Download citation
Download citation
link to html
The structure of the title compound, C14H16N2O3, shows the two aromatic planes twisted by an angle of 46.38 (4)°. The corresponding torsion angles are N—N—C(=O)—C of −26.7 (2)°, and C—C—C(=O)—N of −28.2 (2) and 155.5 (1) Å. The crystal packing is determined by inter­molecular C—H...O hydrogen bonds, forming endless chains along [001].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044960/sg2191sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044960/sg2191Isup2.hkl
Contains datablock I

CCDC reference: 663811

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.120
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 500 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrazoles represent an important class of five-membered nitrogen heterocycles exhibiting a wide range of biological activities (Mann et al., 1992, Perevalov et al., 2001). Several 1-substitued 3,5-dimethylpyrazole possess potent in vivo hypoglycemic activity (Soliman & Darwishl, 1983). The pyrazole ring is a major pharmacophoric substructure in a number of NSAIDs like phenylbutazone (Udupi et al., 1998), oxyphenbutazone, celecoxib (Smith et al., 1965) exhibiting anti-inflammatory, anti-pyretic and analgesic properties. Pyrazole derivatives being more active than the isoniazid against Mycobacterium tuberculosis have recently been reported (Ali et al., 2007). Several thiourea and urea derivatives of 4-aminopyrazoles exhibit strong anticonvulsant and antituberculosis activity. In continuation of our interest in the synthesis of bioactive heterocycles (Saeed et al., 2007) the synthesis of title compound was carried out by direct cyclocondensation of 3,4-dimethoxybenzyl hydrazide with 2,4-pentanedione.

Related literature top

For related literature, see: Ali et al. (2007); Mann et al. (1992); Perevalov et al. (2001); Saeed et al. (2007); Smith et al. (1965); Soliman & Darwishl (1983); Udupi et al. (1998).

Experimental top

A mixture of 3,4-Dimethoxybenzyl hydrazide (1 mmol) and 2,4-pentanedione (1 mmol) was refluxed in dry ethanol for 5 h. On completion of the reaction, followed by TLC examination using hexane ethyl acetate (8:2) the solvent was evaporated and reaction mixture diluted with ethyl acetate and subjected directly to thick layer chromatography on silica gel. Recrystallization from ethyl acetate yielded colourless crystals, m.p.105–107°C. IR (KBr) cm-1: 3103, 2958, 2930, 1680, 1601, 1584, 1472, 1373, 1275, 1170, 1022; 1H NMR (CDCl3) δ 7.2 (d, 8.4, 1H), 6.89 (dd, 1H), 6.7 (dd, 8.2, 3.4, 1H). 6.02 (s, 1H), 2.83 (s, 3H), 2.26 (s, 3H); EIMS m/e 260 [M+], 165 (base).

Refinement top

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the C (C–H = 0.95–0.99 Å) atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) and 1.5(methyl-C). Methyl H atoms were refined on the basis of rigid groups allowed to rotate but not tip.

Structure description top

Pyrazoles represent an important class of five-membered nitrogen heterocycles exhibiting a wide range of biological activities (Mann et al., 1992, Perevalov et al., 2001). Several 1-substitued 3,5-dimethylpyrazole possess potent in vivo hypoglycemic activity (Soliman & Darwishl, 1983). The pyrazole ring is a major pharmacophoric substructure in a number of NSAIDs like phenylbutazone (Udupi et al., 1998), oxyphenbutazone, celecoxib (Smith et al., 1965) exhibiting anti-inflammatory, anti-pyretic and analgesic properties. Pyrazole derivatives being more active than the isoniazid against Mycobacterium tuberculosis have recently been reported (Ali et al., 2007). Several thiourea and urea derivatives of 4-aminopyrazoles exhibit strong anticonvulsant and antituberculosis activity. In continuation of our interest in the synthesis of bioactive heterocycles (Saeed et al., 2007) the synthesis of title compound was carried out by direct cyclocondensation of 3,4-dimethoxybenzyl hydrazide with 2,4-pentanedione.

For related literature, see: Ali et al. (2007); Mann et al. (1992); Perevalov et al. (2001); Saeed et al. (2007); Smith et al. (1965); Soliman & Darwishl (1983); Udupi et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL (Bruker, 2002); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. Molecular structure of I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of I viewed along [100] with hydrogen bond indicated as dashed lines. H-atoms not involved are omitted.
1-(3,4-Dimethoxybenzoyl)-3,5-dimethyl-1H-pyrazole top
Crystal data top
C14H16N2O3Z = 2
Mr = 260.29F(000) = 276
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.703 (2) ÅCell parameters from 719 reflections
b = 8.409 (2) Åθ = 2.8–28.3°
c = 11.454 (3) ŵ = 0.10 mm1
α = 69.970 (5)°T = 120 K
β = 85.267 (5)°Prism, colourless
γ = 66.655 (5)°0.44 × 0.36 × 0.25 mm
V = 638.8 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
3011 independent reflections
Radiation source: sealed tube2301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 810
Tmin = 0.959, Tmax = 0.976k = 1011
5678 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3011 reflectionsΔρmax = 0.28 e Å3
177 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C14H16N2O3γ = 66.655 (5)°
Mr = 260.29V = 638.8 (3) Å3
Triclinic, P1Z = 2
a = 7.703 (2) ÅMo Kα radiation
b = 8.409 (2) ŵ = 0.10 mm1
c = 11.454 (3) ÅT = 120 K
α = 69.970 (5)°0.44 × 0.36 × 0.25 mm
β = 85.267 (5)°
Data collection top
Bruker SMART APEX
diffractometer
3011 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2301 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.976Rint = 0.053
5678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.97Δρmax = 0.28 e Å3
3011 reflectionsΔρmin = 0.28 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35654 (16)0.20752 (14)0.29144 (9)0.0318 (3)
O20.20118 (14)0.44061 (12)0.66198 (8)0.0244 (2)
O30.23018 (14)0.75359 (13)0.58447 (9)0.0256 (2)
N10.26483 (17)0.46669 (15)0.12170 (10)0.0232 (3)
N20.13919 (17)0.64924 (15)0.07561 (10)0.0253 (3)
C10.3239 (2)0.3922 (2)0.02736 (12)0.0256 (3)
C20.4637 (2)0.2008 (2)0.04724 (15)0.0346 (4)
H2A0.49510.18370.03350.052*
H2B0.40900.11340.09690.052*
H2C0.57880.17940.09140.052*
C30.2365 (2)0.5296 (2)0.07940 (13)0.0298 (3)
H3A0.24910.52310.16100.036*
C40.1224 (2)0.6848 (2)0.04548 (12)0.0266 (3)
C50.0039 (2)0.8694 (2)0.12837 (14)0.0369 (4)
H5A0.07780.94360.07780.055*
H5B0.09000.85600.17930.055*
H5C0.07270.93050.18280.055*
C60.30491 (19)0.37422 (19)0.25100 (12)0.0235 (3)
C70.28444 (19)0.48519 (18)0.33182 (12)0.0212 (3)
C80.30714 (19)0.65048 (18)0.29209 (12)0.0231 (3)
H8A0.33280.70090.20800.028*
C90.29251 (19)0.74323 (18)0.37492 (12)0.0224 (3)
H9A0.30940.85600.34730.027*
C100.25345 (18)0.67149 (18)0.49716 (12)0.0203 (3)
C110.23435 (18)0.50109 (18)0.53931 (11)0.0196 (3)
C120.25064 (18)0.40966 (18)0.45652 (12)0.0202 (3)
H12A0.23880.29440.48450.024*
C130.2007 (2)0.26019 (18)0.71111 (12)0.0257 (3)
H13A0.10060.25500.66680.039*
H13B0.17750.23120.79990.039*
H13C0.32380.17040.70040.039*
C140.2499 (2)0.92627 (19)0.54465 (14)0.0310 (3)
H14A0.37680.90980.51500.046*
H14B0.23180.97190.61470.046*
H14C0.15461.01530.47700.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (7)0.0205 (5)0.0244 (5)0.0079 (5)0.0000 (5)0.0083 (4)
O20.0340 (6)0.0219 (5)0.0192 (4)0.0116 (4)0.0047 (4)0.0092 (4)
O30.0336 (6)0.0208 (5)0.0259 (5)0.0104 (4)0.0020 (4)0.0124 (4)
N10.0281 (6)0.0206 (6)0.0195 (5)0.0067 (5)0.0024 (5)0.0089 (5)
N20.0275 (6)0.0210 (6)0.0224 (6)0.0051 (5)0.0014 (5)0.0059 (5)
C10.0318 (8)0.0292 (8)0.0238 (7)0.0159 (6)0.0067 (6)0.0147 (6)
C20.0410 (9)0.0303 (8)0.0354 (8)0.0124 (7)0.0123 (7)0.0188 (7)
C30.0404 (9)0.0343 (8)0.0219 (7)0.0199 (7)0.0044 (6)0.0127 (6)
C40.0308 (8)0.0277 (8)0.0228 (7)0.0143 (6)0.0008 (6)0.0065 (6)
C50.0416 (9)0.0335 (9)0.0284 (8)0.0130 (7)0.0082 (7)0.0018 (7)
C60.0251 (7)0.0228 (7)0.0209 (6)0.0069 (6)0.0019 (5)0.0084 (6)
C70.0205 (6)0.0205 (7)0.0203 (6)0.0041 (5)0.0013 (5)0.0082 (5)
C80.0229 (7)0.0244 (7)0.0182 (6)0.0074 (6)0.0005 (5)0.0049 (5)
C90.0222 (7)0.0181 (6)0.0248 (7)0.0073 (5)0.0012 (5)0.0050 (5)
C100.0183 (6)0.0187 (6)0.0230 (6)0.0039 (5)0.0031 (5)0.0091 (5)
C110.0177 (6)0.0191 (6)0.0183 (6)0.0036 (5)0.0006 (5)0.0056 (5)
C120.0203 (6)0.0166 (6)0.0219 (6)0.0047 (5)0.0006 (5)0.0068 (5)
C130.0337 (8)0.0201 (7)0.0211 (6)0.0099 (6)0.0047 (6)0.0059 (5)
C140.0365 (8)0.0219 (7)0.0386 (8)0.0114 (6)0.0007 (7)0.0148 (6)
Geometric parameters (Å, º) top
O1—C61.2171 (17)C5—H5B0.9800
O2—C111.3610 (15)C5—H5C0.9800
O2—C131.4274 (16)C6—C71.4844 (18)
O3—C101.3616 (15)C7—C81.3841 (19)
O3—C141.4314 (16)C7—C121.3998 (18)
N1—N21.3869 (16)C8—C91.3931 (18)
N1—C11.3870 (16)C8—H8A0.9500
N1—C61.4106 (17)C9—C101.3823 (18)
N2—C41.3209 (17)C9—H9A0.9500
C1—C31.355 (2)C10—C111.4105 (18)
C1—C21.489 (2)C11—C121.3818 (17)
C2—H2A0.9800C12—H12A0.9500
C2—H2B0.9800C13—H13A0.9800
C2—H2C0.9800C13—H13B0.9800
C3—C41.418 (2)C13—H13C0.9800
C3—H3A0.9500C14—H14A0.9800
C4—C51.484 (2)C14—H14B0.9800
C5—H5A0.9800C14—H14C0.9800
C11—O2—C13116.84 (9)C8—C7—C12119.57 (12)
C10—O3—C14116.39 (10)C8—C7—C6123.72 (12)
N2—N1—C1111.43 (11)C12—C7—C6116.61 (12)
N2—N1—C6120.77 (10)C7—C8—C9120.30 (12)
C1—N1—C6127.52 (12)C7—C8—H8A119.9
C4—N2—N1104.43 (11)C9—C8—H8A119.9
C3—C1—N1105.93 (13)C10—C9—C8120.15 (12)
C3—C1—C2130.03 (13)C10—C9—H9A119.9
N1—C1—C2123.97 (13)C8—C9—H9A119.9
C1—C2—H2A109.5O3—C10—C9124.91 (12)
C1—C2—H2B109.5O3—C10—C11115.09 (11)
H2A—C2—H2B109.5C9—C10—C11120.00 (11)
C1—C2—H2C109.5O2—C11—C12125.47 (12)
H2A—C2—H2C109.5O2—C11—C10115.23 (11)
H2B—C2—H2C109.5C12—C11—C10119.30 (11)
C1—C3—C4106.59 (12)C11—C12—C7120.64 (12)
C1—C3—H3A126.7C11—C12—H12A119.7
C4—C3—H3A126.7C7—C12—H12A119.7
N2—C4—C3111.61 (13)O2—C13—H13A109.5
N2—C4—C5120.63 (13)O2—C13—H13B109.5
C3—C4—C5127.76 (13)H13A—C13—H13B109.5
C4—C5—H5A109.5O2—C13—H13C109.5
C4—C5—H5B109.5H13A—C13—H13C109.5
H5A—C5—H5B109.5H13B—C13—H13C109.5
C4—C5—H5C109.5O3—C14—H14A109.5
H5A—C5—H5C109.5O3—C14—H14B109.5
H5B—C5—H5C109.5H14A—C14—H14B109.5
O1—C6—N1118.94 (12)O3—C14—H14C109.5
O1—C6—C7122.82 (12)H14A—C14—H14C109.5
N1—C6—C7118.23 (12)H14B—C14—H14C109.5
C1—N1—N2—C40.04 (15)N1—C6—C7—C12155.47 (12)
C6—N1—N2—C4174.31 (12)C12—C7—C8—C91.3 (2)
N2—N1—C1—C30.66 (15)C6—C7—C8—C9177.61 (12)
C6—N1—C1—C3174.54 (12)C7—C8—C9—C100.6 (2)
N2—N1—C1—C2177.94 (12)C14—O3—C10—C90.54 (19)
C6—N1—C1—C28.2 (2)C14—O3—C10—C11179.64 (11)
N1—C1—C3—C41.04 (16)C8—C9—C10—O3177.77 (12)
C2—C1—C3—C4178.10 (14)C8—C9—C10—C112.0 (2)
N1—N2—C4—C30.72 (15)C13—O2—C11—C126.10 (19)
N1—N2—C4—C5179.43 (12)C13—O2—C11—C10173.65 (11)
C1—C3—C4—N21.15 (17)O3—C10—C11—O21.92 (17)
C1—C3—C4—C5179.01 (14)C9—C10—C11—O2178.25 (12)
N2—N1—C6—O1154.03 (13)O3—C10—C11—C12178.31 (11)
C1—N1—C6—O119.3 (2)C9—C10—C11—C121.52 (19)
N2—N1—C6—C726.76 (18)O2—C11—C12—C7179.82 (12)
C1—N1—C6—C7159.88 (13)C10—C11—C12—C70.4 (2)
O1—C6—C7—C8151.01 (14)C8—C7—C12—C111.9 (2)
N1—C6—C7—C828.17 (19)C6—C7—C12—C11178.39 (12)
O1—C6—C7—C1225.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N20.952.462.8948 (18)108
C3—H3A···O2i0.952.453.3496 (18)157
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC14H16N2O3
Mr260.29
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.703 (2), 8.409 (2), 11.454 (3)
α, β, γ (°)69.970 (5), 85.267 (5), 66.655 (5)
V3)638.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.36 × 0.25
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.959, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5678, 3011, 2301
Rint0.053
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 0.97
No. of reflections3011
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Bruker, 2002).

Selected geometric parameters (Å, º) top
O1—C61.2171 (17)N1—N21.3869 (16)
O2—C111.3610 (15)N1—C11.3870 (16)
O2—C131.4274 (16)N1—C61.4106 (17)
O3—C101.3616 (15)N2—C41.3209 (17)
O3—C141.4314 (16)
C11—O2—C13116.84 (9)C4—N2—N1104.43 (11)
C10—O3—C14116.39 (10)O1—C6—N1118.94 (12)
N2—N1—C1111.43 (11)O1—C6—C7122.82 (12)
N2—N1—C6120.77 (10)N1—C6—C7118.23 (12)
C1—N1—C6127.52 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N20.952.462.8948 (18)107.8
C3—H3A···O2i0.952.453.3496 (18)157.4
Symmetry code: (i) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds