Download citation
Download citation
link to html
The mol­ecule of the title compound, C42H44N2S2, is centrosymmetric. Thus, an asymmetric unit comprises half of the mol­ecule. The torsion angle of the C—C[triple bond]C—C backbone is −165.6 (4)°. The crystal packing is dominated by van der Waals inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041578/kp2126sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041578/kp2126Isup2.hkl
Contains datablock I

CCDC reference: 663691

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.071
  • wR factor = 0.235
  • Data-to-parameter ratio = 19.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.96 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.13 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.79 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C6 - C7 ... 1.44 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C8 - C9 ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C12 - C13 ... 1.43 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

By developing new techniques to fabricate miniature components, and to fit more components into each cm 2 of silicon, engineers have driven the speed and capabilities of computing at a predictably fast pace. But the reduction in size of components, and thus increase in speed, can only continue for some finite time. New processes are under development in order to extend the useful functionality of silicon integrated circuits (Carroll et al., 2002).

Linear, π-conjugated molecules have attracted great attention due to their potential in molecular scale electronic devices (Bloor, 1995; Bumm et al., 1996). Molecular wires typically consist of two electroactive functional groups linked by an extended π-electron network. Rainer E. Martin synthesized a series of monodisperse Me3Si -endcapped poly(triacetylene) oligomers (Martin et al., 1997; Martin et al., 1999). Here, the synthesis and crystal structures of 4,4'-dicyano- (3,4-dibutylthiophenylethynyl)biphenyl (I) are presented.

The molecular structure of the title compound (Fig. 1) is centrosymmetric. Thus, an asymmetric unit comprises a half on the molecule. The inversion centre is located in the middle of C3—C3i bond. The two phenyl rings and carbon triple bonds are coplanar. The torsion angle of C9—C8—C7—C6 is -165.6 (4)° whereas the diphenyl moiety is linear due to an inversion symmetry of the molecule. The crystal packing (Fig. 2) is dominated by van der Waals interactions.

Related literature top

For related literature, see: Bloor (1995); Bumm et al. (1996); Carroll & Gorman (2002); Liu et al. (2006); Martin et al. (1997, 1999).

Experimental top

The synthesis of the title compound was performed as described by Liu et al. (2006).

Colourless plate-like crystals of 4,4'-dicyano-(3,4-dibutyl-thienyl ethynyl) biphenyl were grown from ethanol /hexane mixture by slow evaporation of the solution.

Refinement top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1998); software used

to prepare material for publication: SHELXTL (Siemens, 1994).

Structure description top

By developing new techniques to fabricate miniature components, and to fit more components into each cm 2 of silicon, engineers have driven the speed and capabilities of computing at a predictably fast pace. But the reduction in size of components, and thus increase in speed, can only continue for some finite time. New processes are under development in order to extend the useful functionality of silicon integrated circuits (Carroll et al., 2002).

Linear, π-conjugated molecules have attracted great attention due to their potential in molecular scale electronic devices (Bloor, 1995; Bumm et al., 1996). Molecular wires typically consist of two electroactive functional groups linked by an extended π-electron network. Rainer E. Martin synthesized a series of monodisperse Me3Si -endcapped poly(triacetylene) oligomers (Martin et al., 1997; Martin et al., 1999). Here, the synthesis and crystal structures of 4,4'-dicyano- (3,4-dibutylthiophenylethynyl)biphenyl (I) are presented.

The molecular structure of the title compound (Fig. 1) is centrosymmetric. Thus, an asymmetric unit comprises a half on the molecule. The inversion centre is located in the middle of C3—C3i bond. The two phenyl rings and carbon triple bonds are coplanar. The torsion angle of C9—C8—C7—C6 is -165.6 (4)° whereas the diphenyl moiety is linear due to an inversion symmetry of the molecule. The crystal packing (Fig. 2) is dominated by van der Waals interactions.

For related literature, see: Bloor (1995); Bumm et al. (1996); Carroll & Gorman (2002); Liu et al. (2006); Martin et al. (1997, 1999).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1994 or Bruker, 1998) or XP (Bruker, 1998)?; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability. To generate the molecule symmetry code -x, -y, -z + 2 is applied.
[Figure 2] Fig. 2. The crystal packing along a axis of the title compound.
3,3',4,4'-Tetrabutyl-5,5'-(biphenyl-4,4'-diyldiethynyl)bis(thiophene-2-χarbonitrile) top
Crystal data top
C42H44N2S2V = 922.3 (3) Å3
Mr = 640.91Z = 1
Triclinic, P1F(000) = 342
a = 8.1428 (16) ÅDx = 1.154 Mg m3
b = 9.1856 (18) ÅMo Kα radiation, λ = 0.71073 Å
c = 13.606 (3) ŵ = 0.18 mm1
α = 90.37 (3)°T = 293 K
β = 100.53 (3)°Plate, colourless
γ = 112.32 (3)°0.41 × 0.39 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4080 independent reflections
Radiation source: fine-focus sealed tube3287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0.76 pixels mm-1θmax = 27.5°, θmin = 1.5°
Oscillation scansh = 910
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 911
Tmin = 0.879, Tmax = 0.996l = 1717
5834 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.235H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1503P)2 + 0.3412P]
where P = (Fo2 + 2Fc2)/3
4080 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C42H44N2S2γ = 112.32 (3)°
Mr = 640.91V = 922.3 (3) Å3
Triclinic, P1Z = 1
a = 8.1428 (16) ÅMo Kα radiation
b = 9.1856 (18) ŵ = 0.18 mm1
c = 13.606 (3) ÅT = 293 K
α = 90.37 (3)°0.41 × 0.39 × 0.28 mm
β = 100.53 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4080 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
3287 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.996Rint = 0.029
5834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.235H-atom parameters constrained
S = 1.01Δρmax = 0.81 e Å3
4080 reflectionsΔρmin = 0.38 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28848 (9)0.32421 (9)0.44787 (5)0.0608 (3)
C10.1734 (4)0.2078 (4)0.8390 (2)0.0766 (9)
H1A0.27730.29200.83080.092*
N10.4301 (5)0.4639 (4)0.2102 (3)0.1016 (11)
C20.1583 (4)0.1546 (4)0.9336 (2)0.0752 (9)
H2A0.25240.20490.98780.090*
C30.0075 (3)0.0290 (3)0.94934 (16)0.0469 (5)
C40.1306 (4)0.0409 (3)0.86606 (19)0.0639 (7)
H4A0.23530.12450.87400.077*
C50.1156 (4)0.0112 (3)0.77223 (19)0.0662 (7)
H5A0.20950.03930.71790.079*
C60.0349 (4)0.1361 (3)0.75692 (17)0.0533 (6)
C70.0492 (4)0.1910 (3)0.65898 (19)0.0574 (6)
C80.0589 (4)0.2360 (3)0.57725 (18)0.0556 (6)
C90.0843 (3)0.2910 (3)0.48107 (17)0.0506 (5)
C100.0335 (3)0.3280 (3)0.40904 (17)0.0492 (5)
C110.0437 (4)0.3854 (3)0.32413 (18)0.0534 (6)
C120.2171 (4)0.3890 (3)0.3356 (2)0.0589 (6)
C130.3348 (5)0.4322 (4)0.2656 (2)0.0717 (8)
C140.2209 (4)0.3068 (3)0.4213 (2)0.0589 (6)
H14A0.24540.39700.39700.071*
H14B0.22420.30580.49220.071*
C150.0488 (5)0.4360 (4)0.2334 (2)0.0686 (8)
H15A0.03660.53350.21510.082*
H15B0.14780.45830.25070.082*
C160.3690 (4)0.1584 (4)0.3671 (3)0.0848 (10)
H16A0.48200.15040.38490.102*
H16B0.38090.16990.29570.102*
C170.1229 (5)0.3166 (5)0.1432 (2)0.0803 (9)
H17A0.19590.21490.16320.096*
H17B0.02270.30540.11930.096*
C180.3470 (6)0.0111 (5)0.3857 (4)0.1018 (13)
H18A0.32990.00150.45740.122*
H18B0.23690.01700.36500.122*
C190.2385 (7)0.3634 (6)0.0574 (3)0.1009 (13)
H19A0.34020.37180.08100.121*
H19B0.16630.46680.03920.121*
C200.5024 (6)0.1393 (4)0.3335 (4)0.0994 (12)
H20A0.47650.22980.35320.149*
H20B0.51520.13570.26210.149*
H20C0.61300.14680.35260.149*
C210.3088 (8)0.2507 (7)0.0336 (3)0.1312 (19)
H21A0.38060.28670.08380.197*
H21B0.38230.14830.01670.197*
H21C0.20910.24430.05900.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0507 (4)0.0685 (5)0.0586 (4)0.0192 (3)0.0086 (3)0.0062 (3)
C10.0565 (15)0.092 (2)0.0554 (15)0.0035 (15)0.0041 (12)0.0216 (14)
N10.109 (3)0.090 (2)0.111 (2)0.0240 (19)0.067 (2)0.0237 (18)
C20.0547 (14)0.092 (2)0.0499 (14)0.0031 (14)0.0033 (11)0.0171 (14)
C30.0491 (12)0.0484 (12)0.0435 (11)0.0205 (10)0.0063 (9)0.0037 (9)
C40.0622 (15)0.0614 (16)0.0479 (13)0.0051 (12)0.0037 (11)0.0033 (11)
C50.0703 (17)0.0661 (16)0.0439 (13)0.0121 (13)0.0013 (11)0.0005 (11)
C60.0623 (14)0.0603 (14)0.0433 (12)0.0305 (12)0.0100 (10)0.0085 (10)
C70.0645 (15)0.0634 (15)0.0490 (13)0.0300 (13)0.0115 (11)0.0066 (11)
C80.0613 (14)0.0601 (14)0.0454 (12)0.0242 (12)0.0089 (10)0.0054 (10)
C90.0520 (12)0.0518 (12)0.0437 (11)0.0157 (10)0.0092 (9)0.0033 (9)
C100.0549 (13)0.0455 (12)0.0443 (11)0.0168 (10)0.0086 (9)0.0014 (9)
C110.0645 (14)0.0464 (12)0.0472 (12)0.0188 (11)0.0119 (10)0.0059 (9)
C120.0639 (15)0.0546 (14)0.0547 (14)0.0160 (12)0.0189 (12)0.0096 (11)
C130.0767 (19)0.0607 (16)0.0757 (19)0.0164 (14)0.0325 (16)0.0100 (13)
C140.0606 (15)0.0583 (14)0.0621 (15)0.0266 (12)0.0149 (12)0.0025 (11)
C150.094 (2)0.0677 (17)0.0520 (14)0.0403 (16)0.0142 (14)0.0149 (12)
C160.0577 (17)0.082 (2)0.110 (3)0.0246 (16)0.0124 (17)0.0179 (19)
C170.101 (2)0.092 (2)0.0537 (16)0.050 (2)0.0030 (15)0.0039 (15)
C180.080 (2)0.074 (2)0.148 (4)0.028 (2)0.016 (2)0.006 (2)
C190.122 (3)0.133 (4)0.064 (2)0.075 (3)0.001 (2)0.004 (2)
C200.092 (3)0.067 (2)0.122 (3)0.0202 (19)0.004 (2)0.008 (2)
C210.151 (5)0.169 (5)0.080 (3)0.087 (4)0.016 (3)0.010 (3)
Geometric parameters (Å, º) top
S1—C91.718 (3)C14—H14A0.9700
S1—C121.725 (3)C14—H14B0.9700
C1—C61.386 (4)C15—C171.511 (4)
C1—C21.389 (4)C15—H15A0.9700
C1—H1A0.9300C15—H15B0.9700
N1—C131.140 (4)C16—C181.448 (5)
C2—C31.381 (4)C16—H16A0.9700
C2—H2A0.9300C16—H16B0.9700
C3—C41.392 (4)C17—C191.531 (5)
C3—C3i1.490 (4)C17—H17A0.9700
C4—C51.376 (4)C17—H17B0.9700
C4—H4A0.9300C18—C201.532 (6)
C5—C61.375 (4)C18—H18A0.9700
C5—H5A0.9300C18—H18B0.9700
C6—C71.437 (3)C19—C211.484 (6)
C7—C81.195 (4)C19—H19A0.9700
C8—C91.428 (3)C19—H19B0.9700
C9—C101.380 (4)C20—H20A0.9600
C10—C111.425 (3)C20—H20B0.9600
C10—C141.504 (4)C20—H20C0.9600
C11—C121.380 (4)C21—H21A0.9600
C11—C151.497 (4)C21—H21B0.9600
C12—C131.425 (4)C21—H21C0.9600
C14—C161.506 (4)
C9—S1—C1290.36 (13)C11—C15—H15A108.6
C6—C1—C2120.4 (3)C17—C15—H15A108.6
C6—C1—H1A119.8C11—C15—H15B108.6
C2—C1—H1A119.8C17—C15—H15B108.6
C3—C2—C1121.9 (3)H15A—C15—H15B107.6
C3—C2—H2A119.1C18—C16—C14117.0 (3)
C1—C2—H2A119.1C18—C16—H16A108.0
C2—C3—C4116.9 (2)C14—C16—H16A108.0
C2—C3—C3i121.7 (3)C18—C16—H16B108.0
C4—C3—C3i121.4 (3)C14—C16—H16B108.0
C5—C4—C3121.4 (3)H16A—C16—H16B107.3
C5—C4—H4A119.3C15—C17—C19112.6 (3)
C3—C4—H4A119.3C15—C17—H17A109.1
C6—C5—C4121.5 (3)C19—C17—H17A109.1
C6—C5—H5A119.2C15—C17—H17B109.1
C4—C5—H5A119.2C19—C17—H17B109.1
C5—C6—C1117.9 (2)H17A—C17—H17B107.8
C5—C6—C7121.3 (2)C16—C18—C20116.4 (4)
C1—C6—C7120.8 (3)C16—C18—H18A108.2
C8—C7—C6179.2 (3)C20—C18—H18A108.2
C7—C8—C9175.7 (3)C16—C18—H18B108.2
C10—C9—C8128.5 (2)C20—C18—H18B108.2
C10—C9—S1113.10 (18)H18A—C18—H18B107.4
C8—C9—S1118.34 (19)C21—C19—C17114.0 (4)
C9—C10—C11112.0 (2)C21—C19—H19A108.8
C9—C10—C14122.5 (2)C17—C19—H19A108.8
C11—C10—C14125.5 (2)C21—C19—H19B108.8
C12—C11—C10111.3 (2)C17—C19—H19B108.8
C12—C11—C15123.5 (2)H19A—C19—H19B107.7
C10—C11—C15125.2 (3)C18—C20—H20A109.5
C11—C12—C13128.0 (3)C18—C20—H20B109.5
C11—C12—S1113.28 (19)H20A—C20—H20B109.5
C13—C12—S1118.7 (2)C18—C20—H20C109.5
N1—C13—C12178.3 (4)H20A—C20—H20C109.5
C10—C14—C16114.4 (2)H20B—C20—H20C109.5
C10—C14—H14A108.7C19—C21—H21A109.5
C16—C14—H14A108.7C19—C21—H21B109.5
C10—C14—H14B108.7H21A—C21—H21B109.5
C16—C14—H14B108.7C19—C21—H21C109.5
H14A—C14—H14B107.6H21A—C21—H21C109.5
C11—C15—C17114.6 (2)H21B—C21—H21C109.5
C12—C11—C10—C90.1 (3)C1—C2—C3—C40.9 (5)
C12—S1—C9—C100.0 (3)C5—C4—C3—C21.1 (6)
C10—C11—C12—S10.1 (1)C5—C6—C1—C20.4 (5)
C11—C12—S1—C90.0 (5)C12—C11—C15—C1777.9 (4)
C11—C10—C9—S10.1 (3)C11—C15—C17—C19172.0 (7)
C11—C10—C9—C8177.5 (5)C15—C17—C19—C21178.2 (5)
C12—S1—C9—C8177.8 (8)C10—C11—C15—C17102.1 (3)
C7—C6—C5—C4179.4 (1)C11—C10—C14—C1679.8 (7)
C7—C6—C1—C2179.6 (8)C9—C10—C14—C1699.4 (5)
C6—C5—C4—C31.1 (5)C10—C14—C16—C1852.3 (7)
C6—C1—C2—C30.5 (7)C14—C16—C18—C20177.5 (2)
C4—C5—C6—C10.7 (2)C4—C3—C3—C490.00 (3)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC42H44N2S2
Mr640.91
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1428 (16), 9.1856 (18), 13.606 (3)
α, β, γ (°)90.37 (3), 100.53 (3), 112.32 (3)
V3)922.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.41 × 0.39 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.879, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
5834, 4080, 3287
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.235, 1.01
No. of reflections4080
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.38

Computer programs: RAPID-AUTO (Rigaku, 2001), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1994 or Bruker, 1998) or XP (Bruker, 1998)?, SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds