Download citation
Download citation
link to html
In the title compound, C20H14O3, π–π stacking inter­actions [3.474 (2)–3.789 (2) Å] dominate the crystal structure. The dihedral angle between the phenyl ring and fused-ring system is 32.3 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045059/ww2097sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045059/ww2097Isup2.hkl
Contains datablock I

CCDC reference: 254246

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.040
  • wR factor = 0.119
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT333_ALERT_2_C Large Average Benzene C-C Dist. C9 -C18 1.45 Ang. PLAT335_ALERT_2_C Large Benzene C-C Range ....... C9 -C18 0.18 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C10 - C11 ... 1.55 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Polycyclic ortho-quinonoid structures constitute a large category of significant compounds which possess a broad spectrum of biological activities such as antioxidant activity (Ng et al., 2000), cytotoxicity (Park et al., 1999), antifungal activity (Chang et al., 1991), antineoplastic activity (Kongkathip et al., 2003). Recently, we are engaged in a program directed at searching for new bioactive ortho-quinoid compounds. As part of our investigation (Shen et al., 2005), we reported the synthesis and single-crystal structure of 7, 9-dimethyl-3-phenylnaphtho [1, 2 - b] furan-4, 5-dione (I).

The X-ray study of (I) confirms the previously proposed molecular structure based on spectroscopic data (Figure. 1).

The C—C, C=C, C—O and C=O distances show no remarkable features, except that the bond C10—C11(1.548 (2) Å) is significantly longer than normal distance of C—C bond.

A structural feature of (I) is the presence of intermolecular strong π-π stacking interactions between adjacent molecules. The geometric parameters are within the acceptable range (Janiak, 2000). The Cg1···Cg2i, Cg1···Cg3ii and Cg2···Cg3ii distances are 3.474 (2), 3.789 (2) and 3.690 (2) Å respectively [symmetry code: (i) -x, 1 - y, 2 - z, (ii)-x, -y, 2 - z, Cg1, Cg2 and Cg3 are centroids of the C10-containing ring, C13-containing ring and the O1-containing ring] (Figure. 2).

The naphtho[1,2-b]furan-4,5-dione part of the title molecule is approximately coplanar, the interplanar distances between neighbouring 13-membered ring planes are 3.458 (2) and 3.527 (2) Å.

Obviously, aromatic π-π stacking interactions play a key role in assembling the supramolecular structure.

Related literature top

For related literature, see: Chang et al. (1991); Janiak (2000); Ng et al. (2000); Kongkathip et al. (2003); Park et al. (1999); Shen et al. (2005). Cg1, Cg2 and Cg3 are centroids

of the C10-containing ring, the C13-containing ring

and the O1-containing ring.

For related literature, see: Kongkathip et al. (2003).

Experimental top

The title compound was prepared from 3-phenylbenzofuran-4,5-dione and N-(2-methylpenta-1,3-dienyl)acetamide by the strategy of Diels-Alder. N-(2-methylpenta-1,3-dienyl)acetamide (0.139 g, 1 mmol) and 3-phenylbenzofuran-4,5-dione (0.240 g, 1 mmol) were added to benzene (30 ml), and refluxed for 5 h. Then, silica gel (10 g, 80–120 mesh) was added to the solution and the solvent was removed in vacuum at 45°C.

The resulted dry reaction-mixture-coated silica gel was then stirred at 45°C for 24 h. Purification by chromatography on silica gel (CHCl3/CH3OH) gave target compound (I) in 65% yield.

Crystals of (I) suitable for X-ray analysis were grown from CDCl3 solution.

1H-NMR (300 MHz, CDCl3, TMS): δ 2.35(s, 3H), 2.67(s, 3H), 7.23(s, 1H), 7.35–7.42(m, 3H), 7.59(s, 1H), 7.64 (d, 1H), 7.75(s, 1H).

13C NMR (75 MHz, CDCl3): δ 21.16, 21.68, 118.71, 124.14, 127.19, 128.29, 128.30, 128.33, 128.34, 128.35, 129.09, 129.46, 129.63, 135.47, 139.33, 140.19, 140.81, 163.30, 174.84, 181.10.

ESI-MS(m/z): 303 ([M+H]+).

Refinement top

All H atoms were positioned geometrically and refined with a riding model, with distances 0.96 (CH3) and 0.93 Å (CH) with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Polycyclic ortho-quinonoid structures constitute a large category of significant compounds which possess a broad spectrum of biological activities such as antioxidant activity (Ng et al., 2000), cytotoxicity (Park et al., 1999), antifungal activity (Chang et al., 1991), antineoplastic activity (Kongkathip et al., 2003). Recently, we are engaged in a program directed at searching for new bioactive ortho-quinoid compounds. As part of our investigation (Shen et al., 2005), we reported the synthesis and single-crystal structure of 7, 9-dimethyl-3-phenylnaphtho [1, 2 - b] furan-4, 5-dione (I).

The X-ray study of (I) confirms the previously proposed molecular structure based on spectroscopic data (Figure. 1).

The C—C, C=C, C—O and C=O distances show no remarkable features, except that the bond C10—C11(1.548 (2) Å) is significantly longer than normal distance of C—C bond.

A structural feature of (I) is the presence of intermolecular strong π-π stacking interactions between adjacent molecules. The geometric parameters are within the acceptable range (Janiak, 2000). The Cg1···Cg2i, Cg1···Cg3ii and Cg2···Cg3ii distances are 3.474 (2), 3.789 (2) and 3.690 (2) Å respectively [symmetry code: (i) -x, 1 - y, 2 - z, (ii)-x, -y, 2 - z, Cg1, Cg2 and Cg3 are centroids of the C10-containing ring, C13-containing ring and the O1-containing ring] (Figure. 2).

The naphtho[1,2-b]furan-4,5-dione part of the title molecule is approximately coplanar, the interplanar distances between neighbouring 13-membered ring planes are 3.458 (2) and 3.527 (2) Å.

Obviously, aromatic π-π stacking interactions play a key role in assembling the supramolecular structure.

For related literature, see: Chang et al. (1991); Janiak (2000); Ng et al. (2000); Kongkathip et al. (2003); Park et al. (1999); Shen et al. (2005). Cg1, Cg2 and Cg3 are centroids

of the C10-containing ring, the C13-containing ring

and the O1-containing ring.

For related literature, see: Kongkathip et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I) formed by π-π stacking interactions. Labels Cg represent the centroids of rings. H atoms have been omitted for clarity. Symmetry code:(i) -x, 1 - y, 2 - z, (ii) -x, -y, 2 - z.
7,9-Dimethyl-3-phenylnaphtho[1,2-b]furan-4,5-dione top
Crystal data top
C20H14O3F(000) = 632
Mr = 302.31Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1012 reflections
a = 7.792 (2) Åθ = 2.8–26.9°
b = 7.602 (2) ŵ = 0.09 mm1
c = 24.746 (7) ÅT = 293 K
β = 93.610 (5)°Block, red
V = 1463.0 (7) Å30.50 × 0.38 × 0.27 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3174 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 27.1°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.956, Tmax = 0.976k = 99
9844 measured reflectionsl = 3130
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.3061P]
where P = (Fo2 + 2Fc2)/3
3174 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H14O3V = 1463.0 (7) Å3
Mr = 302.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.792 (2) ŵ = 0.09 mm1
b = 7.602 (2) ÅT = 293 K
c = 24.746 (7) Å0.50 × 0.38 × 0.27 mm
β = 93.610 (5)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3174 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2534 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.976Rint = 0.015
9844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
3174 reflectionsΔρmin = 0.20 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33460 (19)0.0790 (2)0.94412 (6)0.0528 (4)
H10.44240.03110.93920.063*
C20.21428 (17)0.10566 (18)0.90371 (5)0.0454 (3)
C30.24088 (19)0.06386 (18)0.84666 (5)0.0482 (3)
C40.4054 (2)0.0779 (2)0.82849 (6)0.0577 (4)
H40.49390.12230.85150.069*
C50.4389 (2)0.0267 (3)0.77658 (7)0.0717 (5)
H50.54980.03610.76500.086*
C60.3096 (3)0.0379 (3)0.74210 (7)0.0749 (5)
H60.33280.07360.70740.090*
C70.1453 (3)0.0498 (2)0.75908 (7)0.0695 (5)
H70.05740.09310.73560.083*
C80.1096 (2)0.0023 (2)0.81090 (6)0.0579 (4)
H80.00230.00400.82180.069*
C90.06983 (16)0.17866 (17)0.93019 (5)0.0422 (3)
C100.09938 (18)0.23874 (19)0.91119 (6)0.0486 (3)
C110.21411 (17)0.30834 (18)0.95534 (6)0.0493 (3)
C120.14654 (17)0.31760 (17)1.01237 (5)0.0440 (3)
C130.25251 (18)0.38256 (18)1.05073 (6)0.0500 (3)
H130.36380.41801.04010.060*
C140.19467 (19)0.39517 (18)1.10448 (6)0.0505 (3)
C150.02604 (19)0.34631 (18)1.11827 (6)0.0496 (3)
H150.01500.35901.15420.059*
C160.08540 (17)0.27926 (17)1.08151 (5)0.0450 (3)
C170.02245 (16)0.26205 (16)1.02753 (5)0.0405 (3)
C180.11923 (16)0.19215 (17)0.98400 (5)0.0412 (3)
C190.3093 (2)0.4566 (2)1.14715 (7)0.0664 (4)
H19A0.40670.51711.13030.100*
H19B0.24650.53491.17150.100*
H19C0.34800.35701.16690.100*
C200.2641 (2)0.2282 (2)1.10205 (6)0.0600 (4)
H20A0.28020.25621.13990.090*
H20B0.34650.29161.08240.090*
H20C0.27990.10411.09710.090*
O10.28067 (12)0.13026 (14)0.99344 (4)0.0518 (3)
O20.15827 (15)0.23743 (19)0.86475 (4)0.0759 (4)
O30.35925 (14)0.35313 (18)0.94093 (5)0.0736 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (7)0.0687 (9)0.0413 (7)0.0050 (7)0.0042 (6)0.0011 (7)
C20.0484 (7)0.0455 (7)0.0423 (7)0.0051 (6)0.0027 (5)0.0041 (6)
C30.0602 (8)0.0444 (7)0.0398 (7)0.0017 (6)0.0017 (6)0.0050 (6)
C40.0627 (9)0.0629 (9)0.0479 (8)0.0017 (7)0.0065 (7)0.0002 (7)
C50.0794 (12)0.0828 (12)0.0548 (10)0.0027 (9)0.0181 (8)0.0006 (9)
C60.1036 (14)0.0796 (12)0.0421 (9)0.0043 (10)0.0096 (9)0.0019 (8)
C70.0918 (13)0.0705 (11)0.0444 (8)0.0075 (9)0.0095 (8)0.0001 (8)
C80.0670 (9)0.0598 (9)0.0460 (8)0.0077 (7)0.0029 (7)0.0057 (7)
C90.0450 (7)0.0410 (7)0.0401 (7)0.0064 (5)0.0009 (5)0.0063 (5)
C100.0491 (7)0.0497 (7)0.0459 (8)0.0045 (6)0.0056 (6)0.0082 (6)
C110.0431 (7)0.0486 (8)0.0555 (8)0.0039 (6)0.0036 (6)0.0087 (6)
C120.0439 (7)0.0393 (7)0.0486 (8)0.0061 (5)0.0022 (5)0.0063 (5)
C130.0443 (7)0.0456 (7)0.0603 (9)0.0009 (6)0.0055 (6)0.0046 (6)
C140.0554 (8)0.0393 (7)0.0577 (9)0.0035 (6)0.0113 (6)0.0000 (6)
C150.0579 (8)0.0457 (7)0.0452 (7)0.0057 (6)0.0039 (6)0.0020 (6)
C160.0487 (7)0.0418 (7)0.0441 (7)0.0058 (5)0.0003 (6)0.0016 (5)
C170.0424 (7)0.0366 (6)0.0425 (7)0.0063 (5)0.0023 (5)0.0050 (5)
C180.0403 (6)0.0414 (7)0.0415 (7)0.0044 (5)0.0001 (5)0.0056 (5)
C190.0674 (10)0.0653 (10)0.0681 (11)0.0055 (8)0.0161 (8)0.0080 (8)
C200.0544 (8)0.0803 (11)0.0442 (8)0.0030 (8)0.0051 (6)0.0052 (7)
O10.0449 (5)0.0695 (6)0.0404 (5)0.0060 (4)0.0017 (4)0.0002 (4)
O20.0706 (7)0.1068 (10)0.0479 (6)0.0163 (7)0.0150 (5)0.0029 (6)
O30.0486 (6)0.1003 (10)0.0703 (8)0.0121 (6)0.0092 (5)0.0031 (7)
Geometric parameters (Å, º) top
C1—C21.342 (2)C11—O31.2130 (17)
C1—O11.3721 (17)C11—C121.476 (2)
C1—H10.9300C12—C131.388 (2)
C2—C91.4480 (19)C12—C171.4110 (19)
C2—C31.474 (2)C13—C141.381 (2)
C3—C41.389 (2)C13—H130.9300
C3—C81.391 (2)C14—C151.387 (2)
C4—C51.383 (2)C14—C191.500 (2)
C4—H40.9300C15—C161.393 (2)
C5—C61.370 (3)C15—H150.9300
C5—H50.9300C16—C171.3999 (19)
C6—C71.375 (3)C16—C201.503 (2)
C6—H60.9300C17—C181.4538 (18)
C7—C81.387 (2)C18—O11.3496 (16)
C7—H70.9300C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C9—C181.3666 (18)C19—H19C0.9600
C9—C101.4457 (19)C20—H20A0.9600
C10—O21.2105 (17)C20—H20B0.9600
C10—C111.548 (2)C20—H20C0.9600
C2—C1—O1112.39 (13)C13—C12—C11118.62 (13)
C2—C1—H1123.8C17—C12—C11120.70 (12)
O1—C1—H1123.8C14—C13—C12120.77 (13)
C1—C2—C9104.32 (12)C14—C13—H13119.6
C1—C2—C3123.16 (13)C12—C13—H13119.6
C9—C2—C3132.53 (12)C13—C14—C15117.72 (13)
C4—C3—C8118.45 (14)C13—C14—C19121.81 (14)
C4—C3—C2118.80 (13)C15—C14—C19120.46 (14)
C8—C3—C2122.66 (14)C14—C15—C16123.84 (14)
C5—C4—C3120.75 (16)C14—C15—H15118.1
C5—C4—H4119.6C16—C15—H15118.1
C3—C4—H4119.6C15—C16—C17117.52 (13)
C6—C5—C4120.33 (17)C15—C16—C20118.41 (13)
C6—C5—H5119.8C17—C16—C20124.07 (12)
C4—C5—H5119.8C16—C17—C12119.40 (12)
C5—C6—C7119.72 (17)C16—C17—C18125.04 (12)
C5—C6—H6120.1C12—C17—C18115.55 (12)
C7—C6—H6120.1O1—C18—C9110.17 (11)
C6—C7—C8120.56 (17)O1—C18—C17121.37 (11)
C6—C7—H7119.7C9—C18—C17128.46 (12)
C8—C7—H7119.7C14—C19—H19A109.5
C7—C8—C3120.15 (16)C14—C19—H19B109.5
C7—C8—H8119.9H19A—C19—H19B109.5
C3—C8—H8119.9C14—C19—H19C109.5
C18—C9—C10119.23 (12)H19A—C19—H19C109.5
C18—C9—C2106.88 (11)H19B—C19—H19C109.5
C10—C9—C2133.87 (12)C16—C20—H20A109.5
O2—C10—C9126.13 (14)C16—C20—H20B109.5
O2—C10—C11118.14 (13)H20A—C20—H20B109.5
C9—C10—C11115.72 (12)C16—C20—H20C109.5
O3—C11—C12122.51 (14)H20A—C20—H20C109.5
O3—C11—C10117.24 (13)H20B—C20—H20C109.5
C12—C11—C10120.25 (12)C18—O1—C1106.23 (10)
C13—C12—C17120.68 (13)
O1—C1—C2—C90.80 (17)C10—C11—C12—C170.52 (19)
O1—C1—C2—C3179.16 (12)C17—C12—C13—C140.4 (2)
C1—C2—C3—C431.4 (2)C11—C12—C13—C14179.45 (12)
C9—C2—C3—C4148.53 (15)C12—C13—C14—C152.1 (2)
C1—C2—C3—C8145.23 (16)C12—C13—C14—C19176.95 (13)
C9—C2—C3—C834.8 (2)C13—C14—C15—C162.6 (2)
C8—C3—C4—C52.0 (2)C19—C14—C15—C16176.49 (14)
C2—C3—C4—C5174.80 (15)C14—C15—C16—C170.5 (2)
C3—C4—C5—C60.4 (3)C14—C15—C16—C20178.85 (13)
C4—C5—C6—C70.8 (3)C15—C16—C17—C122.02 (18)
C5—C6—C7—C80.3 (3)C20—C16—C17—C12178.68 (13)
C6—C7—C8—C31.3 (3)C15—C16—C17—C18178.94 (12)
C4—C3—C8—C72.4 (2)C20—C16—C17—C180.4 (2)
C2—C3—C8—C7174.24 (14)C13—C12—C17—C162.48 (19)
C1—C2—C9—C181.27 (15)C11—C12—C17—C16177.34 (12)
C3—C2—C9—C18178.68 (14)C13—C12—C17—C18178.39 (11)
C1—C2—C9—C10179.28 (15)C11—C12—C17—C181.80 (17)
C3—C2—C9—C100.7 (3)C10—C9—C18—O1179.68 (11)
C18—C9—C10—O2178.62 (15)C2—C9—C18—O11.32 (14)
C2—C9—C10—O20.8 (3)C10—C9—C18—C170.2 (2)
C18—C9—C10—C112.22 (18)C2—C9—C18—C17178.16 (12)
C2—C9—C10—C11179.96 (13)C16—C17—C18—O12.71 (19)
O2—C10—C11—O32.1 (2)C12—C17—C18—O1178.22 (11)
C9—C10—C11—O3177.14 (13)C16—C17—C18—C9176.72 (13)
O2—C10—C11—C12178.18 (14)C12—C17—C18—C92.35 (19)
C9—C10—C11—C122.59 (19)C9—C18—O1—C10.84 (15)
O3—C11—C12—C131.0 (2)C17—C18—O1—C1178.69 (12)
C10—C11—C12—C13179.29 (12)C2—C1—O1—C180.02 (17)
O3—C11—C12—C17179.19 (14)

Experimental details

Crystal data
Chemical formulaC20H14O3
Mr302.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.792 (2), 7.602 (2), 24.746 (7)
β (°) 93.610 (5)
V3)1463.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.38 × 0.27
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
9844, 3174, 2534
Rint0.015
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.03
No. of reflections3174
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds