Download citation
Download citation
link to html
The Ni atom in the title complex, [Ni(SCN)2(C6H14N4)(CH4O)2(H2O)], is six-coordinate in a slightly distorted octa­hedral environment. The hexa­methyl­enetetra­mine ligand binds to the Ni atom through only one of its N atoms, trans to the coordinated water mol­ecule. The thio­cyanate and methanol ligands are also mutually trans. In the crystal structure, complex mol­ecules are linked by four different kinds of hydrogen bonds (O—H...S, O—H...N, C—H...N and C—H...O) to form a three-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046648/sj2363sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046648/sj2363Isup2.hkl
Contains datablock I

CCDC reference: 663662

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](N-C) = 0.003 Å
  • R factor = 0.031
  • wR factor = 0.077
  • Data-to-parameter ratio = 19.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 300 Ang. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.64 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.32 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for S1 - C1 .. 6.31 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - O1W .. 5.99 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N1 .. 6.68 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N2 .. 5.45 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

During the past decade, the self-assembly of transition metal ions and organic molecules has become a powerful methodology for the construction of different supramolecular architectures with unusual and interesting properties either by strong metal-ligand bonding or by weaker bonding forces such as hydrogen bonding and ππ interactions (Guo, et al., 2002; Kumar, Das et al., 2007; Venkateswaran et al., 2007). Among the ligands, hexamethylenetetramine (hmt) as a potential tetradentate ligand or hydrogen bond acceptor seems quite suitable in self-assembly systems. Several groups have reported that Co(II), Mn(II) or Ni(II) complexes with hmt and SCN- as ligands form two- or three-dimensional networks (Liu et al., 2006; Zhang et al., 1999; Meng et al., 2001; Li et al., 2002). Herein, we present a new hmt complex, (I), of nickel(II) with SCN-, Fig 1. The title complex, which contains one nickel center, one hmt, two NCS-, two coordinated methanol molecules and one coordinated water molecule, forms a mononuclear complex (Fig.1). The Ni2+ atom has a distorted octahedral coordination geometry. The N atom of hmt and the O atom of the water molecule, the N atoms of the two isothiocyanates and the O atoms of both methanol molecules are each mutually trans to each other. Intramolecular C—H···N and C—H···O hydrogen bonds (Table 2) are important factors in the stabilization of the molecule.

In the crystal structure, molecules interact with each other, forming a three-dimensional supramolecular network through multiform intermolecular hydrogen bonds (Fig. 2 and Table 1). The O1, O2 and O1w atoms form three O—H···N hydrogen bonds with the N6, N4 and N5 atoms of the adjacent hmt ligand, respectively. In addition, an O1w—H···S2 hydrogen bond is also found in the solid state.

Related literature top

For information on the self-assembly of transition-metal complexes see Guo et al. (2002); Kumar et al. (2007); Venkateswaran et al. (2007). For complexes of the hexamethylenetetramine (hmt) ligand see Liu et al. (2006); Zhang et al. (1999); Meng et al. (2001); Li et al. (2002).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The hexamethylenetetramine (0.50 mmol, 0.07 g), KSCN (2 mmol, 0.19 g) and NiCl2.6H2O (0.50 mmol, 0.12 g) were mixed in methanol (25 ml). The green solution was left for several weeks at room temperature to afford green crystals (yield 68%).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.85 Å, Uiso = 1.2Ueq (O) for the OH groups.

Structure description top

During the past decade, the self-assembly of transition metal ions and organic molecules has become a powerful methodology for the construction of different supramolecular architectures with unusual and interesting properties either by strong metal-ligand bonding or by weaker bonding forces such as hydrogen bonding and ππ interactions (Guo, et al., 2002; Kumar, Das et al., 2007; Venkateswaran et al., 2007). Among the ligands, hexamethylenetetramine (hmt) as a potential tetradentate ligand or hydrogen bond acceptor seems quite suitable in self-assembly systems. Several groups have reported that Co(II), Mn(II) or Ni(II) complexes with hmt and SCN- as ligands form two- or three-dimensional networks (Liu et al., 2006; Zhang et al., 1999; Meng et al., 2001; Li et al., 2002). Herein, we present a new hmt complex, (I), of nickel(II) with SCN-, Fig 1. The title complex, which contains one nickel center, one hmt, two NCS-, two coordinated methanol molecules and one coordinated water molecule, forms a mononuclear complex (Fig.1). The Ni2+ atom has a distorted octahedral coordination geometry. The N atom of hmt and the O atom of the water molecule, the N atoms of the two isothiocyanates and the O atoms of both methanol molecules are each mutually trans to each other. Intramolecular C—H···N and C—H···O hydrogen bonds (Table 2) are important factors in the stabilization of the molecule.

In the crystal structure, molecules interact with each other, forming a three-dimensional supramolecular network through multiform intermolecular hydrogen bonds (Fig. 2 and Table 1). The O1, O2 and O1w atoms form three O—H···N hydrogen bonds with the N6, N4 and N5 atoms of the adjacent hmt ligand, respectively. In addition, an O1w—H···S2 hydrogen bond is also found in the solid state.

For information on the self-assembly of transition-metal complexes see Guo et al. (2002); Kumar et al. (2007); Venkateswaran et al. (2007). For complexes of the hexamethylenetetramine (hmt) ligand see Liu et al. (2006); Zhang et al. (1999); Meng et al. (2001); Li et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Perspective view of the three-dimensional showing the intermolecular hydrogen bonds as dashed lines.
Aqua(hexamethylenetetramine-κN)bis(methanol)bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(SCN)2(C6H14N4)(CH4O)2(H2O)]F(000) = 1664
Mr = 397.17Dx = 1.527 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5794 reflections
a = 14.069 (3) Åθ = 2.3–27.0°
b = 15.312 (3) ŵ = 1.38 mm1
c = 16.036 (3) ÅT = 293 K
V = 3454.6 (12) Å3Block, green
Z = 80.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3102 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
φ and ω scansh = 1718
20196 measured reflectionsk = 1919
3954 independent reflectionsl = 1520
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0346P)2 + 1.4403P]
where P = (Fo2 + 2Fc2)/3
3954 reflections(Δ/σ)max = 0.002
201 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni(SCN)2(C6H14N4)(CH4O)2(H2O)]V = 3454.6 (12) Å3
Mr = 397.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.069 (3) ŵ = 1.38 mm1
b = 15.312 (3) ÅT = 293 K
c = 16.036 (3) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3102 reflections with I > 2σ(I)
20196 measured reflectionsRint = 0.037
3954 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
3954 reflectionsΔρmin = 0.53 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.051115 (17)1.037270 (16)0.284126 (16)0.02737 (9)
N11.15174 (12)0.97450 (11)0.35135 (12)0.0348 (4)
C11.21094 (14)0.94091 (13)0.38983 (13)0.0298 (4)
S11.29502 (5)0.89385 (4)0.44312 (5)0.0560 (2)
N20.95730 (13)1.10636 (13)0.21696 (12)0.0379 (4)
C20.90475 (15)1.14612 (13)0.17719 (13)0.0308 (4)
S20.83037 (4)1.20509 (4)0.12261 (4)0.04665 (16)
N30.94070 (11)0.94372 (10)0.32743 (10)0.0248 (3)
N40.88319 (12)0.86786 (11)0.45339 (11)0.0319 (4)
N50.88039 (12)0.79295 (11)0.31899 (10)0.0307 (4)
N60.77062 (11)0.91318 (11)0.34617 (11)0.0294 (4)
C30.95225 (14)0.93031 (14)0.41893 (12)0.0301 (4)
H3A1.01600.90920.42990.036*
H3B0.94500.98600.44710.036*
C40.89509 (16)0.78346 (14)0.40984 (13)0.0353 (5)
H4A0.95850.76110.42020.042*
H4B0.84980.74160.43180.042*
C50.78700 (15)0.90098 (15)0.43675 (13)0.0346 (5)
H5A0.77840.95630.46520.042*
H5B0.74060.86010.45860.042*
C60.78424 (15)0.82792 (14)0.30448 (14)0.0338 (5)
H6A0.73760.78670.32530.041*
H6B0.77400.83470.24500.041*
C70.94994 (14)0.85635 (13)0.28606 (13)0.0290 (4)
H7A0.94040.86300.22650.035*
H7B1.01370.83410.29480.035*
C80.84141 (13)0.97490 (13)0.31293 (13)0.0284 (4)
H8A0.83301.03130.33950.034*
H8B0.83110.98240.25350.034*
O11.08313 (10)0.95834 (10)0.18127 (9)0.0344 (3)
H1A1.14300.95110.17960.041*
C91.05023 (17)0.9745 (2)0.09820 (15)0.0551 (7)
H9A1.07260.92910.06190.083*
H9B1.07401.02980.07930.083*
H9C0.98200.97540.09770.083*
O21.02424 (11)1.12126 (9)0.38967 (9)0.0396 (4)
H2A1.07081.12180.42340.048*
C100.9735 (3)1.20139 (19)0.39099 (19)0.0753 (10)
H10A0.92961.20130.43690.113*
H10B0.93901.20810.33970.113*
H10C1.01731.24890.39730.113*
O1W1.15882 (11)1.12462 (9)0.24620 (10)0.0408 (4)
H1WB1.19521.13610.28710.049*
H1WD1.13431.17210.22920.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02452 (14)0.02876 (15)0.02882 (15)0.00163 (10)0.00440 (10)0.00596 (10)
N10.0296 (10)0.0369 (10)0.0378 (10)0.0010 (8)0.0052 (8)0.0060 (8)
C10.0302 (11)0.0277 (10)0.0315 (11)0.0021 (8)0.0029 (9)0.0016 (8)
S10.0549 (4)0.0463 (4)0.0668 (5)0.0131 (3)0.0356 (3)0.0032 (3)
N20.0335 (10)0.0405 (10)0.0398 (11)0.0044 (8)0.0047 (8)0.0108 (8)
C20.0303 (11)0.0308 (11)0.0313 (11)0.0006 (9)0.0006 (9)0.0019 (9)
S20.0430 (3)0.0513 (4)0.0457 (4)0.0130 (3)0.0128 (3)0.0088 (3)
N30.0241 (8)0.0275 (8)0.0228 (8)0.0004 (6)0.0025 (6)0.0015 (6)
N40.0333 (10)0.0356 (10)0.0269 (9)0.0019 (7)0.0003 (7)0.0042 (7)
N50.0342 (10)0.0263 (9)0.0318 (9)0.0009 (7)0.0025 (7)0.0004 (7)
N60.0247 (9)0.0318 (9)0.0318 (9)0.0007 (7)0.0004 (7)0.0013 (7)
C30.0296 (11)0.0368 (11)0.0239 (10)0.0031 (9)0.0032 (8)0.0019 (8)
C40.0357 (12)0.0318 (11)0.0385 (12)0.0014 (9)0.0007 (9)0.0079 (9)
C50.0303 (11)0.0443 (13)0.0294 (11)0.0001 (9)0.0062 (9)0.0017 (9)
C60.0310 (11)0.0348 (11)0.0356 (12)0.0055 (9)0.0019 (9)0.0024 (9)
C70.0296 (10)0.0289 (10)0.0285 (10)0.0022 (8)0.0041 (8)0.0016 (8)
C80.0250 (10)0.0297 (10)0.0307 (10)0.0021 (8)0.0025 (8)0.0006 (8)
O10.0246 (7)0.0492 (9)0.0292 (8)0.0004 (6)0.0002 (6)0.0020 (7)
C90.0417 (15)0.091 (2)0.0326 (13)0.0067 (14)0.0027 (10)0.0001 (13)
O20.0487 (9)0.0349 (8)0.0352 (9)0.0078 (7)0.0121 (7)0.0017 (7)
C100.115 (3)0.0549 (18)0.0561 (18)0.0408 (18)0.0207 (18)0.0111 (14)
O1W0.0380 (9)0.0340 (8)0.0504 (10)0.0035 (7)0.0073 (7)0.0114 (7)
Geometric parameters (Å, º) top
Ni1—N22.005 (2)C3—H3B0.9700
Ni1—N12.022 (2)C4—H4A0.9700
Ni1—O12.094 (2)C4—H4B0.9700
Ni1—O1W2.111 (2)C5—H5A0.9700
Ni1—O22.159 (2)C5—H5B0.9700
Ni1—N32.224 (2)C6—H6A0.9700
N1—C11.157 (3)C6—H6B0.9700
C1—S11.627 (2)C7—H7A0.9700
N2—C21.151 (3)C7—H7B0.9700
C2—S21.636 (2)C8—H8A0.9700
N3—C31.490 (2)C8—H8B0.9700
N3—C81.494 (2)O1—C91.432 (3)
N3—C71.499 (2)O1—H1A0.8500
N4—C51.470 (3)C9—H9A0.9600
N4—C31.471 (3)C9—H9B0.9600
N4—C41.479 (3)C9—H9C0.9600
N5—C61.473 (3)O2—C101.420 (3)
N5—C71.476 (3)O2—H2A0.8500
N5—C41.479 (3)C10—H10A0.9600
N6—C81.473 (2)C10—H10B0.9600
N6—C61.479 (3)C10—H10C0.9600
N6—C51.482 (3)O1W—H1WB0.8500
C3—H3A0.9700O1W—H1WD0.8500
N2—Ni1—N1176.16 (7)N4—C5—N6111.39 (16)
N2—Ni1—O191.32 (7)N4—C5—H5A109.4
N1—Ni1—O189.71 (7)N6—C5—H5A109.4
N2—Ni1—O1W89.05 (7)N4—C5—H5B109.4
N1—Ni1—O1W87.26 (7)N6—C5—H5B109.4
O1—Ni1—O1W89.10 (6)H5A—C5—H5B108.0
N2—Ni1—O289.51 (7)N5—C6—N6111.62 (16)
N1—Ni1—O289.31 (7)N5—C6—H6A109.3
O1—Ni1—O2177.47 (6)N6—C6—H6A109.3
O1W—Ni1—O288.52 (6)N5—C6—H6B109.3
N2—Ni1—N392.74 (7)N6—C6—H6B109.3
N1—Ni1—N390.94 (7)H6A—C6—H6B108.0
O1—Ni1—N391.40 (6)N5—C7—N3111.79 (15)
O1W—Ni1—N3178.13 (6)N5—C7—H7A109.3
O2—Ni1—N390.95 (6)N3—C7—H7A109.3
C1—N1—Ni1177.90 (17)N5—C7—H7B109.3
N1—C1—S1179.4 (2)N3—C7—H7B109.3
C2—N2—Ni1178.66 (19)H7A—C7—H7B107.9
N2—C2—S2178.3 (2)N6—C8—N3111.76 (15)
C3—N3—C8107.41 (15)N6—C8—H8A109.3
C3—N3—C7107.66 (15)N3—C8—H8A109.3
C8—N3—C7107.29 (15)N6—C8—H8B109.3
C3—N3—Ni1108.66 (11)N3—C8—H8B109.3
C8—N3—Ni1113.48 (11)H8A—C8—H8B107.9
C7—N3—Ni1112.09 (11)C9—O1—Ni1124.31 (15)
C5—N4—C3108.40 (16)C9—O1—H1A108.3
C5—N4—C4108.67 (17)Ni1—O1—H1A108.3
C3—N4—C4108.42 (16)O1—C9—H9A109.5
C6—N5—C7108.24 (16)O1—C9—H9B109.5
C6—N5—C4108.65 (16)H9A—C9—H9B109.5
C7—N5—C4108.93 (16)O1—C9—H9C109.5
C8—N6—C6108.37 (16)H9A—C9—H9C109.5
C8—N6—C5109.29 (16)H9B—C9—H9C109.5
C6—N6—C5108.14 (16)C10—O2—Ni1127.92 (15)
N4—C3—N3112.79 (16)C10—O2—H2A111.7
N4—C3—H3A109.0Ni1—O2—H2A111.7
N3—C3—H3A109.0O2—C10—H10A109.5
N4—C3—H3B109.0O2—C10—H10B109.5
N3—C3—H3B109.0H10A—C10—H10B109.5
H3A—C3—H3B107.8O2—C10—H10C109.5
N5—C4—N4111.32 (16)H10A—C10—H10C109.5
N5—C4—H4A109.4H10B—C10—H10C109.5
N4—C4—H4A109.4Ni1—O1W—H1WB109.9
N5—C4—H4B109.4Ni1—O1W—H1WD110.0
N4—C4—H4B109.4H1WB—O1W—H1WD108.3
H4A—C4—H4B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···S2i0.852.613.431 (2)162
O1—H1A···N6i0.851.932.762 (2)165
O1W—H1WD···N5ii0.852.022.836 (2)162
O2—H2A···N4iii0.852.092.839 (2)148
C3—H3A···N10.972.503.084 (3)119
C3—H3B···O20.972.533.130 (3)120
C7—H7A···O10.972.592.962 (3)103
C10—H10B···N20.962.523.156 (4)123
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(SCN)2(C6H14N4)(CH4O)2(H2O)]
Mr397.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.069 (3), 15.312 (3), 16.036 (3)
V3)3454.6 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20196, 3954, 3102
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.02
No. of reflections3954
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.53

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···S2i0.852.613.431 (2)162.0
O1—H1A···N6i0.851.932.762 (2)165.0
O1W—H1WD···N5ii0.852.022.836 (2)162.0
O2—H2A···N4iii0.852.092.839 (2)148.0
C3—H3A···N10.972.503.084 (3)119.0
C3—H3B···O20.972.533.130 (3)120.0
C7—H7A···O10.972.592.962 (3)103.0
C10—H10B···N20.962.523.156 (4)123.0
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds