Download citation
Download citation
link to html
In the title compound, [Cu(C8H4O4)(C5H8N2)2]n, each CuII atom is four-coordinated by two carboxyl­ate O atoms from two different benzene-1,4-dicarboxyl­ate (1,4-BDC) ligands and two N atoms from two 1-ethyl-1H-imidazole (EI) ligands in a slightly distorted square-planar coordination environment. There are two Cu atoms, both with site symmetry \overline{1}. Each 1,4-BDC acts as a bis-monodentate ligand that binds two CuII atoms, thus forming two unique chains. The EI ligands are attached on both sides of the chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046879/hb2556sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046879/hb2556Isup2.hkl
Contains datablock I

CCDC reference: 663655

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.111
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.21 Ratio PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.60 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.50 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.15 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 1.96
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Chain structures have received much attention in coordination chemistry and materials chemistry (Lehn, 1990). An appropriate flexible bidentate organic acid bridge could be useful in the formation of chains in the presence of secondary ligands, such as 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) (Qi et al., 2003). The N atoms from the secondary ligand may occupy two coordination positions of metal ions; the rest of the coordination positions are available for other carboxylate ligands to allow the formation of chain. We selected 1,4-benzenedicarboxylic acid (1,4-H2BDC) as a bridging ligand and 1-ethyl-1H-imidazole (EI) as a secondary ligand, generating the title compound, a new chain coordination polymer, [Cu(1,4-BDC)(EI)2], (I), which is reported here.

In compound (I), there exist two unique CuII atoms, both with site symmetry 1. Each CuII atom is four-coordinated by two carboxylate O atoms from two different 1,4-BDC ligands, and two N atoms from two EI ligands in a square-planar coordination environment (Fig. 1). The Cu—O and Cu—N distances are within their normal ranges (Table 1). As shown in Fig. 2, each 1,4-BDC acts as a bis-modentate ligand that binds two CuII atoms, forming two unique chains, both propagating in [010]. The EI ligands are attached to both sides of the chains.

Related literature top

For related literature, see: Lehn (1990); Qi et al. (2003); De (2007).

Experimental top

A mixture of CuCl2.2H2O (0.5 mmol), 1,4-H2BDC (0.5 mmol), EI (0.5 mmol), and H2O (500 mmol) was adjusted to pH = 5.5 by addition of aqueous NaOH solution, and heated in a sealed vessel at 463 K for 2 days. After the mixture was slowly cooled to room temperature, blue blocks of (I) were yielded (21% yield).

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Chain structures have received much attention in coordination chemistry and materials chemistry (Lehn, 1990). An appropriate flexible bidentate organic acid bridge could be useful in the formation of chains in the presence of secondary ligands, such as 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen) (Qi et al., 2003). The N atoms from the secondary ligand may occupy two coordination positions of metal ions; the rest of the coordination positions are available for other carboxylate ligands to allow the formation of chain. We selected 1,4-benzenedicarboxylic acid (1,4-H2BDC) as a bridging ligand and 1-ethyl-1H-imidazole (EI) as a secondary ligand, generating the title compound, a new chain coordination polymer, [Cu(1,4-BDC)(EI)2], (I), which is reported here.

In compound (I), there exist two unique CuII atoms, both with site symmetry 1. Each CuII atom is four-coordinated by two carboxylate O atoms from two different 1,4-BDC ligands, and two N atoms from two EI ligands in a square-planar coordination environment (Fig. 1). The Cu—O and Cu—N distances are within their normal ranges (Table 1). As shown in Fig. 2, each 1,4-BDC acts as a bis-modentate ligand that binds two CuII atoms, forming two unique chains, both propagating in [010]. The EI ligands are attached to both sides of the chains.

For related literature, see: Lehn (1990); Qi et al. (2003); De (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level. (H atoms have been omitted). Symmetry codes: (i) 2 - x, -y, 2 - z; (ii) 2 - x, 1 - y, 2 - z; (iii) 2 - x, 1 - y, 3 - z; (iv) 2 - x, -y, 3 - z.
[Figure 2] Fig. 2. View of the chain structure of (I).
catena-Poly[[bis(1-ethyl-1H-imidazole-κN3)copper(II)]-µ- benzene-1,4-dicarboxylato] top
Crystal data top
[Cu(C8H4O4)(C5H8N2)2]Z = 2
Mr = 419.92F(000) = 434
Triclinic, P1Dx = 1.518 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6864 (15) ÅCell parameters from 7742 reflections
b = 10.948 (2) Åθ = 3.0–27.5°
c = 11.372 (2) ŵ = 1.22 mm1
α = 93.14 (3)°T = 293 K
β = 92.61 (3)°Block, blue
γ = 105.54 (3)°0.33 × 0.27 × 0.21 mm
V = 918.8 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4136 independent reflections
Radiation source: rotating anode3397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1314
Tmin = 0.661, Tmax = 0.775l = 1414
8970 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0254P]
where P = (Fo2 + 2Fc2)/3
4136 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(C8H4O4)(C5H8N2)2]γ = 105.54 (3)°
Mr = 419.92V = 918.8 (3) Å3
Triclinic, P1Z = 2
a = 7.6864 (15) ÅMo Kα radiation
b = 10.948 (2) ŵ = 1.22 mm1
c = 11.372 (2) ÅT = 293 K
α = 93.14 (3)°0.33 × 0.27 × 0.21 mm
β = 92.61 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4136 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3397 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.775Rint = 0.018
8970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.15Δρmax = 0.32 e Å3
4136 reflectionsΔρmin = 0.49 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu21.00000.50001.50000.02771 (12)
Cu11.00000.00001.00000.02926 (12)
O30.9107 (2)0.27569 (14)1.36307 (14)0.0467 (4)
O20.93649 (19)0.17782 (13)0.86458 (14)0.0439 (4)
O11.04795 (19)0.18231 (12)1.04847 (13)0.0374 (3)
C90.6494 (3)0.3343 (2)1.5848 (3)0.0571 (7)
H90.67430.25851.56090.069*
O41.03966 (18)0.33904 (12)1.54287 (13)0.0360 (3)
N20.5345 (3)0.0014 (2)1.16622 (18)0.0484 (5)
N10.7624 (2)0.03149 (17)1.07038 (15)0.0361 (4)
N40.5146 (2)0.4683 (2)1.65828 (17)0.0414 (4)
N30.7593 (2)0.45316 (18)1.57218 (16)0.0369 (4)
C81.0313 (3)0.03193 (18)1.61379 (18)0.0352 (4)
H81.05230.05341.69010.042*
C130.4459 (4)0.5512 (4)1.8516 (3)0.0774 (11)
H13A0.43270.47171.88670.116*
H13B0.37070.59701.88900.116*
H13C0.57000.60061.86170.116*
C180.4524 (5)0.0567 (5)1.3606 (3)0.0932 (14)
H18A0.40530.02961.38020.140*
H18B0.39250.11011.40310.140*
H18C0.58000.08441.38170.140*
C20.9975 (2)0.37248 (17)0.98204 (17)0.0290 (4)
C140.6978 (3)0.0531 (2)1.1280 (2)0.0426 (5)
H140.75760.13911.14050.051*
C41.0389 (3)0.56046 (18)1.11242 (18)0.0333 (4)
H41.06500.60091.18770.040*
C31.0364 (2)0.43359 (18)1.09464 (18)0.0337 (4)
H31.06070.38921.15800.040*
C150.6332 (3)0.1453 (2)1.0739 (2)0.0469 (5)
H150.64140.22291.04060.056*
C10.9929 (2)0.23451 (17)0.96117 (18)0.0315 (4)
C60.9910 (2)0.12260 (17)1.48043 (18)0.0297 (4)
C50.9782 (2)0.25449 (17)1.45794 (19)0.0327 (4)
C71.0223 (3)0.09013 (18)1.59434 (18)0.0332 (4)
H71.03710.15031.65760.040*
C110.3898 (3)0.5266 (3)1.7217 (2)0.0558 (7)
H11A0.26810.47051.71140.067*
H11B0.38890.60611.68830.067*
C160.4928 (3)0.1277 (3)1.1329 (2)0.0507 (6)
H160.38840.18951.14790.061*
C120.6734 (3)0.5318 (2)1.6179 (2)0.0410 (5)
H120.71680.61991.62180.049*
C100.4989 (3)0.3439 (3)1.6375 (3)0.0605 (7)
H100.40290.27711.65590.073*
C170.4214 (4)0.0649 (3)1.2339 (3)0.0689 (8)
H17A0.45080.15341.21590.083*
H17B0.29460.02651.21060.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.03678 (19)0.01434 (17)0.03383 (19)0.00974 (12)0.00320 (13)0.00240 (12)
Cu10.04075 (19)0.01696 (18)0.0337 (2)0.01396 (13)0.00339 (13)0.00183 (12)
O30.0661 (9)0.0273 (8)0.0518 (10)0.0207 (7)0.0015 (7)0.0100 (7)
O20.0558 (8)0.0276 (7)0.0504 (9)0.0172 (6)0.0004 (7)0.0067 (7)
O10.0536 (8)0.0189 (7)0.0444 (8)0.0174 (6)0.0061 (7)0.0024 (6)
C90.0574 (14)0.0260 (11)0.089 (2)0.0094 (10)0.0257 (13)0.0077 (12)
O40.0467 (7)0.0146 (6)0.0489 (9)0.0117 (5)0.0022 (6)0.0033 (6)
N20.0481 (10)0.0546 (13)0.0476 (11)0.0225 (9)0.0078 (9)0.0009 (9)
N10.0440 (9)0.0300 (9)0.0383 (9)0.0169 (7)0.0027 (7)0.0027 (7)
N40.0402 (9)0.0469 (12)0.0382 (9)0.0138 (8)0.0032 (7)0.0009 (8)
N30.0418 (9)0.0288 (9)0.0419 (10)0.0119 (7)0.0060 (7)0.0048 (7)
C80.0490 (10)0.0235 (10)0.0356 (10)0.0136 (8)0.0025 (8)0.0045 (8)
C130.0614 (17)0.121 (3)0.0501 (16)0.0303 (18)0.0069 (13)0.0189 (18)
C180.0693 (19)0.144 (4)0.065 (2)0.032 (2)0.0096 (16)0.024 (2)
C20.0308 (8)0.0195 (9)0.0394 (10)0.0107 (6)0.0058 (7)0.0022 (7)
C140.0492 (12)0.0372 (12)0.0456 (12)0.0186 (9)0.0076 (10)0.0005 (9)
C40.0433 (10)0.0224 (9)0.0356 (10)0.0122 (7)0.0021 (8)0.0008 (7)
C30.0416 (10)0.0236 (10)0.0387 (11)0.0131 (7)0.0018 (8)0.0041 (8)
C150.0462 (12)0.0357 (12)0.0586 (14)0.0107 (9)0.0049 (10)0.0016 (10)
C10.0332 (9)0.0202 (9)0.0433 (11)0.0101 (6)0.0089 (8)0.0002 (8)
C60.0324 (8)0.0185 (9)0.0402 (11)0.0098 (6)0.0048 (7)0.0025 (7)
C50.0358 (9)0.0202 (9)0.0461 (11)0.0121 (7)0.0093 (8)0.0082 (8)
C70.0442 (10)0.0201 (9)0.0369 (10)0.0122 (7)0.0036 (8)0.0018 (7)
C110.0443 (12)0.0768 (19)0.0492 (14)0.0231 (12)0.0070 (10)0.0056 (13)
C160.0445 (12)0.0464 (15)0.0614 (15)0.0116 (10)0.0042 (11)0.0084 (12)
C120.0422 (11)0.0358 (12)0.0470 (12)0.0129 (8)0.0094 (9)0.0016 (9)
C100.0479 (13)0.0483 (15)0.084 (2)0.0063 (11)0.0212 (13)0.0156 (13)
C170.0745 (18)0.072 (2)0.0684 (18)0.0332 (15)0.0221 (15)0.0047 (15)
Geometric parameters (Å, º) top
Cu1—O11.9725 (14)C13—H13A0.9600
Cu1—O1i1.9725 (14)C13—H13B0.9600
Cu1—N1i1.9797 (17)C13—H13C0.9600
Cu1—N11.9797 (18)C18—C171.461 (5)
Cu2—O4ii1.9505 (13)C18—H18A0.9600
Cu2—O41.9505 (13)C18—H18B0.9600
Cu2—N3ii2.0088 (18)C18—H18C0.9600
Cu2—N32.0088 (18)C2—C4iv1.393 (3)
C1—O11.283 (3)C2—C31.393 (3)
C1—O21.232 (3)C2—C11.507 (2)
C5—O31.236 (3)C14—H140.9300
C5—O41.280 (3)C4—C31.388 (3)
C9—C101.353 (4)C4—C2iv1.393 (3)
C9—N31.368 (3)C4—H40.9300
C9—H90.9300C3—H30.9300
N2—C141.341 (3)C15—C161.347 (3)
N2—C161.361 (3)C15—H150.9300
N2—C171.487 (3)C6—C71.389 (3)
N1—C141.321 (3)C6—C8iii1.392 (3)
N1—C151.373 (3)C6—C51.508 (2)
N4—C101.342 (3)C7—H70.9300
N4—C121.347 (3)C11—H11A0.9700
N4—C111.479 (3)C11—H11B0.9700
N3—C121.318 (3)C16—H160.9300
C8—C71.386 (3)C12—H120.9300
C8—C6iii1.392 (3)C10—H100.9300
C8—H80.9300C17—H17A0.9700
C13—C111.509 (4)C17—H17B0.9700
O1—Cu1—O1i180.0C3—C2—C1120.90 (18)
O1—Cu1—N1i90.68 (7)N1—C14—N2111.0 (2)
O1i—Cu1—N1i89.32 (7)N1—C14—H14124.5
O1—Cu1—N189.32 (7)N2—C14—H14124.5
O1i—Cu1—N190.68 (7)C3—C4—C2iv120.28 (19)
N1i—Cu1—N1180.0C3—C4—H4119.9
O4ii—Cu2—O4180.0C2iv—C4—H4119.9
O4ii—Cu2—N3ii89.55 (7)C4—C3—C2120.14 (19)
O4—Cu2—N3ii90.45 (7)C4—C3—H3119.9
O4ii—Cu2—N390.45 (7)C2—C3—H3119.9
O4—Cu2—N389.55 (7)C16—C15—N1109.8 (2)
N3ii—Cu2—N3180.0C16—C15—H15125.1
C1—O1—Cu1106.68 (13)N1—C15—H15125.1
C10—C9—N3109.6 (2)O2—C1—O1123.63 (18)
C10—C9—H9125.2O2—C1—C2119.96 (19)
N3—C9—H9125.2O1—C1—C2116.40 (18)
C5—O4—Cu2109.27 (13)C7—C6—C8iii119.66 (18)
C14—N2—C16107.6 (2)C7—C6—C5120.69 (18)
C14—N2—C17125.8 (2)C8iii—C6—C5119.64 (18)
C16—N2—C17126.6 (2)O3—C5—O4123.98 (18)
C14—N1—C15105.37 (18)O3—C5—C6120.52 (19)
C14—N1—Cu1126.74 (16)O4—C5—C6115.50 (18)
C15—N1—Cu1127.86 (15)C8—C7—C6120.03 (19)
C10—N4—C12107.14 (19)C8—C7—H7120.0
C10—N4—C11127.1 (2)C6—C7—H7120.0
C12—N4—C11125.6 (2)N4—C11—C13111.2 (2)
C12—N3—C9105.09 (18)N4—C11—H11A109.4
C12—N3—Cu2126.86 (15)C13—C11—H11A109.4
C9—N3—Cu2128.05 (16)N4—C11—H11B109.4
C7—C8—C6iii120.31 (19)C13—C11—H11B109.4
C7—C8—H8119.8H11A—C11—H11B108.0
C6iii—C8—H8119.8C15—C16—N2106.2 (2)
C11—C13—H13A109.5C15—C16—H16126.9
C11—C13—H13B109.5N2—C16—H16126.9
H13A—C13—H13B109.5N3—C12—N4111.3 (2)
C11—C13—H13C109.5N3—C12—H12124.3
H13A—C13—H13C109.5N4—C12—H12124.3
H13B—C13—H13C109.5N4—C10—C9106.9 (2)
C17—C18—H18A109.5N4—C10—H10126.6
C17—C18—H18B109.5C9—C10—H10126.6
H18A—C18—H18B109.5C18—C17—N2110.6 (3)
C17—C18—H18C109.5C18—C17—H17A109.5
H18A—C18—H18C109.5N2—C17—H17A109.5
H18B—C18—H18C109.5C18—C17—H17B109.5
C4iv—C2—C3119.57 (17)N2—C17—H17B109.5
C4iv—C2—C1119.52 (18)H17A—C17—H17B108.1
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+3; (iii) x+2, y, z+3; (iv) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C8H4O4)(C5H8N2)2]
Mr419.92
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6864 (15), 10.948 (2), 11.372 (2)
α, β, γ (°)93.14 (3), 92.61 (3), 105.54 (3)
V3)918.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.33 × 0.27 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.661, 0.775
No. of measured, independent and
observed [I > 2σ(I)] reflections
8970, 4136, 3397
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.111, 1.15
No. of reflections4136
No. of parameters249
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.49

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected bond lengths (Å) top
Cu1—O11.9725 (14)Cu2—O41.9505 (13)
Cu1—N11.9797 (18)Cu2—N32.0088 (18)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds