Download citation
Download citation
link to html
Reaction of the newly designed ligand 2,4-bis­(4-sulfophenyl­amino)-6-diethyl­amino-1,3,5-triazine (H2DSNT) and 2,2-bi­pyridine (2,2'-bipy) with ZnCl2 in water yields the supra­molecular title compound, [Zn(C10H8N2)(H2O)4](C19H20N6O6S2). In this compound, the coordination geometry of the ZnII atom is octa­hedral, involving two N atoms from 2,2'-bipy and four O atoms from coordinated water mol­ecules. DSNT2- balances the charge of the ZnII cation and builds up an intricate hydrogen-bond network with coordinated water mol­ecules in the [Zn(2,2'-bipy)(H2O)4]2+ cation. Both ions lie on mirror planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045849/pk2046sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045849/pk2046Isup2.hkl
Contains datablock I

CCDC reference: 663637

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.053
  • wR factor = 0.136
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.68 Ratio PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4A ... ? PLAT731_ALERT_1_C Bond Calc 0.83(6), Rep 0.83(2) ...... 3.00 su-Ra O3 -H5 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn (2) 2.09 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

It is well known that chlorine atoms in cyanuric chloride are easily replaced by other organic groups (Thurston et al., 1951). Using cyanuric chloride as reactant and controlling stoichiometry and reaction temperature, we have synthesized a new triazine derivative, 2,4-bis(4-sulfophenylamino) -6-diethylamino-1,3,5-triazine (H2DSNT). Reaction of H2DSNT and 2,2-bipy with ZnCl2 in water yields a supramolecular compound [Zn(2,2'-bipy)(H2O)4]DSNT.

In the title compound, as shown in Fig. 1, the coordination geometry of ZnII is octahedral, with two nitrogen atoms from 2,2-bipy and four oxygen atoms from coordinated water. The Zn—N distance is 2.122 (2)Å and Zn—O distances are in the range of 2.059 (3)Å to 2.135 (3) Å. DSNT2- does not coordinate directly to ZnII but balances the charge of the ZnII cation. Previous studies revealed that the first row, divalent, transition metal ions have no tendency to coordinate to arenesulfonate (Kosnic et al., 1992; Shubnell et al., 1994; Gunderman et al., 1997). The crystal of the title compound is stablized not only by electrostatic interactions but also by abundant hydrogen-bonding interactions between the cation [Zn(2,2'-bipy)(H2O)4]2+ and the anion DSNT2- (Fig. 2). All of the four coordinated waters build up an intricate hydrogen-bonding network with sulfonic oxygen (O5 and O6) and triazine nitrogen (N2) in the anion DSNT2-.

Related literature top

For related literature, see: Gunderman et al. (1997); Kosnic et al. (1992); Shubnell et al. (1994); Thurston et al. (1951).

Experimental top

Preparation of H2DSNT.4H2O: A solution of diethylamine (3.66 g 0.05 mol) in 20 mL acetone was added dropwise to a solution of cynanuic chloride (4.61 g, 0.025 mol) in 100 mL acetone at 0°, under stirring over a period of 45 min. The resulting white deposit N(C2H5)2.HCl was filtered. To the filtrate was added dropwise a solution of 4-aminobenzenesulfonic sodium (9.81 g. 0.05 mol) in 200 mL water at 0°, under stirring over a period of 45 min, and then the mixture was heated to 45° and reacted with stirring for 12 h. After cooling to room temperature, acetone was evaporated in vacuo from the reaction solution. The white product H2DSNT.4H2O recrystallized in water and oven-dried at 60° in 70% yield.

Preparation of [Zn(2,2'-bipy)(H2O)4]DSNT: A solution of ZnCl2 (0.04 g, 0.3 mmol), 2,2'-bipy (0.07 g, 0.45 mmol), H2DSNT.4H2O (0.17 g, 0.3 mmol) and H2O (27.0 g, 1.5 mol) in the mole ratio of 1:1.5:1:5000 was heated in an autoclave at 160° for 2 days and then cooled to room temperature for 3 days. The colorless crystals were collected in 62% yield.

Refinement top

Anisotropic thermal parameters were applied to all non-hydrogen atoms. All H atoms were found in difference Fourier maps and all except water H atoms were subsequently placed in idealized positions with constrained distances of 0.96 Å (RCH3), 0.97 Å (R2CH2), 0.95 Å (R2CarH) and 0.86 Å (NH). Uiso(H) values were set to either 1.5Ueq (RCH3) or 1.2Ueq of the attached atom. Water molecule hydrogen atoms were refined using restraints on bond lengths and angles.

Structure description top

It is well known that chlorine atoms in cyanuric chloride are easily replaced by other organic groups (Thurston et al., 1951). Using cyanuric chloride as reactant and controlling stoichiometry and reaction temperature, we have synthesized a new triazine derivative, 2,4-bis(4-sulfophenylamino) -6-diethylamino-1,3,5-triazine (H2DSNT). Reaction of H2DSNT and 2,2-bipy with ZnCl2 in water yields a supramolecular compound [Zn(2,2'-bipy)(H2O)4]DSNT.

In the title compound, as shown in Fig. 1, the coordination geometry of ZnII is octahedral, with two nitrogen atoms from 2,2-bipy and four oxygen atoms from coordinated water. The Zn—N distance is 2.122 (2)Å and Zn—O distances are in the range of 2.059 (3)Å to 2.135 (3) Å. DSNT2- does not coordinate directly to ZnII but balances the charge of the ZnII cation. Previous studies revealed that the first row, divalent, transition metal ions have no tendency to coordinate to arenesulfonate (Kosnic et al., 1992; Shubnell et al., 1994; Gunderman et al., 1997). The crystal of the title compound is stablized not only by electrostatic interactions but also by abundant hydrogen-bonding interactions between the cation [Zn(2,2'-bipy)(H2O)4]2+ and the anion DSNT2- (Fig. 2). All of the four coordinated waters build up an intricate hydrogen-bonding network with sulfonic oxygen (O5 and O6) and triazine nitrogen (N2) in the anion DSNT2-.

For related literature, see: Gunderman et al. (1997); Kosnic et al. (1992); Shubnell et al. (1994); Thurston et al. (1951).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2000); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2000); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Molecular Structure Corporation & Rigaku, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular structue of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. Symmetry code: A x, 1/2 - y, z; B x, 3/2 - y, z.
[Figure 2] Fig. 2. Crystal structure of the title compound with hydrogen bonds indicated with dashed lines. Hydrogen atoms not taking part in hydrogen bonds were omitted for the sake of clarity.
Tetraaqua(2,2'-bipyridine)zinc(II) 4,4'-(6-diethylamino-1,3,5-triazine-2,4-diyldiimino)dibenzenesulfonate top
Crystal data top
[Zn(C10H8N2)(H2O)4](C19H20N6O6S2)F(000) = 1632
Mr = 786.19Dx = 1.518 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 7071 reflections
a = 12.758 (3) Åθ = 2.3–27.5°
b = 21.015 (6) ŵ = 0.90 mm1
c = 12.828 (4) ÅT = 293 K
V = 3439.3 (17) Å3Prism, colorless
Z = 40.30 × 0.10 × 0.08 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4045 independent reflections
Radiation source: Rotating Anode3553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SPHERE in CrystalStructure; Molecular Structure Corporation & Rigaku, 2000)'
h = 1516
Tmin = 0.886, Tmax = 0.930k = 2727
25765 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0654P)2 + 2.7737P]
where P = (Fo2 + 2Fc2)/3
4045 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.34 e Å3
5 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Zn(C10H8N2)(H2O)4](C19H20N6O6S2)V = 3439.3 (17) Å3
Mr = 786.19Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.758 (3) ŵ = 0.90 mm1
b = 21.015 (6) ÅT = 293 K
c = 12.828 (4) Å0.30 × 0.10 × 0.08 mm
Data collection top
Rigaku Mercury CCD
diffractometer
4045 independent reflections
Absorption correction: multi-scan
(SPHERE in CrystalStructure; Molecular Structure Corporation & Rigaku, 2000)'
3553 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.930Rint = 0.045
25765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0535 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.34 e Å3
4045 reflectionsΔρmin = 0.28 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.43110 (4)0.75000.85366 (3)0.03891 (16)
S10.19593 (6)0.59726 (3)0.70886 (6)0.0424 (2)
O10.4501 (2)0.67945 (15)0.7439 (2)0.0709 (8)
H10.400 (2)0.6628 (18)0.713 (3)0.072 (13)*
H20.507 (2)0.661 (2)0.735 (4)0.091 (16)*
O20.2694 (3)0.75000.8186 (3)0.0562 (8)
H30.234 (3)0.7166 (12)0.814 (3)0.065 (11)*
O30.5969 (3)0.75000.8764 (2)0.0452 (7)
H40.618 (4)0.75000.939 (2)0.061 (15)*
H50.649 (4)0.75000.838 (5)0.12 (3)*
O40.1134 (2)0.57237 (12)0.6439 (2)0.0667 (7)
O50.15724 (18)0.64062 (9)0.78904 (18)0.0525 (5)
O60.27985 (19)0.62531 (10)0.64805 (16)0.0514 (5)
N10.40742 (19)0.68676 (11)0.98049 (19)0.0421 (5)
N20.3459 (3)0.25000.9167 (3)0.0407 (8)
N30.3690 (2)0.30689 (11)0.75770 (19)0.0435 (6)
N40.3375 (2)0.35895 (11)0.91325 (19)0.0488 (6)
H4A0.34320.35740.98000.059*
N50.3937 (3)0.25000.6057 (3)0.0537 (9)
C10.4098 (3)0.62307 (15)0.9743 (3)0.0557 (8)
H1B0.42350.60400.91030.067*
C20.3923 (3)0.58491 (18)1.0608 (4)0.0706 (11)
H2C0.39310.54081.05480.085*
C30.3740 (3)0.6129 (2)1.1541 (4)0.0737 (12)
H3C0.36240.58801.21280.088*
C40.3726 (3)0.6784 (2)1.1621 (3)0.0625 (10)
H4C0.36070.69801.22610.075*
C50.3892 (2)0.71461 (15)1.0731 (2)0.0429 (6)
C60.3526 (2)0.30361 (13)0.8596 (2)0.0391 (6)
C70.5088 (4)0.3373 (3)0.5446 (4)0.1052 (18)
H7A0.50780.37660.50640.158*
H7B0.55490.30780.51060.158*
H7C0.53320.34510.61420.158*
C80.3780 (3)0.25000.7101 (3)0.0417 (9)
C90.4006 (3)0.31016 (19)0.5486 (3)0.0679 (10)
H9A0.35430.34090.58120.082*
H9B0.37600.30340.47780.082*
C100.2344 (3)0.45445 (14)0.9133 (2)0.0494 (7)
H10A0.20260.44060.97450.059*
C110.3135 (3)0.41848 (13)0.8685 (2)0.0431 (7)
C120.3653 (3)0.44191 (14)0.7808 (3)0.0510 (8)
H12A0.42180.41970.75300.061*
C130.3325 (2)0.49819 (14)0.7351 (3)0.0480 (7)
H13A0.36670.51340.67610.058*
C140.2496 (2)0.53166 (12)0.7764 (2)0.0393 (6)
C150.2028 (3)0.51068 (14)0.8677 (2)0.0486 (7)
H15A0.14980.53460.89830.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0438 (3)0.0402 (3)0.0327 (2)0.0000.00015 (19)0.000
S10.0499 (4)0.0316 (3)0.0458 (4)0.0035 (3)0.0082 (3)0.0008 (3)
O10.0510 (15)0.095 (2)0.0670 (16)0.0160 (15)0.0110 (13)0.0421 (16)
O20.0423 (17)0.0390 (17)0.087 (2)0.0000.0084 (17)0.000
O30.0445 (17)0.0561 (18)0.0349 (15)0.0000.0009 (13)0.000
O40.0663 (16)0.0561 (14)0.0778 (18)0.0017 (12)0.0350 (13)0.0046 (12)
O50.0641 (14)0.0371 (10)0.0563 (13)0.0076 (10)0.0041 (11)0.0052 (9)
O60.0677 (14)0.0416 (11)0.0449 (12)0.0003 (10)0.0038 (10)0.0052 (9)
N10.0406 (13)0.0414 (12)0.0442 (13)0.0023 (10)0.0003 (10)0.0057 (10)
N20.054 (2)0.0332 (16)0.0354 (16)0.0000.0077 (15)0.000
N30.0511 (14)0.0411 (12)0.0382 (12)0.0007 (11)0.0051 (11)0.0041 (10)
N40.0758 (19)0.0357 (12)0.0349 (12)0.0067 (12)0.0084 (12)0.0020 (10)
N50.064 (2)0.063 (2)0.0337 (18)0.0000.0008 (18)0.000
C10.0526 (18)0.0438 (16)0.071 (2)0.0014 (14)0.0004 (16)0.0086 (16)
C20.056 (2)0.056 (2)0.100 (3)0.0105 (17)0.011 (2)0.033 (2)
C30.053 (2)0.090 (3)0.079 (3)0.016 (2)0.0024 (19)0.047 (2)
C40.0444 (17)0.096 (3)0.0467 (18)0.0018 (18)0.0038 (14)0.0224 (19)
C50.0303 (13)0.0608 (17)0.0376 (14)0.0021 (12)0.0008 (11)0.0089 (13)
C60.0425 (15)0.0381 (14)0.0368 (14)0.0009 (11)0.0094 (11)0.0027 (11)
C70.098 (4)0.123 (4)0.095 (4)0.038 (3)0.007 (3)0.022 (3)
C80.038 (2)0.049 (2)0.038 (2)0.0000.0039 (16)0.000
C90.081 (3)0.084 (3)0.0393 (17)0.011 (2)0.0023 (17)0.0125 (17)
C100.070 (2)0.0414 (15)0.0368 (14)0.0017 (15)0.0014 (14)0.0007 (12)
C110.0555 (18)0.0329 (13)0.0408 (15)0.0004 (12)0.0107 (13)0.0022 (11)
C120.0474 (17)0.0424 (15)0.063 (2)0.0073 (13)0.0045 (15)0.0081 (14)
C130.0487 (16)0.0417 (15)0.0535 (17)0.0023 (13)0.0058 (14)0.0092 (13)
C140.0439 (15)0.0323 (13)0.0416 (14)0.0005 (11)0.0081 (12)0.0022 (11)
C150.0619 (19)0.0391 (15)0.0447 (16)0.0079 (14)0.0044 (14)0.0041 (12)
Geometric parameters (Å, º) top
Zn—O12.059 (3)C1—C21.387 (5)
Zn—O1i2.059 (3)C1—H1B0.9300
Zn—O22.112 (3)C2—C31.354 (6)
Zn—N1i2.122 (2)C2—H2C0.9300
Zn—N12.122 (2)C3—C41.380 (6)
Zn—O32.135 (3)C3—H3C0.9300
S1—O41.441 (2)C4—C51.388 (4)
S1—O61.450 (2)C4—H4C0.9300
S1—O51.460 (2)C5—C5i1.487 (6)
S1—C141.766 (3)C7—C91.495 (6)
O1—H10.829 (19)C7—H7A0.9600
O1—H20.825 (19)C7—H7B0.9600
O2—H30.840 (18)C7—H7C0.9600
O3—H40.841 (19)C8—N3ii1.347 (3)
O3—H50.83 (2)C9—H9A0.9700
N1—C11.341 (4)C9—H9B0.9700
N1—C51.344 (4)C10—C151.379 (4)
N2—C61.346 (3)C10—C111.386 (4)
N2—C6ii1.346 (3)C10—H10A0.9300
N3—C61.326 (4)C11—C121.394 (4)
N3—C81.347 (3)C12—C131.385 (4)
N4—C61.365 (4)C12—H12A0.9300
N4—C111.410 (3)C13—C141.376 (4)
N4—H4A0.8600C13—H13A0.9300
N5—C81.355 (5)C14—C151.387 (4)
N5—C91.464 (4)C15—H15A0.9300
N5—C9ii1.464 (4)
O1—Zn—O1i92.1 (2)C2—C3—C4120.1 (3)
O1—Zn—O288.25 (11)C2—C3—H3C119.9
O1i—Zn—O288.25 (11)C4—C3—H3C119.9
O1—Zn—N1i172.70 (12)C3—C4—C5118.9 (4)
O1i—Zn—N1i95.18 (12)C3—C4—H4C120.6
O2—Zn—N1i91.38 (11)C5—C4—H4C120.6
O1—Zn—N195.18 (12)N1—C5—C4121.0 (3)
O1i—Zn—N1172.70 (12)N1—C5—C5i115.81 (16)
O2—Zn—N191.38 (11)C4—C5—C5i123.2 (2)
N1i—Zn—N177.54 (14)N3—C6—N2126.1 (3)
O1—Zn—O388.68 (10)N3—C6—N4118.3 (2)
O1i—Zn—O388.68 (10)N2—C6—N4115.5 (2)
O2—Zn—O3175.57 (14)C9—C7—H7A109.5
N1i—Zn—O392.07 (9)C9—C7—H7B109.5
N1—Zn—O392.07 (9)H7A—C7—H7B109.5
O4—S1—O6112.06 (16)C9—C7—H7C109.5
O4—S1—O5112.78 (16)H7A—C7—H7C109.5
O6—S1—O5112.01 (13)H7B—C7—H7C109.5
O4—S1—C14106.48 (14)N3—C8—N3ii125.1 (4)
O6—S1—C14107.15 (14)N3—C8—N5117.42 (18)
O5—S1—C14105.83 (13)N3ii—C8—N5117.42 (18)
Zn—O1—H1122 (3)N5—C9—C7113.7 (4)
Zn—O1—H2122 (3)N5—C9—H9A108.8
H1—O1—H2115 (4)C7—C9—H9A108.8
Zn—O2—H3123 (3)N5—C9—H9B108.8
Zn—O3—H4116 (4)C7—C9—H9B108.8
Zn—O3—H5135 (6)H9A—C9—H9B107.7
H4—O3—H5108 (6)C15—C10—C11120.3 (3)
C1—N1—C5119.4 (3)C15—C10—H10A119.9
C1—N1—Zn125.2 (2)C11—C10—H10A119.9
C5—N1—Zn115.41 (19)C10—C11—C12119.1 (3)
C6—N2—C6ii113.7 (3)C10—C11—N4118.2 (3)
C6—N3—C8114.4 (3)C12—C11—N4122.6 (3)
C6—N4—C11125.5 (2)C13—C12—C11120.0 (3)
C6—N4—H4A117.2C13—C12—H12A120.0
C11—N4—H4A117.2C11—C12—H12A120.0
C8—N5—C9120.3 (2)C14—C13—C12120.3 (3)
C8—N5—C9ii120.3 (2)C14—C13—H13A119.8
C9—N5—C9ii119.5 (4)C12—C13—H13A119.8
N1—C1—C2121.7 (4)C13—C14—C15119.6 (3)
N1—C1—H1B119.1C13—C14—S1120.5 (2)
C2—C1—H1B119.1C15—C14—S1119.7 (2)
C3—C2—C1118.9 (4)C10—C15—C14120.3 (3)
C3—C2—H2C120.6C10—C15—H15A119.8
C1—C2—H2C120.6C14—C15—H15A119.8
O1—Zn—N1—C11.3 (3)C6—N3—C8—N5179.3 (3)
O2—Zn—N1—C189.7 (3)C9—N5—C8—N30.2 (6)
N1i—Zn—N1—C1179.2 (2)C9ii—N5—C8—N3177.9 (4)
O3—Zn—N1—C187.5 (3)C9—N5—C8—N3ii177.9 (4)
O1—Zn—N1—C5178.9 (2)C9ii—N5—C8—N3ii0.2 (6)
O2—Zn—N1—C590.6 (2)C8—N5—C9—C787.6 (5)
N1i—Zn—N1—C50.5 (2)C9ii—N5—C9—C794.3 (5)
O3—Zn—N1—C592.2 (2)C15—C10—C11—C124.2 (5)
C5—N1—C1—C21.0 (5)C15—C10—C11—N4175.1 (3)
Zn—N1—C1—C2179.2 (3)C6—N4—C11—C10134.4 (3)
N1—C1—C2—C31.0 (6)C6—N4—C11—C1244.9 (5)
C1—C2—C3—C40.2 (6)C10—C11—C12—C134.7 (5)
C2—C3—C4—C50.6 (6)N4—C11—C12—C13174.6 (3)
C1—N1—C5—C40.2 (4)C11—C12—C13—C140.7 (5)
Zn—N1—C5—C4179.9 (2)C12—C13—C14—C153.7 (5)
C1—N1—C5—C5i179.3 (2)C12—C13—C14—S1171.3 (2)
Zn—N1—C5—C5i0.5 (2)O4—S1—C14—C1390.6 (3)
C3—C4—C5—N10.6 (5)O6—S1—C14—C1329.5 (3)
C3—C4—C5—C5i180.0 (2)O5—S1—C14—C13149.2 (2)
C8—N3—C6—N20.9 (5)O4—S1—C14—C1584.4 (3)
C8—N3—C6—N4177.0 (3)O6—S1—C14—C15155.6 (2)
C6ii—N2—C6—N33.1 (6)O5—S1—C14—C1535.9 (3)
C6ii—N2—C6—N4174.8 (2)C11—C10—C15—C140.2 (5)
C11—N4—C6—N315.7 (5)C13—C14—C15—C104.2 (5)
C11—N4—C6—N2162.4 (3)S1—C14—C15—C10170.9 (2)
C6—N3—C8—N3ii1.8 (6)
Symmetry codes: (i) x, y+3/2, z; (ii) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.83 (2)1.92 (2)2.743 (4)177 (4)
O1—H2···O5iii0.83 (2)1.99 (2)2.798 (4)165 (5)
O2—H3···O50.84 (2)1.90 (2)2.734 (3)174 (4)
O3—H4···N2iv0.84 (2)1.91 (2)2.753 (4)176 (5)
Symmetry codes: (iii) x+1/2, y, z+3/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N2)(H2O)4](C19H20N6O6S2)
Mr786.19
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)12.758 (3), 21.015 (6), 12.828 (4)
V3)3439.3 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.30 × 0.10 × 0.08
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(SPHERE in CrystalStructure; Molecular Structure Corporation & Rigaku, 2000)'
Tmin, Tmax0.886, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
25765, 4045, 3553
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 1.07
No. of reflections4045
No. of parameters253
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CrystalStructure (Molecular Structure Corporation & Rigaku, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.829 (19)1.915 (19)2.743 (4)177 (4)
O1—H2···O5i0.825 (19)1.99 (2)2.798 (4)165 (5)
O2—H3···O50.840 (18)1.898 (18)2.734 (3)174 (4)
O3—H4···N2ii0.841 (19)1.91 (2)2.753 (4)176 (5)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds