Download citation
Download citation
link to html
In the title compound, [Mo(CO)3(C18H15P)(C12H8N2)] or C33H23MoN2O3P, the carbonyl groups are attached to one face of the MoC3N2P octa­hedron. Slight differences in the Mo—C bond lengths may be inter­preted in terms of back-bonding models of electronic structure. In the crystal structure, a short C—H...O inter­action (H...O = 2.34 Å) may help to establish the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043176/lh2494sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043176/lh2494Isup2.hkl
Contains datablock I

CCDC reference: 663574

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.029
  • wR factor = 0.068
  • Data-to-parameter ratio = 21.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.08 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo1 - P1 .. 5.17 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo1 - N1 .. 5.15 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo1 - C1 .. 9.93 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo1 - C2 .. 7.84 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Mo1 - C3 .. 8.98 su
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), Mo(CO)3(C18H15P)(C12H8N2), is an example of a trisubstituted group-6 metal hexacarbonyl (Howie & McQuillan, 1986). The related tricarbonyl-triphenylphosphine-2,2-bipyridyl-molybdenum(0) is described in the next paper (Muir et al., 2007).

The three remaining carbonyl groups atached to the Mo atom in (I) form one face of the distorted MoC3N2P octahedron. Otherwise, all the bond lengths and angles in (I) (Fig. 1) may be regarded as normal (Allen et al., 1987). The diehdral angles for the phenyl rings for the triphenylphosphine molecule are C16—C21/C22—C27 = 83.94 (11)°, C16—C21/C28—C33 = 71.77 (12)°, and C22—C27/C28—C33 = 67.95 (12)°. The N—Mo—N bite angle for the 1,10-phenanthroline (phen) molecule is 73.48 (5)°.

There is a slight distinction between the shorter Mo1—C2 and Mo1—C3 bond lengths trans to N atoms and and the longer Mo1—C1 bond, which is trans to the P atom. The traditional explanation (Cotton & Wilkinson, 1966) for this phenomenon is that triphenylphosphine is a π-acceptor ligand and completes for metal d electrons with the carbonyl group trans to itself, hence the Mo—C bond has less double-bond character than a Mo—C bond trans to an atom with no π-acceptor properties such as N, and is therefore longer. The C1—Mo1—P1 bond angle is also closer to linear than the C—Mo—N angles.

In the crystal of (I), a rather short C—H···O interaction arising from a phen C—H grouping (Table 2) may help to establish the packing.

Related literature top

For a related structure, see: Muir et al. (2007). For background, see: Cotton & Wilkinson (1966); Howie & McQuillan (1986). For reference structural data, see: Allen et al. (1987).

Experimental top

Equimolar quantities of Mo(CO)6, triphenylphosphine and 1,10-phenanthroline were refluxed in toluene under an N2 atmosphere for seven hours. After cooling, air-stable black slabs and blocks of (I) were recovered by vacuum filtration and rinsing with light petroleum ether in 79% yield based on Mo(CO)6. The crystals of (I) smear to a deep orange colour on a glass slide.

Refinement top

The hydrogen atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound, (I), Mo(CO)3(C18H15P)(C12H8N2), is an example of a trisubstituted group-6 metal hexacarbonyl (Howie & McQuillan, 1986). The related tricarbonyl-triphenylphosphine-2,2-bipyridyl-molybdenum(0) is described in the next paper (Muir et al., 2007).

The three remaining carbonyl groups atached to the Mo atom in (I) form one face of the distorted MoC3N2P octahedron. Otherwise, all the bond lengths and angles in (I) (Fig. 1) may be regarded as normal (Allen et al., 1987). The diehdral angles for the phenyl rings for the triphenylphosphine molecule are C16—C21/C22—C27 = 83.94 (11)°, C16—C21/C28—C33 = 71.77 (12)°, and C22—C27/C28—C33 = 67.95 (12)°. The N—Mo—N bite angle for the 1,10-phenanthroline (phen) molecule is 73.48 (5)°.

There is a slight distinction between the shorter Mo1—C2 and Mo1—C3 bond lengths trans to N atoms and and the longer Mo1—C1 bond, which is trans to the P atom. The traditional explanation (Cotton & Wilkinson, 1966) for this phenomenon is that triphenylphosphine is a π-acceptor ligand and completes for metal d electrons with the carbonyl group trans to itself, hence the Mo—C bond has less double-bond character than a Mo—C bond trans to an atom with no π-acceptor properties such as N, and is therefore longer. The C1—Mo1—P1 bond angle is also closer to linear than the C—Mo—N angles.

In the crystal of (I), a rather short C—H···O interaction arising from a phen C—H grouping (Table 2) may help to establish the packing.

For a related structure, see: Muir et al. (2007). For background, see: Cotton & Wilkinson (1966); Howie & McQuillan (1986). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (H atoms omitted for clarity).
Tricarbonyl-1,10-phenanthroline(triphenylphosphine)molybdenum(0) top
Crystal data top
[Mo(CO)3(C18H15P)(C12H8N2)]Z = 2
Mr = 622.44F(000) = 632
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5179 (4) ÅCell parameters from 6139 reflections
b = 9.6376 (4) Åθ = 2.3–30.0°
c = 18.4119 (7) ŵ = 0.57 mm1
α = 77.780 (1)°T = 293 K
β = 87.979 (1)°Slab, black
γ = 70.723 (1)°0.35 × 0.26 × 0.11 mm
V = 1393.42 (10) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
7912 independent reflections
Radiation source: fine-focus sealed tube6552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.835, Tmax = 0.946k = 1013
12111 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
7912 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mo(CO)3(C18H15P)(C12H8N2)]γ = 70.723 (1)°
Mr = 622.44V = 1393.42 (10) Å3
Triclinic, P1Z = 2
a = 8.5179 (4) ÅMo Kα radiation
b = 9.6376 (4) ŵ = 0.57 mm1
c = 18.4119 (7) ÅT = 293 K
α = 77.780 (1)°0.35 × 0.26 × 0.11 mm
β = 87.979 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
7912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
6552 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.946Rint = 0.015
12111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 0.95Δρmax = 0.63 e Å3
7912 reflectionsΔρmin = 0.30 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.182959 (18)0.028421 (15)0.334120 (8)0.02732 (5)
C10.1241 (2)0.11580 (19)0.43305 (10)0.0338 (4)
C20.3428 (3)0.2261 (2)0.33681 (12)0.0483 (5)
C30.0106 (3)0.0987 (2)0.30575 (10)0.0417 (4)
O10.0855 (2)0.17694 (17)0.48803 (8)0.0563 (4)
O20.4411 (2)0.34549 (18)0.34323 (14)0.0988 (7)
O30.0968 (2)0.1451 (2)0.29626 (10)0.0769 (6)
P10.25368 (6)0.07815 (5)0.20004 (2)0.03263 (10)
C40.1324 (2)0.2719 (2)0.32076 (11)0.0409 (4)
H40.18580.22020.29890.049*
C50.2236 (3)0.4158 (2)0.33039 (13)0.0560 (6)
H50.33500.45860.31460.067*
C60.1495 (3)0.4932 (2)0.36277 (13)0.0565 (6)
H60.21020.58880.36990.068*
C70.0191 (3)0.4286 (2)0.38543 (11)0.0465 (5)
C80.1042 (2)0.28319 (18)0.37319 (9)0.0341 (4)
C90.2773 (2)0.2132 (2)0.39245 (9)0.0356 (4)
C100.3628 (3)0.2892 (2)0.42524 (11)0.0483 (5)
C110.5331 (3)0.2177 (3)0.44151 (12)0.0617 (7)
H110.59350.26400.46320.074*
C120.6104 (3)0.0801 (3)0.42563 (12)0.0586 (6)
H120.72400.03240.43580.070*
C130.5168 (2)0.0108 (2)0.39374 (11)0.0458 (5)
H130.57090.08370.38360.055*
C140.1082 (4)0.5014 (3)0.41967 (13)0.0616 (6)
H140.05280.59670.42850.074*
C150.2699 (4)0.4352 (3)0.43927 (13)0.0639 (7)
H150.32370.48470.46250.077*
C160.4248 (2)0.0531 (2)0.15991 (10)0.0363 (4)
C170.5718 (2)0.1331 (2)0.20295 (11)0.0457 (5)
H170.58130.11620.25030.055*
C180.7025 (3)0.2362 (3)0.17655 (12)0.0535 (5)
H180.80000.28630.20550.064*
C190.6887 (3)0.2653 (3)0.10715 (13)0.0569 (6)
H190.77550.33690.08980.068*
C200.5452 (3)0.1874 (3)0.06374 (12)0.0569 (6)
H200.53630.20540.01670.068*
C210.4150 (3)0.0829 (2)0.08978 (11)0.0462 (5)
H210.31900.03140.05990.055*
C220.0873 (2)0.1417 (2)0.12703 (10)0.0371 (4)
C230.0135 (3)0.0546 (2)0.12557 (11)0.0500 (5)
H230.00130.03200.16220.060*
C240.1362 (3)0.0959 (3)0.06987 (12)0.0617 (6)
H240.20150.03560.06890.074*
C250.1617 (3)0.2246 (3)0.01642 (13)0.0614 (6)
H250.24630.25340.01990.074*
C260.0620 (3)0.3109 (3)0.01664 (13)0.0671 (7)
H260.07760.39740.02010.081*
C270.0625 (3)0.2694 (2)0.07173 (12)0.0552 (6)
H270.12990.32830.07130.066*
C280.3183 (3)0.2461 (2)0.19056 (10)0.0397 (4)
C290.2019 (3)0.3773 (2)0.20503 (11)0.0495 (5)
H290.09400.37940.21630.059*
C300.2460 (4)0.5050 (3)0.20269 (13)0.0658 (7)
H300.16780.59150.21290.079*
C310.4042 (4)0.5037 (3)0.18538 (15)0.0754 (8)
H310.43340.58910.18380.091*
C320.5193 (4)0.3760 (3)0.17038 (17)0.0797 (8)
H320.62640.37540.15830.096*
C330.4770 (3)0.2459 (3)0.17305 (14)0.0604 (6)
H330.55610.15970.16300.072*
N10.35406 (18)0.07416 (16)0.37739 (8)0.0339 (3)
N20.02783 (17)0.20492 (15)0.34142 (8)0.0314 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02579 (7)0.02575 (7)0.02999 (7)0.00736 (5)0.00105 (5)0.00686 (5)
C10.0333 (9)0.0311 (9)0.0374 (9)0.0099 (7)0.0007 (7)0.0092 (7)
C20.0411 (11)0.0354 (10)0.0634 (13)0.0091 (8)0.0159 (9)0.0079 (9)
C30.0471 (11)0.0447 (11)0.0368 (9)0.0210 (9)0.0025 (8)0.0061 (8)
O10.0755 (11)0.0585 (9)0.0408 (8)0.0333 (8)0.0109 (7)0.0066 (7)
O20.0744 (13)0.0388 (10)0.155 (2)0.0073 (8)0.0483 (13)0.0085 (11)
O30.0799 (13)0.1001 (14)0.0739 (12)0.0637 (12)0.0134 (10)0.0101 (10)
P10.0331 (2)0.0361 (2)0.0309 (2)0.01468 (18)0.00072 (17)0.00656 (18)
C40.0322 (9)0.0352 (9)0.0498 (11)0.0053 (7)0.0011 (8)0.0066 (8)
C50.0441 (12)0.0420 (12)0.0666 (14)0.0031 (9)0.0037 (10)0.0074 (10)
C60.0643 (15)0.0306 (10)0.0620 (14)0.0002 (9)0.0122 (11)0.0099 (9)
C70.0686 (14)0.0304 (9)0.0411 (10)0.0174 (9)0.0122 (10)0.0089 (8)
C80.0445 (10)0.0279 (8)0.0313 (8)0.0144 (7)0.0065 (7)0.0061 (6)
C90.0437 (10)0.0385 (9)0.0299 (8)0.0218 (8)0.0019 (7)0.0057 (7)
C100.0642 (14)0.0552 (12)0.0393 (10)0.0386 (11)0.0007 (9)0.0088 (9)
C110.0700 (17)0.0840 (18)0.0513 (13)0.0525 (15)0.0044 (11)0.0127 (12)
C120.0388 (12)0.0898 (18)0.0516 (13)0.0317 (12)0.0075 (10)0.0062 (12)
C130.0334 (10)0.0623 (13)0.0408 (10)0.0166 (9)0.0018 (8)0.0073 (9)
C140.098 (2)0.0388 (12)0.0598 (14)0.0322 (12)0.0120 (13)0.0201 (10)
C150.104 (2)0.0557 (14)0.0555 (14)0.0526 (15)0.0049 (14)0.0204 (11)
C160.0338 (9)0.0425 (10)0.0366 (9)0.0184 (8)0.0059 (7)0.0086 (7)
C170.0380 (11)0.0622 (13)0.0377 (10)0.0164 (9)0.0031 (8)0.0127 (9)
C180.0363 (11)0.0648 (14)0.0537 (13)0.0115 (9)0.0047 (9)0.0097 (10)
C190.0478 (13)0.0612 (14)0.0623 (14)0.0143 (10)0.0175 (11)0.0229 (11)
C200.0595 (15)0.0702 (15)0.0460 (12)0.0197 (12)0.0117 (10)0.0274 (11)
C210.0482 (12)0.0553 (12)0.0371 (10)0.0177 (10)0.0018 (8)0.0131 (9)
C220.0352 (10)0.0430 (10)0.0331 (9)0.0142 (8)0.0003 (7)0.0059 (7)
C230.0584 (14)0.0593 (13)0.0389 (10)0.0318 (11)0.0049 (9)0.0031 (9)
C240.0593 (15)0.0878 (18)0.0500 (13)0.0416 (14)0.0090 (11)0.0102 (12)
C250.0494 (14)0.0791 (17)0.0519 (13)0.0184 (12)0.0175 (10)0.0069 (12)
C260.0755 (18)0.0570 (14)0.0594 (14)0.0207 (12)0.0278 (13)0.0106 (11)
C270.0574 (14)0.0531 (13)0.0543 (13)0.0255 (10)0.0145 (11)0.0049 (10)
C280.0496 (11)0.0428 (10)0.0330 (9)0.0250 (9)0.0003 (8)0.0056 (7)
C290.0644 (14)0.0451 (11)0.0436 (11)0.0267 (10)0.0081 (10)0.0066 (9)
C300.101 (2)0.0432 (12)0.0599 (14)0.0341 (13)0.0065 (13)0.0087 (10)
C310.103 (2)0.0654 (17)0.0790 (18)0.0579 (17)0.0007 (16)0.0122 (14)
C320.0749 (19)0.088 (2)0.099 (2)0.0591 (17)0.0076 (16)0.0172 (17)
C330.0570 (15)0.0611 (14)0.0736 (16)0.0326 (12)0.0038 (12)0.0159 (12)
N10.0314 (8)0.0402 (8)0.0312 (7)0.0145 (6)0.0001 (6)0.0053 (6)
N20.0310 (7)0.0266 (7)0.0340 (7)0.0074 (5)0.0034 (6)0.0049 (5)
Geometric parameters (Å, º) top
Mo1—C21.933 (2)C15—H150.9300
Mo1—C31.9360 (18)C16—C211.392 (2)
Mo1—C11.9604 (18)C16—C171.401 (3)
Mo1—N22.2304 (14)C17—C181.378 (3)
Mo1—N12.2589 (14)C17—H170.9300
Mo1—P12.5965 (5)C18—C191.382 (3)
C1—O11.154 (2)C18—H180.9300
C2—O21.163 (2)C19—C201.380 (3)
C3—O31.175 (2)C19—H190.9300
P1—C161.8368 (19)C20—C211.380 (3)
P1—C221.8449 (18)C20—H200.9300
P1—C281.8483 (17)C21—H210.9300
C4—N21.332 (2)C22—C271.382 (3)
C4—C51.393 (3)C22—C231.389 (2)
C4—H40.9300C23—C241.390 (3)
C5—C61.355 (3)C23—H230.9300
C5—H50.9300C24—C251.369 (3)
C6—C71.402 (3)C24—H240.9300
C6—H60.9300C25—C261.372 (3)
C7—C81.411 (3)C25—H250.9300
C7—C141.428 (3)C26—C271.392 (3)
C8—N21.369 (2)C26—H260.9300
C8—C91.426 (3)C27—H270.9300
C9—N11.366 (2)C28—C331.379 (3)
C9—C101.415 (2)C28—C291.395 (3)
C10—C111.397 (3)C29—C301.393 (3)
C10—C151.441 (3)C29—H290.9300
C11—C121.360 (3)C30—C311.370 (4)
C11—H110.9300C30—H300.9300
C12—C131.407 (3)C31—C321.372 (4)
C12—H120.9300C31—H310.9300
C13—N11.333 (2)C32—C331.405 (3)
C13—H130.9300C32—H320.9300
C14—C151.339 (3)C33—H330.9300
C14—H140.9300
C2—Mo1—C389.07 (9)C21—C16—C17117.52 (18)
C2—Mo1—C185.59 (8)C21—C16—P1123.70 (15)
C3—Mo1—C180.56 (7)C17—C16—P1118.73 (14)
C2—Mo1—N2171.18 (7)C18—C17—C16121.27 (19)
C3—Mo1—N299.32 (7)C18—C17—H17119.4
C1—Mo1—N293.09 (6)C16—C17—H17119.4
C2—Mo1—N197.92 (7)C17—C18—C19120.1 (2)
C3—Mo1—N1171.27 (7)C17—C18—H18120.0
C1—Mo1—N194.70 (6)C19—C18—H18120.0
N2—Mo1—N173.48 (5)C20—C19—C18119.6 (2)
C2—Mo1—P193.28 (6)C20—C19—H19120.2
C3—Mo1—P196.47 (6)C18—C19—H19120.2
C1—Mo1—P1176.82 (5)C21—C20—C19120.4 (2)
N2—Mo1—P188.48 (4)C21—C20—H20119.8
N1—Mo1—P188.40 (4)C19—C20—H20119.8
O1—C1—Mo1173.32 (15)C20—C21—C16121.15 (19)
O2—C2—Mo1175.6 (2)C20—C21—H21119.4
O3—C3—Mo1173.06 (17)C16—C21—H21119.4
C16—P1—C22102.43 (8)C27—C22—C23118.30 (17)
C16—P1—C28103.58 (9)C27—C22—P1122.83 (14)
C22—P1—C28101.84 (8)C23—C22—P1118.82 (14)
C16—P1—Mo1114.85 (6)C22—C23—C24120.53 (19)
C22—P1—Mo1117.58 (6)C22—C23—H23119.7
C28—P1—Mo1114.60 (6)C24—C23—H23119.7
N2—C4—C5123.04 (18)C25—C24—C23120.5 (2)
N2—C4—H4118.5C25—C24—H24119.8
C5—C4—H4118.5C23—C24—H24119.8
C6—C5—C4119.8 (2)C24—C25—C26119.7 (2)
C6—C5—H5120.1C24—C25—H25120.2
C4—C5—H5120.1C26—C25—H25120.2
C5—C6—C7119.67 (19)C25—C26—C27120.2 (2)
C5—C6—H6120.2C25—C26—H26119.9
C7—C6—H6120.2C27—C26—H26119.9
C6—C7—C8117.46 (18)C22—C27—C26120.8 (2)
C6—C7—C14123.8 (2)C22—C27—H27119.6
C8—C7—C14118.7 (2)C26—C27—H27119.6
N2—C8—C7122.48 (18)C33—C28—C29118.79 (18)
N2—C8—C9117.20 (15)C33—C28—P1123.17 (16)
C7—C8—C9120.30 (16)C29—C28—P1117.98 (15)
N1—C9—C10122.71 (18)C30—C29—C28120.6 (2)
N1—C9—C8117.67 (14)C30—C29—H29119.7
C10—C9—C8119.62 (18)C28—C29—H29119.7
C11—C10—C9117.5 (2)C31—C30—C29120.2 (3)
C11—C10—C15124.1 (2)C31—C30—H30119.9
C9—C10—C15118.3 (2)C29—C30—H30119.9
C12—C11—C10119.91 (19)C30—C31—C32119.8 (2)
C12—C11—H11120.0C30—C31—H31120.1
C10—C11—H11120.0C32—C31—H31120.1
C11—C12—C13119.3 (2)C31—C32—C33120.7 (3)
C11—C12—H12120.3C31—C32—H32119.7
C13—C12—H12120.3C33—C32—H32119.7
N1—C13—C12123.0 (2)C28—C33—C32120.0 (2)
N1—C13—H13118.5C28—C33—H33120.0
C12—C13—H13118.5C32—C33—H33120.0
C15—C14—C7121.3 (2)C13—N1—C9117.47 (16)
C15—C14—H14119.4C13—N1—Mo1127.39 (13)
C7—C14—H14119.4C9—N1—Mo1115.00 (11)
C14—C15—C10121.7 (2)C4—N2—C8117.53 (15)
C14—C15—H15119.2C4—N2—Mo1126.27 (12)
C10—C15—H15119.2C8—N2—Mo1116.14 (11)
C2—Mo1—P1—C163.87 (9)C16—P1—C22—C2384.52 (18)
C3—Mo1—P1—C1693.31 (9)C28—P1—C22—C23168.51 (17)
N2—Mo1—P1—C16167.49 (7)Mo1—P1—C22—C2342.39 (19)
N1—Mo1—P1—C1693.97 (7)C27—C22—C23—C240.2 (3)
C2—Mo1—P1—C22116.76 (10)P1—C22—C23—C24177.66 (18)
C3—Mo1—P1—C2227.33 (9)C22—C23—C24—C251.3 (4)
N2—Mo1—P1—C2271.88 (8)C23—C24—C25—C262.0 (4)
N1—Mo1—P1—C22145.40 (8)C24—C25—C26—C271.2 (4)
C2—Mo1—P1—C28123.64 (10)C23—C22—C27—C261.0 (4)
C3—Mo1—P1—C28146.92 (9)P1—C22—C27—C26178.3 (2)
N2—Mo1—P1—C2847.71 (8)C25—C26—C27—C220.3 (4)
N1—Mo1—P1—C2825.80 (8)C16—P1—C28—C3313.0 (2)
N2—C4—C5—C60.7 (3)C22—P1—C28—C33119.11 (18)
C4—C5—C6—C70.8 (3)Mo1—P1—C28—C33112.84 (17)
C5—C6—C7—C80.1 (3)C16—P1—C28—C29169.78 (15)
C5—C6—C7—C14179.7 (2)C22—P1—C28—C2963.70 (16)
C6—C7—C8—N20.8 (3)Mo1—P1—C28—C2964.35 (16)
C14—C7—C8—N2179.33 (17)C33—C28—C29—C300.8 (3)
C6—C7—C8—C9177.72 (17)P1—C28—C29—C30176.55 (17)
C14—C7—C8—C92.1 (3)C28—C29—C30—C310.7 (3)
N2—C8—C9—N10.4 (2)C29—C30—C31—C320.1 (4)
C7—C8—C9—N1178.20 (15)C30—C31—C32—C330.4 (4)
N2—C8—C9—C10179.80 (15)C29—C28—C33—C320.3 (3)
C7—C8—C9—C101.2 (2)P1—C28—C33—C32176.86 (19)
N1—C9—C10—C110.8 (3)C31—C32—C33—C280.3 (4)
C8—C9—C10—C11178.51 (17)C12—C13—N1—C90.3 (3)
N1—C9—C10—C15179.60 (17)C12—C13—N1—Mo1175.18 (14)
C8—C9—C10—C151.1 (3)C10—C9—N1—C131.0 (2)
C9—C10—C11—C120.1 (3)C8—C9—N1—C13178.33 (15)
C15—C10—C11—C12179.4 (2)C10—C9—N1—Mo1175.01 (13)
C10—C11—C12—C130.8 (3)C8—C9—N1—Mo15.63 (19)
C11—C12—C13—N10.6 (3)C2—Mo1—N1—C133.59 (16)
C6—C7—C14—C15179.0 (2)C1—Mo1—N1—C1389.77 (15)
C8—C7—C14—C150.8 (3)N2—Mo1—N1—C13178.39 (16)
C7—C14—C15—C101.5 (4)P1—Mo1—N1—C1389.50 (14)
C11—C10—C15—C14177.1 (2)C2—Mo1—N1—C9171.98 (12)
C9—C10—C15—C142.4 (3)C1—Mo1—N1—C985.79 (12)
C22—P1—C16—C211.63 (18)N2—Mo1—N1—C96.04 (11)
C28—P1—C16—C21104.00 (16)P1—Mo1—N1—C994.93 (11)
Mo1—P1—C16—C21130.28 (15)C5—C4—N2—C80.3 (3)
C22—P1—C16—C17175.63 (14)C5—C4—N2—Mo1176.72 (15)
C28—P1—C16—C1778.74 (16)C7—C8—N2—C41.0 (2)
Mo1—P1—C16—C1746.98 (16)C9—C8—N2—C4177.56 (15)
C21—C16—C17—C180.7 (3)C7—C8—N2—Mo1176.28 (13)
P1—C16—C17—C18178.11 (16)C9—C8—N2—Mo15.13 (18)
C16—C17—C18—C191.6 (3)C3—Mo1—N2—C48.00 (15)
C17—C18—C19—C201.8 (4)C1—Mo1—N2—C488.93 (15)
C18—C19—C20—C211.1 (4)N1—Mo1—N2—C4177.08 (15)
C19—C20—C21—C160.2 (3)P1—Mo1—N2—C488.30 (14)
C17—C16—C21—C200.1 (3)C3—Mo1—N2—C8169.03 (12)
P1—C16—C21—C20177.23 (17)C1—Mo1—N2—C888.10 (12)
C16—P1—C22—C2792.80 (19)N1—Mo1—N2—C85.88 (11)
C28—P1—C22—C2714.2 (2)P1—Mo1—N2—C894.66 (11)
Mo1—P1—C22—C27140.29 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.343.058 (3)134
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mo(CO)3(C18H15P)(C12H8N2)]
Mr622.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5179 (4), 9.6376 (4), 18.4119 (7)
α, β, γ (°)77.780 (1), 87.979 (1), 70.723 (1)
V3)1393.42 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.35 × 0.26 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.835, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
12111, 7912, 6552
Rint0.015
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 0.95
No. of reflections7912
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.30

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Mo1—C21.933 (2)Mo1—N22.2304 (14)
Mo1—C31.9360 (18)Mo1—N12.2589 (14)
Mo1—C11.9604 (18)Mo1—P12.5965 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.343.058 (3)134
Symmetry code: (i) x1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds