Download citation
Download citation
link to html
In the title compound, C20H15Cl2N3O2, intra­molecular C—H...O hydrogen bonding causes the formation of a planar six-membered ring, which is also coplanar with the adjacent furan ring. The benzimidazole ring system is also planar and is oriented with respect to the coplanar ring system at a dihedral angle of 81.74 (10)°. The benzene ring is oriented with respect to the coplanar ring and benzimidazole ring systems at dihedral angles of 87.75 (15) and 84.24 (12)°, respectively. The oxime unit has an E configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045345/xu2319sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045345/xu2319Isup2.hkl
Contains datablock I

CCDC reference: 663790

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.044
  • wR factor = 0.117
  • Data-to-parameter ratio = 8.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 25.65 From the CIF: _reflns_number_total 1995 Count of symmetry unique reflns 2005 Completeness (_total/calc) 99.50% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In recent years, the benzimidazole heterocyclic ring system has attracted considerable attention, due to its useful properties for the development of interesting new pharmaceutical compounds (Mann et al., 2001). Some of the substituted benzimidazole derivatives have antitumour, antiviral, antibacterial, anti-inflammatory (Roth et al., 1997; Evans et al., 1996; Chen et al., 1993) and therapeutic (Saito et al., 1993; Awouters et al., 1983; Brandstrom et al., 1985) activities. On the other hand, a series of benzimidazole derivatives are useful for central nervous system disorders (Preston, 1974).

Furans, oximes and amines are very important compounds in organic chemistry. Furan is a relatively highly reactive heteroaromatic compound and is frequently used as an intermediate in organic synthesis (Lipshutz, 1986). In literature, Beckmann fragmentation reaction of N-aryl-N,N-diphenacylamine dioximes has been reported as a new method for the synthesis of imidazooxadiazolones which are imidazole derivatives (Coşkun et al., 1999).

Oxime and dioxime derivatives are very important compounds in the chemical industry and medicine (Sevagapandian et al., 2000). They have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (Forman, 1964; Holan et al., 1984; Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination through nitrogen and/or oxygen atoms.

The structures of oxime and dioxime derivatives have been the subject of much interest in our laboratory; examples are 2,3-dimethylquinoxaline-dimethyl- glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenyl- amino)propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu et al., 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven, Erdoğan, Çaylak & Hökelek, 2007], (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007] and N,N-bis[2-(2-furyl)-2-(hydroxyimino)ethyl]- aniline [(X) Özel Güven, Çaylak & Hökelek, 2007]. The structure determination of the title molecule, (I) was carried out in order to investigate the strength of the hydrogen bonding capability and to compare the geometry of the oxime moiety with the previously reported ones.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The intramolecular C—H···O hydrogen bond (Table 1) causes the formation of a planar six-membered ring B (O1/N1/C1/C9/C10/H10). The rings A (C3—C8), C (O2/C9—C12), D (N2/N3/C14/C15/C20) and E (C15—C20) are, of course, planar and rings B, C and D, E are also coplanar with dihedral angles of B/C = 0.63 (10)° and D/E = 0.77 (10)°. The coplanar ring systems containing rings B and D are oriented at a dihedral angle of 81.74 (10)°, their orientations with respect to ring A may also be given by the dihedral angles of 84.24 (12)° and 87.75 (15)°, respectively.

Some significant changes in the geometry of the oxime moiety are evident when the bond lengths and angles are compared with the corresponding values in compounds (II)-(VII) (Table 2). The oxime moiety has E configuration [C13—C1—N1—O1 176.9 (4)°; Chertanova et al., 1994].

In the crystal structure, the molecules are elongated approximatelly along the [101] direction and stacked along the b axis (Fig. 2).

Related literature top

For general background, see: Mann et al. (2001); Roth et al. (1997); Evans et al. (1996); Chen et al. (1993); Saito et al. (1993); Awouters et al. (1983); Brandstrom et al. (1985); Preston (1974); Lipshutz (1986); Coşkun et al. (1999); Sevagapandian et al. (2000); Forman (1964); Holan et al. (1984); Balsamo et al. (1990); Chertanova et al. (1994). For related literature, see: Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu & Batı (2001); Büyükgüngör et al. (2003); Hökelek et al. (2004); Hökelek et al. (2004a,b); Özel Güven, Erdoğan, Çaylak & Hökelek (2007); Özel Güven, Erdoğan, Göker & Yıldız (2007); Özel Güven, Çaylak & Hökelek (2007); Sarıkavaklı et al. (2007). For bond length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was synthesized by the reaction of 2-(1H-benzimidazol -1-yl)-1-(furan-2-yl)ethanone oxime (unpublished results) obtained from 2-(1H -benzimidazol-1-yl)-1-(furan-2-yl)ethanone (Özel Güven, Erdoğan, Göker & Yıldız, 2007) with 2,4-dichlorobenzyl chloride. To a solution of 2-(1H-benzimidazol-1-yl)-1-(furan -2-yl)ethanone oxime (300 mg, 1.244 mmol) in DMF (3 ml) was added NaH (49 mg, 1.244 mmol) in small fractions. Then, 2,4-dichlorobenzyl chloride (243 mg, 1.244 mmol) in DMF (1.2 ml) was added dropwise. The mixture was stirred at room temperature for 3 h and the excess of hydride was decomposed with a small amount of methyl alcohol. After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform and recrystallized from hexane-ethyl acetate mixture (1:3) (yield; 198.8 mg, 40%).

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, the benzimidazole heterocyclic ring system has attracted considerable attention, due to its useful properties for the development of interesting new pharmaceutical compounds (Mann et al., 2001). Some of the substituted benzimidazole derivatives have antitumour, antiviral, antibacterial, anti-inflammatory (Roth et al., 1997; Evans et al., 1996; Chen et al., 1993) and therapeutic (Saito et al., 1993; Awouters et al., 1983; Brandstrom et al., 1985) activities. On the other hand, a series of benzimidazole derivatives are useful for central nervous system disorders (Preston, 1974).

Furans, oximes and amines are very important compounds in organic chemistry. Furan is a relatively highly reactive heteroaromatic compound and is frequently used as an intermediate in organic synthesis (Lipshutz, 1986). In literature, Beckmann fragmentation reaction of N-aryl-N,N-diphenacylamine dioximes has been reported as a new method for the synthesis of imidazooxadiazolones which are imidazole derivatives (Coşkun et al., 1999).

Oxime and dioxime derivatives are very important compounds in the chemical industry and medicine (Sevagapandian et al., 2000). They have a broad pharmacological activity spectrum, encompassing antibacterial, antidepressant and antifungal activities (Forman, 1964; Holan et al., 1984; Balsamo et al., 1990). The oxime (–C=N—OH) moiety is potentially ambidentate, with possibilities of coordination through nitrogen and/or oxygen atoms.

The structures of oxime and dioxime derivatives have been the subject of much interest in our laboratory; examples are 2,3-dimethylquinoxaline-dimethyl- glyoxime (1/1), [(II) Hökelek, Batı et al., 2001], 1-(2,6-dimethylphenyl- amino)propane-1,2-dione dioxime, [(III) (Hökelek, Zülfikaroğlu et al., 2001), N-hydroxy-2-oxo-2,N'-diphenylacetamidine, [(IV) (Büyükgüngör et al., 2003], N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine, [(V) Hökelek et al., 2004], N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one [(VI) Hökelek et al., 2004a], N-(3-chloro-4-methylphenyl)-N'-hydroxy-2 -oxo-2-phenylacetamidine [(VII) Hökelek et al., 2004b], 2-(1H-benzimidazol -1-yl)-1-phenylethanone oxime [(VIII) Özel Güven, Erdoğan, Çaylak & Hökelek, 2007], (1Z,2E)-1-(3,5-dimethyl-1H-pyrazole-1-yl)ethane-1,2-dione dioxime [(IX) Sarıkavaklı et al., 2007] and N,N-bis[2-(2-furyl)-2-(hydroxyimino)ethyl]- aniline [(X) Özel Güven, Çaylak & Hökelek, 2007]. The structure determination of the title molecule, (I) was carried out in order to investigate the strength of the hydrogen bonding capability and to compare the geometry of the oxime moiety with the previously reported ones.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The intramolecular C—H···O hydrogen bond (Table 1) causes the formation of a planar six-membered ring B (O1/N1/C1/C9/C10/H10). The rings A (C3—C8), C (O2/C9—C12), D (N2/N3/C14/C15/C20) and E (C15—C20) are, of course, planar and rings B, C and D, E are also coplanar with dihedral angles of B/C = 0.63 (10)° and D/E = 0.77 (10)°. The coplanar ring systems containing rings B and D are oriented at a dihedral angle of 81.74 (10)°, their orientations with respect to ring A may also be given by the dihedral angles of 84.24 (12)° and 87.75 (15)°, respectively.

Some significant changes in the geometry of the oxime moiety are evident when the bond lengths and angles are compared with the corresponding values in compounds (II)-(VII) (Table 2). The oxime moiety has E configuration [C13—C1—N1—O1 176.9 (4)°; Chertanova et al., 1994].

In the crystal structure, the molecules are elongated approximatelly along the [101] direction and stacked along the b axis (Fig. 2).

For general background, see: Mann et al. (2001); Roth et al. (1997); Evans et al. (1996); Chen et al. (1993); Saito et al. (1993); Awouters et al. (1983); Brandstrom et al. (1985); Preston (1974); Lipshutz (1986); Coşkun et al. (1999); Sevagapandian et al. (2000); Forman (1964); Holan et al. (1984); Balsamo et al. (1990); Chertanova et al. (1994). For related literature, see: Hökelek, Batı et al. (2001); Hökelek, Zülfikaroğlu & Batı (2001); Büyükgüngör et al. (2003); Hökelek et al. (2004); Hökelek et al. (2004a,b); Özel Güven, Erdoğan, Çaylak & Hökelek (2007); Özel Güven, Erdoğan, Göker & Yıldız (2007); Özel Güven, Çaylak & Hökelek (2007); Sarıkavaklı et al. (2007). For bond length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
2-(1H-Benzimidazol-1-yl)-1-(furan-2-yl)ethanone O-2,4-dichlorobenzyloxime top
Crystal data top
C20H15Cl2N3O2F(000) = 412
Mr = 400.25Dx = 1.404 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 9.4407 (1) Åθ = 3.5–18.6°
b = 5.3902 (2) ŵ = 0.36 mm1
c = 18.6522 (3) ÅT = 298 K
β = 94.036 (10)°Rod-shaped, colorless
V = 946.81 (4) Å30.25 × 0.20 × 0.15 mm
Z = 2
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1174 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 25.7°, θmin = 3.0°
Non–profiled ω scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 60
Tmin = 0.915, Tmax = 0.948l = 2222
2117 measured reflections3 standard reflections every 120 min
1995 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1729P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1995 reflectionsΔρmax = 0.21 e Å3
244 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack (1983), with no Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (14)
Crystal data top
C20H15Cl2N3O2V = 946.81 (4) Å3
Mr = 400.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.4407 (1) ŵ = 0.36 mm1
b = 5.3902 (2) ÅT = 298 K
c = 18.6522 (3) Å0.25 × 0.20 × 0.15 mm
β = 94.036 (10)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1174 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.915, Tmax = 0.9483 standard reflections every 120 min
2117 measured reflections intensity decay: 1%
1995 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.21 e Å3
S = 1.03Δρmin = 0.20 e Å3
1995 reflectionsAbsolute structure: Flack (1983), with no Friedel pairs
244 parametersAbsolute structure parameter: 0.01 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63539 (17)0.8163 (4)0.37586 (10)0.1067 (7)
Cl20.1649 (2)0.7940 (5)0.51681 (9)0.1270 (9)
O10.4975 (3)0.5363 (8)0.22831 (17)0.0662 (12)
O20.3559 (3)0.9900 (8)0.06584 (16)0.0543 (9)
N10.3599 (4)0.5022 (10)0.1976 (2)0.0595 (12)
N20.0875 (4)0.8162 (9)0.11909 (19)0.0492 (10)
N30.0552 (4)1.1369 (10)0.0901 (2)0.0559 (11)
C10.3307 (5)0.6582 (11)0.1464 (2)0.0453 (12)
C20.5134 (6)0.3715 (12)0.2900 (3)0.0739 (18)
H2A0.61320.35700.30590.089*
H2B0.47850.20770.27640.089*
C30.4328 (5)0.4690 (13)0.3499 (3)0.0574 (14)
C40.4757 (6)0.6715 (13)0.3905 (3)0.0618 (15)
C50.3959 (7)0.7696 (13)0.4422 (3)0.0733 (17)
H50.42740.90750.46870.088*
C60.2697 (7)0.6603 (16)0.4538 (3)0.0734 (18)
C70.2235 (6)0.4581 (15)0.4166 (3)0.0769 (18)
H70.13790.38290.42570.092*
C80.3069 (6)0.3649 (12)0.3644 (3)0.0689 (16)
H80.27530.22590.33840.083*
C90.4190 (5)0.8531 (10)0.1216 (2)0.0457 (12)
C100.5505 (5)0.9418 (12)0.1382 (3)0.0545 (14)
H100.61540.88340.17410.065*
C110.5712 (6)1.1388 (13)0.0911 (3)0.0641 (15)
H110.65261.23530.08950.077*
C120.4519 (6)1.1616 (12)0.0489 (3)0.0599 (14)
H120.43691.27960.01280.072*
C130.1856 (5)0.6136 (11)0.1096 (2)0.0529 (13)
H13A0.19500.58920.05860.063*
H13B0.14650.46250.12840.063*
C140.0276 (5)0.9663 (12)0.0671 (2)0.0532 (13)
H140.04440.94860.01880.064*
C150.0491 (5)1.1001 (10)0.1642 (3)0.0484 (13)
C160.1138 (5)1.2320 (11)0.2159 (3)0.0604 (16)
H160.17091.36850.20390.072*
C170.0910 (5)1.1544 (15)0.2863 (3)0.0703 (17)
H170.13471.23870.32220.084*
C180.0042 (6)0.9532 (15)0.3044 (3)0.0697 (17)
H180.00870.90540.35230.084*
C190.0631 (5)0.8225 (13)0.2535 (2)0.0613 (15)
H190.12230.68880.26570.074*
C200.0379 (5)0.9009 (10)0.1831 (2)0.0477 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0859 (11)0.1158 (16)0.1163 (12)0.0308 (13)0.0083 (9)0.0296 (14)
Cl20.1575 (16)0.148 (2)0.0799 (11)0.0560 (19)0.0406 (11)0.0051 (14)
O10.062 (2)0.084 (3)0.053 (2)0.008 (2)0.0046 (17)0.013 (2)
O20.0514 (18)0.059 (2)0.0527 (18)0.002 (2)0.0043 (15)0.008 (2)
N10.056 (3)0.067 (3)0.056 (2)0.006 (3)0.006 (2)0.003 (3)
N20.045 (2)0.056 (3)0.047 (2)0.002 (3)0.0030 (18)0.006 (2)
N30.051 (2)0.064 (3)0.053 (2)0.003 (3)0.0043 (19)0.004 (3)
C10.051 (3)0.048 (3)0.038 (2)0.002 (3)0.011 (2)0.005 (3)
C20.079 (3)0.080 (5)0.063 (3)0.031 (4)0.001 (3)0.017 (4)
C30.056 (3)0.064 (4)0.052 (3)0.010 (3)0.000 (2)0.015 (3)
C40.067 (3)0.066 (4)0.051 (3)0.000 (4)0.005 (3)0.017 (3)
C50.099 (4)0.062 (4)0.057 (3)0.005 (4)0.010 (3)0.000 (3)
C60.092 (5)0.084 (5)0.045 (3)0.020 (5)0.007 (3)0.008 (4)
C70.066 (3)0.090 (5)0.076 (4)0.006 (4)0.011 (3)0.017 (4)
C80.086 (4)0.057 (4)0.063 (3)0.002 (4)0.002 (3)0.005 (3)
C90.048 (3)0.049 (3)0.040 (2)0.006 (3)0.004 (2)0.006 (3)
C100.052 (3)0.061 (4)0.051 (3)0.001 (3)0.003 (2)0.003 (3)
C110.059 (3)0.067 (4)0.067 (3)0.010 (3)0.011 (3)0.016 (4)
C120.068 (3)0.054 (4)0.060 (3)0.005 (4)0.023 (3)0.008 (3)
C130.054 (3)0.052 (4)0.054 (3)0.006 (3)0.004 (2)0.007 (3)
C140.048 (3)0.068 (4)0.043 (3)0.005 (3)0.004 (2)0.002 (3)
C150.038 (2)0.054 (4)0.053 (3)0.001 (3)0.002 (2)0.001 (3)
C160.045 (3)0.069 (4)0.067 (3)0.004 (3)0.005 (3)0.003 (3)
C170.059 (3)0.097 (5)0.056 (3)0.003 (4)0.009 (3)0.013 (4)
C180.065 (3)0.095 (5)0.049 (3)0.002 (4)0.006 (3)0.002 (4)
C190.056 (3)0.075 (4)0.053 (3)0.001 (4)0.003 (2)0.007 (3)
C200.037 (2)0.053 (4)0.053 (3)0.009 (3)0.001 (2)0.002 (3)
Geometric parameters (Å, º) top
Cl1—C41.737 (6)C7—H70.9300
Cl2—C61.744 (6)C8—H80.9300
O1—N11.395 (5)C9—C101.347 (6)
O1—C21.453 (6)C9—C11.437 (7)
O2—C91.376 (5)C10—H100.9300
O2—C121.348 (6)C11—C101.401 (8)
N1—C11.287 (6)C11—H110.9300
N2—C141.356 (6)C12—C111.333 (7)
N2—C131.451 (6)C12—H120.9300
N2—C201.389 (6)C13—H13A0.9700
N3—C141.300 (7)C13—H13B0.9700
N3—C151.393 (6)C14—H140.9300
C1—C131.508 (6)C15—C161.376 (6)
C2—H2A0.9700C15—C201.382 (7)
C2—H2B0.9700C16—C171.380 (7)
C3—C81.360 (7)C16—H160.9300
C3—C41.373 (9)C17—H170.9300
C3—C21.491 (7)C18—C171.387 (9)
C5—C41.371 (7)C18—H180.9300
C5—H50.9300C19—C181.373 (7)
C6—C51.360 (8)C19—C201.385 (6)
C7—C61.348 (9)C19—H190.9300
C7—C81.388 (7)
N1—O1—C2106.6 (4)C9—C10—C11107.0 (5)
C12—O2—C9106.4 (4)C9—C10—H10126.5
C1—N1—O1111.3 (4)C11—C10—H10126.5
C14—N2—C20105.6 (4)C12—C11—C10106.9 (5)
C14—N2—C13126.8 (4)C12—C11—H11126.6
C20—N2—C13127.5 (4)C10—C11—H11126.6
C14—N3—C15104.1 (4)C11—C12—O2110.7 (5)
N1—C1—C9128.1 (4)C11—C12—H12124.7
N1—C1—C13112.0 (5)O2—C12—H12124.7
C9—C1—C13119.9 (4)N2—C13—C1113.0 (4)
O1—C2—C3110.4 (5)N2—C13—H13A109.0
O1—C2—H2A109.6C1—C13—H13A109.0
C3—C2—H2A109.6N2—C13—H13B109.0
O1—C2—H2B109.6C1—C13—H13B109.0
C3—C2—H2B109.6H13A—C13—H13B107.8
H2A—C2—H2B108.1N3—C14—N2114.6 (4)
C8—C3—C4116.5 (5)N3—C14—H14122.7
C8—C3—C2120.3 (6)N2—C14—H14122.7
C4—C3—C2123.2 (5)C16—C15—C20120.5 (5)
C5—C4—C3122.7 (5)C16—C15—N3129.2 (5)
C5—C4—Cl1117.6 (5)C20—C15—N3110.2 (4)
C3—C4—Cl1119.7 (5)C15—C16—C17117.6 (5)
C6—C5—C4118.4 (6)C15—C16—H16121.2
C6—C5—H5120.8C17—C16—H16121.2
C4—C5—H5120.8C16—C17—C18121.3 (5)
C7—C6—C5121.6 (6)C16—C17—H17119.4
C7—C6—Cl2120.2 (6)C18—C17—H17119.4
C5—C6—Cl2118.2 (6)C19—C18—C17121.8 (5)
C6—C7—C8118.3 (6)C19—C18—H18119.1
C6—C7—H7120.8C17—C18—H18119.1
C8—C7—H7120.8C18—C19—C20116.2 (6)
C3—C8—C7122.5 (6)C18—C19—H19121.9
C3—C8—H8118.7C20—C19—H19121.9
C7—C8—H8118.7C15—C20—C19122.6 (5)
C10—C9—O2109.0 (5)C15—C20—N2105.5 (4)
C10—C9—C1137.0 (5)C19—C20—N2132.0 (5)
O2—C9—C1113.9 (4)
C2—O1—N1—C1173.8 (4)C2—C3—C8—C7175.9 (5)
N1—O1—C2—C373.5 (5)C6—C5—C4—C30.4 (8)
C12—O2—C9—C100.3 (5)C6—C5—C4—Cl1179.2 (5)
C12—O2—C9—C1179.6 (4)C7—C6—C5—C41.0 (9)
C9—O2—C12—C110.0 (5)Cl2—C6—C5—C4177.1 (4)
O1—N1—C1—C91.8 (7)C8—C7—C6—C51.3 (9)
O1—N1—C1—C13176.4 (4)C8—C7—C6—Cl2176.8 (5)
C14—N2—C13—C1115.4 (5)C6—C7—C8—C30.3 (9)
C20—N2—C13—C162.9 (6)C10—C9—C1—N10.7 (9)
C20—N2—C14—N30.3 (6)O2—C9—C1—N1179.5 (5)
C13—N2—C14—N3178.9 (4)C10—C9—C1—C13177.5 (5)
C14—N2—C20—C150.3 (5)O2—C9—C1—C132.4 (6)
C13—N2—C20—C15178.3 (4)O2—C9—C10—C110.5 (5)
C14—N2—C20—C19179.5 (5)C1—C9—C10—C11179.4 (5)
C13—N2—C20—C190.9 (8)C12—C11—C10—C90.5 (6)
C15—N3—C14—N20.8 (6)O2—C12—C11—C100.3 (6)
C14—N3—C15—C16178.3 (5)C20—C15—C16—C171.4 (7)
C14—N3—C15—C200.9 (5)N3—C15—C16—C17179.4 (5)
N1—C1—C13—N2114.9 (5)C16—C15—C20—C190.8 (7)
C9—C1—C13—N266.6 (5)N3—C15—C20—C19179.9 (5)
C8—C3—C2—O1103.7 (6)C16—C15—C20—N2178.6 (4)
C4—C3—C2—O173.0 (6)N3—C15—C20—N20.8 (5)
C8—C3—C4—C51.3 (8)C15—C16—C17—C181.0 (8)
C2—C3—C4—C5175.5 (5)C19—C18—C17—C160.2 (9)
C8—C3—C4—Cl1179.9 (4)C18—C19—C20—C150.4 (7)
C2—C3—C4—Cl13.4 (7)C18—C19—C20—N2179.5 (5)
C4—C3—C8—C71.0 (8)C20—C19—C18—C170.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.432.823 (7)105

Experimental details

Crystal data
Chemical formulaC20H15Cl2N3O2
Mr400.25
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)9.4407 (1), 5.3902 (2), 18.6522 (3)
β (°) 94.036 (10)
V3)946.81 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.915, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
2117, 1995, 1174
Rint0.036
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.03
No. of reflections1995
No. of parameters244
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20
Absolute structureFlack (1983), with no Friedel pairs
Absolute structure parameter0.01 (14)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O10.932.432.823 (7)105.0
Comparison of the bond lengths and angles (Å, °) in the oxime units of (I) with the corresponding values in the related compounds (II)–(VII). top
Bond/Angle(I)(II)(III)(IV)(V)(VI)(VII)
N1—O11.395 (5)1.403 (2)1.423 (3)1.417 (1)1.429 (4)1.424 (2)1.416 (3)
1.396 (2)1.396 (3)1.397 (3)
N1—C11.287 (6)1.281 (2)1.290 (3)1.290 (1)1.241 (6)1.289 (2)1.282 (3)
1.281 (2)1.282 (3)1.289 (3)
C1—C131.508 (6)1.477 (3)1.489 (3)1.510 (1)1.551 (7)1.513 (2)1.501 (4)
1.473 (3)1.502 (4)
C13—C1—N1112.0 (5)115.2 (2)116.6 (2)114.3 (1)118.3 (5)113.2 (1)114.4 (2)
115.0 (2)115.0 (2)113.4 (2)
C1—N1—O1111.3 (4)112.4 (1)109.4 (2)110.7 (1)112.2 (4)110.6 (1)110.7 (2)
112.2 (1)111.5 (2)111.1 (2)
Notes: (II): 2,3-dimethylquinoxaline–dimethylglyoxime (1/1) (Hökelek, Batı et al., 2001); (III): 1-(2,6-dimethylphenylamino)propane-1,2-dione dioxime (Hökelek, Zülfikaroğlu & Batı, 2001); (IV): N-hydroxy-2-oxo-2,N'-diphenylacetamidine (Büyükgüngör et al., 2003); (V): N-(3,4-dichlorophenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine (Hökelek et al., 2004); (VI): N-hydroxy-N'-(1-naphthyl)-2-phenylacetamidin-2-one (Hökelek et al., 2004a); (VII): N-(3-chloro-4-methylphenyl)-N'-hydroxy-2-oxo-2-phenylacetamidine-2,3- dimethylquinoxaline–dimethylglyoxime (1/1) (Hökelek et al., 2004b).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds