supplementary materials


nc2047 scheme

Acta Cryst. (2007). E63, o3960    [ doi:10.1107/S1600536807036847 ]

2-[(4-Bromophenyl)(4-fluorophenylamino)methyl]cyclohexanone

G.-X. Yuan, J.-B. Sun, L.-H. Zhang and G. Lu

Abstract top

In the crystal structure of the title compound, C19H19BrFNO, molecules are connected into dimers via intermolecular N-H...O hydrogen bonding. The dihedral angle between the two benzene rings is 74.84 (1)°. The cyclohexane ring has the usual chair conformation.

Comment top

β-Amino carbonyl moieties are found as structural units of a number of biologically active natural products. As a part of a project on the synthesis of such compounds the crystal structure analysis was performed. In the crystal structure of the title compound (I) the dihedral angle between the phenyl rings C8—C13 and C14—C19 is 74.84 (1)°. The six-membered ring (C1—C6) is in a chair conformation. A pair of weak intermolecular N—H···O hydrogen bonds link the molecules into dimers (Fig.1 and Table 1).

Related literature top

For related literature, see: Shou et al. (2006).

Experimental top

The starting materials were purchased from Acros and used without purification. The title compound (I) was synthesized according to the method described previously (Shou et al., 2006). IR (KBr,cm−1): 1705, 1598, 1515, 1489, 1256. 1H NMR (500 MHz, δ in p.p.m., CDCl3): 7.43–7.40 (m, 2H), 7.25–7.22 (m, 2H), 6.78–6.74 (m, 2H), 6.44–6.41 (m, 2H), 4.75 (s, br, 1H), 4.49 (d, J = 6.6 Hz, 1H), 2.72–2.70 (m, 1H), 2.42–2.39 (m, 1H), 2.34–2.31 (m, 1H), 1.98–1.89 (m, 2H), 1.88–1.85 (m, 1H), 1.75–1.63 (m, 3H). 13C NMR (125 MHz, δ in p.p.m., CDCl3): 212.7, 157.1 (d, JC—F = 234.4 Hz), 143.5, 140.8, 131.8, 129.3, 121.2, 115.7 (d, JC—F = 22.5 Hz), 114.9 (d, JC—F = 7.5 Hz), 58.7, 57.4, 42.4, 31.8, 28.1, 24.3. Melting point: 386–387 K. MS (ESI): m/z 399 ([M+Na]+). Calculated for C19H19BrFNO: C 60.65, H 5.09, N 3.72%; found: C 60.70, H 5.12, N 3.70%. The crystal used for the data collection was obtained by slow evaporation of the solvent from a saturated hexane-dichloromethane solution of I at room temperature.

Refinement top

The N—H H atom was located in the difference map, fixed at this position and refined as riding with Uiso(H) = 1.2Ueq(N). The C—H H atoms were placed in calculated positions, with C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.98Å (methine) and were refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the dimers in the crystal structure of compound I with labeling and displacement ellipsoids drawn at the 50% probability level (Hydrogen bonding is shown as dashed lines. Symmetry code: i) 1 − x, 1 − y, 1 − z.
2-[(4-Bromophenyl)(4-fluorophenylamino)methyl]cyclohexanone top
Crystal data top
C19H19BrFNOF000 = 768
Mr = 376.26Dx = 1.448 Mg m3
Monoclinic, P21/nMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1759 reflections
a = 12.6501 (14) Åθ = 4.5–41.2º
b = 8.2310 (9) ŵ = 2.40 mm1
c = 17.0111 (18) ÅT = 295 (2) K
β = 103.031 (2)ºPrismatic, colorless
V = 1725.6 (3) Å30.37 × 0.31 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3060 independent reflections
Radiation source: fine-focus sealed tube1669 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.120
T = 295(2) Kθmax = 25.1º
φ and ω scansθmin = 1.8º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 8→15
Tmin = 0.450, Tmax = 0.660k = 9→9
8450 measured reflectionsl = 20→20
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max < 0.001
3060 reflectionsΔρmax = 0.51 e Å3
208 parametersΔρmin = 0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C19H19BrFNOV = 1725.6 (3) Å3
Mr = 376.26Z = 4
Monoclinic, P21/nMo Kα
a = 12.6501 (14) ŵ = 2.40 mm1
b = 8.2310 (9) ÅT = 295 (2) K
c = 17.0111 (18) Å0.37 × 0.31 × 0.17 mm
β = 103.031 (2)º
Data collection top
Bruker SMART CCD area-detector
diffractometer
3060 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1669 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.660Rint = 0.120
8450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048208 parameters
wR(F2) = 0.113H-atom parameters constrained
S = 0.82Δρmax = 0.51 e Å3
3060 reflectionsΔρmin = 0.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04416 (4)0.08221 (6)0.22974 (3)0.0824 (2)
F10.4047 (2)0.0544 (3)0.82439 (15)0.1046 (10)
N10.3694 (2)0.3266 (4)0.55354 (17)0.0530 (8)
H10.42270.33370.53470.064*
O10.4507 (2)0.7010 (3)0.53240 (16)0.0698 (8)
C10.3566 (3)0.6596 (5)0.5257 (2)0.0497 (9)
C20.2870 (3)0.7350 (5)0.5766 (2)0.0626 (11)
H2A0.32900.81370.61320.075*
H2B0.26200.65180.60850.075*
C30.1896 (3)0.8187 (6)0.5221 (3)0.0732 (12)
H3A0.14140.85910.55470.088*
H3B0.21450.91080.49560.088*
C40.1277 (3)0.7028 (5)0.4588 (3)0.0693 (12)
H4A0.09670.61620.48510.083*
H4B0.06870.76050.42360.083*
C50.2005 (3)0.6311 (5)0.4095 (2)0.0630 (11)
H5A0.22550.71710.37910.076*
H5B0.15920.55470.37110.076*
C60.3002 (3)0.5429 (4)0.4614 (2)0.0480 (9)
H60.35010.51580.42690.058*
C70.2709 (3)0.3845 (4)0.5007 (2)0.0470 (9)
H70.21940.41200.53390.056*
C80.2161 (3)0.2645 (4)0.4365 (2)0.0477 (9)
C90.2742 (3)0.1833 (5)0.3891 (2)0.0598 (11)
H90.34890.19800.39860.072*
C100.2239 (3)0.0810 (5)0.3282 (2)0.0630 (11)
H100.26420.02920.29610.076*
C110.1146 (3)0.0558 (5)0.3149 (2)0.0566 (10)
C120.0553 (3)0.1319 (5)0.3614 (2)0.0636 (11)
H120.01920.11560.35190.076*
C130.1063 (3)0.2331 (5)0.4227 (2)0.0598 (11)
H130.06580.28160.45570.072*
C140.3719 (3)0.2214 (4)0.6170 (2)0.0466 (9)
C150.2835 (3)0.1887 (5)0.6498 (2)0.0568 (10)
H150.21570.22950.62470.068*
C160.2939 (3)0.0961 (5)0.7196 (2)0.0657 (11)
H160.23450.07830.74220.079*
C170.3928 (4)0.0321 (5)0.7540 (2)0.0668 (12)
C180.4799 (3)0.0540 (5)0.7218 (3)0.0689 (12)
H180.54630.00740.74580.083*
C190.4693 (3)0.1465 (5)0.6528 (2)0.0621 (11)
H190.52880.15910.62970.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0878 (4)0.0778 (4)0.0732 (4)0.0049 (3)0.0003 (3)0.0205 (2)
F10.1045 (19)0.124 (2)0.0783 (18)0.0166 (17)0.0050 (15)0.0468 (17)
N10.0448 (17)0.063 (2)0.0512 (18)0.0024 (16)0.0108 (15)0.0142 (17)
O10.0537 (17)0.077 (2)0.0808 (19)0.0162 (15)0.0184 (15)0.0109 (16)
C10.053 (2)0.053 (2)0.042 (2)0.000 (2)0.0104 (19)0.0009 (18)
C20.070 (3)0.062 (3)0.058 (2)0.009 (2)0.020 (2)0.015 (2)
C30.061 (3)0.062 (3)0.102 (3)0.005 (2)0.028 (3)0.008 (3)
C40.054 (2)0.062 (3)0.085 (3)0.006 (2)0.003 (2)0.006 (2)
C50.073 (3)0.056 (3)0.051 (2)0.007 (2)0.003 (2)0.002 (2)
C60.052 (2)0.046 (2)0.048 (2)0.0002 (18)0.0161 (18)0.0005 (18)
C70.045 (2)0.050 (2)0.046 (2)0.0038 (18)0.0112 (18)0.0047 (18)
C80.043 (2)0.042 (2)0.058 (2)0.0014 (18)0.0113 (19)0.0044 (18)
C90.044 (2)0.068 (3)0.071 (3)0.006 (2)0.020 (2)0.010 (2)
C100.062 (3)0.062 (3)0.070 (3)0.001 (2)0.025 (2)0.011 (2)
C110.059 (3)0.054 (3)0.054 (2)0.000 (2)0.008 (2)0.0022 (19)
C120.040 (2)0.069 (3)0.079 (3)0.002 (2)0.008 (2)0.008 (2)
C130.047 (2)0.064 (3)0.071 (3)0.004 (2)0.018 (2)0.011 (2)
C140.046 (2)0.045 (2)0.049 (2)0.0001 (18)0.0097 (19)0.0003 (18)
C150.053 (2)0.066 (3)0.052 (2)0.006 (2)0.013 (2)0.002 (2)
C160.069 (3)0.077 (3)0.055 (2)0.005 (2)0.023 (2)0.005 (2)
C170.086 (3)0.062 (3)0.046 (2)0.010 (3)0.001 (2)0.011 (2)
C180.056 (3)0.074 (3)0.072 (3)0.001 (2)0.006 (2)0.024 (2)
C190.050 (2)0.072 (3)0.065 (3)0.002 (2)0.016 (2)0.012 (2)
Geometric parameters (Å, °) top
Br1—C111.898 (4)C7—C81.519 (5)
F1—C171.371 (4)C7—H70.9800
N1—C141.378 (4)C8—C131.379 (5)
N1—C71.444 (4)C8—C91.380 (5)
N1—H10.8111C9—C101.375 (5)
O1—C11.218 (4)C9—H90.9300
C1—C21.501 (5)C10—C111.366 (5)
C1—C61.509 (5)C10—H100.9300
C2—C31.529 (5)C11—C121.359 (5)
C2—H2A0.9700C12—C131.377 (5)
C2—H2B0.9700C12—H120.9300
C3—C41.517 (5)C13—H130.9300
C3—H3A0.9700C14—C151.385 (5)
C3—H3B0.9700C14—C191.389 (5)
C4—C51.499 (5)C15—C161.391 (5)
C4—H4A0.9700C15—H150.9300
C4—H4B0.9700C16—C171.363 (6)
C5—C61.548 (5)C16—H160.9300
C5—H5A0.9700C17—C181.349 (6)
C5—H5B0.9700C18—C191.380 (5)
C6—C71.547 (5)C18—H180.9300
C6—H60.9800C19—H190.9300
C14—N1—C7124.0 (3)N1—C7—H7108.0
C14—N1—H1118.7C8—C7—H7108.0
C7—N1—H1114.1C6—C7—H7108.0
O1—C1—C2121.2 (3)C13—C8—C9117.3 (3)
O1—C1—C6122.5 (3)C13—C8—C7121.5 (3)
C2—C1—C6116.0 (3)C9—C8—C7121.2 (3)
C1—C2—C3109.5 (3)C10—C9—C8121.3 (3)
C1—C2—H2A109.8C10—C9—H9119.3
C3—C2—H2A109.8C8—C9—H9119.3
C1—C2—H2B109.8C11—C10—C9119.8 (4)
C3—C2—H2B109.8C11—C10—H10120.1
H2A—C2—H2B108.2C9—C10—H10120.1
C4—C3—C2111.3 (3)C12—C11—C10120.3 (4)
C4—C3—H3A109.4C12—C11—Br1119.6 (3)
C2—C3—H3A109.4C10—C11—Br1120.0 (3)
C4—C3—H3B109.4C11—C12—C13119.6 (4)
C2—C3—H3B109.4C11—C12—H12120.2
H3A—C3—H3B108.0C13—C12—H12120.2
C5—C4—C3111.2 (3)C12—C13—C8121.6 (4)
C5—C4—H4A109.4C12—C13—H13119.2
C3—C4—H4A109.4C8—C13—H13119.2
C5—C4—H4B109.4N1—C14—C15124.0 (3)
C3—C4—H4B109.4N1—C14—C19118.9 (3)
H4A—C4—H4B108.0C15—C14—C19117.0 (3)
C4—C5—C6112.9 (3)C14—C15—C16121.4 (4)
C4—C5—H5A109.0C14—C15—H15119.3
C6—C5—H5A109.0C16—C15—H15119.3
C4—C5—H5B109.0C17—C16—C15118.7 (4)
C6—C5—H5B109.0C17—C16—H16120.7
H5A—C5—H5B107.8C15—C16—H16120.7
C1—C6—C7110.1 (3)C18—C17—C16121.9 (4)
C1—C6—C5107.8 (3)C18—C17—F1119.1 (4)
C7—C6—C5113.5 (3)C16—C17—F1119.0 (4)
C1—C6—H6108.4C17—C18—C19119.2 (4)
C7—C6—H6108.4C17—C18—H18120.4
C5—C6—H6108.4C19—C18—H18120.4
N1—C7—C8115.0 (3)C18—C19—C14121.6 (4)
N1—C7—C6106.9 (3)C18—C19—H19119.2
C8—C7—C6110.7 (3)C14—C19—H19119.2
O1—C1—C2—C3119.2 (4)C7—C8—C9—C10176.5 (3)
C6—C1—C2—C355.2 (4)C8—C9—C10—C111.5 (6)
C1—C2—C3—C454.1 (4)C9—C10—C11—C120.3 (6)
C2—C3—C4—C556.3 (4)C9—C10—C11—Br1178.9 (3)
C3—C4—C5—C656.5 (4)C10—C11—C12—C130.8 (6)
O1—C1—C6—C7115.0 (4)Br1—C11—C12—C13179.4 (3)
C2—C1—C6—C770.6 (4)C11—C12—C13—C82.4 (6)
O1—C1—C6—C5120.7 (4)C9—C8—C13—C123.5 (6)
C2—C1—C6—C553.7 (4)C7—C8—C13—C12176.1 (3)
C4—C5—C6—C153.2 (4)C7—N1—C14—C1516.0 (5)
C4—C5—C6—C769.1 (4)C7—N1—C14—C19166.3 (3)
C14—N1—C7—C878.0 (4)N1—C14—C15—C16172.5 (3)
C14—N1—C7—C6158.8 (3)C19—C14—C15—C165.3 (6)
C1—C6—C7—N152.9 (4)C14—C15—C16—C172.4 (6)
C5—C6—C7—N1173.9 (3)C15—C16—C17—C181.0 (6)
C1—C6—C7—C8178.8 (3)C15—C16—C17—F1177.7 (3)
C5—C6—C7—C860.2 (4)C16—C17—C18—C191.2 (7)
N1—C7—C8—C13132.0 (4)F1—C17—C18—C19177.4 (4)
C6—C7—C8—C13106.8 (4)C17—C18—C19—C141.9 (7)
N1—C7—C8—C948.4 (5)N1—C14—C19—C18172.9 (4)
C6—C7—C8—C972.8 (4)C15—C14—C19—C185.0 (6)
C13—C8—C9—C103.0 (6)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.812.192.978 (4)166
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.812.192.978 (4)166
Symmetry codes: (i) −x+1, −y+1, −z+1.
references
References top

Bruker (1998). SMART (Version 5.051) and SAINT (Version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Shou, W.-G., Yang, Y.-Y. & Wang, Y.-G. (2006). Tetrahedron Lett. 47, 1845–1847.