 2. View of the chain structure of (I).
[Figure 3] Fig. 3. View of the three-dimensional supramolecular structure of (I).
catena-Poly[[diaquacadmium(II)]-µ-3,3'-(p-phenylene)diacrylato] top
Crystal data top
[Cd(C12H10O4)(H2O)2]F000 = 720
Mr = 364.62Dx = 1.921 Mg m3
Monoclinic, C2/cMo Kα radiation
λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1235 reflections
a = 11.857 (3) Åθ = 2.0–26.1º
b = 5.3296 (14) ŵ = 1.75 mm1
c = 20.030 (5) ÅT = 293 (2) K
β = 94.983 (4)ºBlock, colourless
V = 1261.0 (6) Å30.31 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
1235 independent reflections
Radiation source: fine-focus sealed tube1199 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 293(2) Kθmax = 26.1º
ω scansθmin = 2.0º
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 14→11
Tmin = 0.574, Tmax = 0.716k = 6→5
3315 measured reflectionsl = 24→21
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (C-H)
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.046  w = 1/[σ2(Fo2) + (0.0216P)2 + 1.4532P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1235 reflectionsΔρmax = 0.31 e Å3
95 parametersΔρmin = 0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
[Cd(C12H10O4)(H2O)2]V = 1261.0 (6) Å3
Mr = 364.62Z = 4
Monoclinic, C2/cMo Kα
a = 11.857 (3) ŵ = 1.75 mm1
b = 5.3296 (14) ÅT = 293 (2) K
c = 20.030 (5) Å0.31 × 0.21 × 0.19 mm
β = 94.983 (4)º
Data collection top
Bruker APEX CCD
diffractometer
1235 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1199 reflections with I > 2σ(I)
Tmin = 0.574, Tmax = 0.716Rint = 0.016
3315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02095 parameters
wR(F2) = 0.046H atoms treated by a mixture of
independent and constrained refinement
S = 1.11Δρmax = 0.31 e Å3
1235 reflectionsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.12499 (19)0.4749 (4)0.83239 (11)0.0287 (5)
C21.1910 (2)0.2843 (4)0.87299 (13)0.0362 (6)
H21.26910.27840.87120.043*
C31.1430 (2)0.1220 (5)0.91177 (11)0.0320 (5)
H31.06460.13000.91130.038*
C41.1997 (2)0.0689 (4)0.95542 (11)0.0302 (5)
C51.1344 (2)0.2195 (5)0.99437 (13)0.0359 (6)
H51.05620.20020.99060.043*
C61.1833 (2)0.3962 (5)1.03827 (12)0.0356 (5)
H61.13790.49271.06380.043*
O11.01914 (13)0.4967 (3)0.83570 (8)0.0305 (4)
O21.17575 (13)0.6158 (3)0.79418 (8)0.0360 (4)
O1W0.90126 (17)1.0774 (4)0.79925 (11)0.0429 (5)
Cd11.00000.79192 (4)0.75000.02670 (9)
HW110.832 (3)1.093 (6)0.7946 (15)0.057 (9)*
HW120.928 (3)1.205 (5)0.8085 (15)0.035 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (12)0.0234 (11)0.0303 (11)0.0003 (9)0.0036 (9)0.0007 (9)
C20.0289 (13)0.0363 (13)0.0426 (14)0.0034 (10)0.0014 (11)0.0108 (11)
C30.0330 (12)0.0327 (12)0.0299 (12)0.0052 (10)0.0008 (9)0.0040 (10)
C40.0365 (13)0.0274 (12)0.0263 (11)0.0041 (10)0.0010 (9)0.0029 (9)
C50.0310 (12)0.0379 (14)0.0391 (13)0.0065 (10)0.0043 (10)0.0091 (10)
C60.0360 (13)0.0378 (13)0.0333 (12)0.0020 (11)0.0055 (10)0.0115 (10)
O10.0277 (8)0.0273 (8)0.0361 (9)0.0020 (7)0.0002 (7)0.0048 (6)
O20.0280 (8)0.0336 (9)0.0458 (10)0.0003 (7)0.0008 (7)0.0144 (8)
O1W0.0250 (10)0.0301 (11)0.0739 (13)0.0023 (8)0.0060 (9)0.0139 (9)
Cd10.02628 (14)0.02161 (13)0.03127 (14)0.0000.00282 (9)0.000
Geometric parameters (Å, °) top
Cd1—O12.3251 (16)C3—C41.466 (3)
Cd1—O22.3846 (16)C3—H30.9300
Cd1—O1W2.2044 (18)C4—C6ii1.394 (3)
Cd1—O1Wi2.2044 (18)C4—C51.399 (3)
Cd1—O1i2.3251 (16)C5—C61.381 (3)
Cd1—O2i2.3846 (16)C5—H50.9300
C1—O21.262 (3)C6—C4ii1.394 (3)
C1—O11.268 (3)C6—H60.9300
C1—C21.482 (3)O1W—HW110.83 (4)
C2—C31.324 (3)O1W—HW120.77 (3)
C2—H20.9300
O1Wi—Cd1—O1W92.72 (11)C3—C2—C1122.4 (2)
O1Wi—Cd1—O1140.88 (7)C3—C2—H2118.8
O1W—Cd1—O199.10 (7)C1—C2—H2118.8
O1Wi—Cd1—O1i99.10 (7)C2—C3—C4127.2 (2)
O1W—Cd1—O1i140.88 (7)C2—C3—H3116.4
O1—Cd1—O1i94.82 (8)C4—C3—H3116.4
O1Wi—Cd1—O287.52 (7)C6ii—C4—C5117.9 (2)
O1W—Cd1—O2125.91 (7)C6ii—C4—C3123.2 (2)
O1—Cd1—O255.50 (5)C5—C4—C3118.9 (2)
O1i—Cd1—O291.93 (6)C6—C5—C4121.6 (2)
O1Wi—Cd1—O2i125.91 (7)C6—C5—H5119.2
O1W—Cd1—O2i87.52 (7)C4—C5—H5119.2
O1—Cd1—O2i91.93 (6)C5—C6—C4ii120.5 (2)
O1i—Cd1—O2i55.50 (5)C5—C6—H6119.7
O2—Cd1—O2i133.64 (9)C4ii—C6—H6119.7
O2—C1—O1120.3 (2)C1—O1—Cd193.27 (13)
O2—C1—C2118.9 (2)C1—O2—Cd190.68 (13)
O1—C1—C2120.8 (2)Cd1—O1W—HW11126 (2)
O2—C1—Cd161.59 (11)Cd1—O1W—HW12120 (2)
O1—C1—Cd158.90 (11)HW11—O1W—HW12109 (3)
C2—C1—Cd1174.99 (17)
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) −x+5/2, −y+1/2, −z+2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O1iii0.77 (3)1.95 (3)2.703 (3)170 (3)
O1W—HW11···O2iv0.83 (4)1.85 (4)2.675 (3)174 (3)
Symmetry codes: (iii) x, y−1, z; (iv) x−1/2, y−1/2, z.
Table 1
Selected geometric parameters (Å, °)
top
Cd1—O12.3251 (16)Cd1—O1W2.2044 (18)
Cd1—O22.3846 (16)
O1—Cd1—O255.50 (5)O1i—Cd1—O2i55.50 (5)
Symmetry codes: (i) −x+2, y, −z+3/2.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O1ii0.77 (3)1.95 (3)2.703 (3)170 (3)
O1W—HW11···O2iii0.83 (4)1.85 (4)2.675 (3)174 (3)
Symmetry codes: (ii) x, y−1, z; (iii) x−1/2, y−1/2, z.
Acknowledgements top

The authors thank Jilin Normal University for supporting this work.

references
References top

Bruker (1998). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Fang, Q.-R., Zhu, G.-S., Xue, M., Zhang, Q.-L., Sun, J.-Y., Guo, X.-D., Qiu, S.-L., Xu, S.-T., Wang, P., Wang, D.-J. & Wei, Y. (2006). Chem. Eur. J. 12, 3754–3758.

Qi, Y., Wang, Y., Hu, C., Cao, M., Mao, L. & Wang, E. (2003). Inorg. Chem. 42, 8519–8523.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.