Download citation
Download citation
link to html
In the title monomeric compound, [Co(N3)2(C10H8N2)2]ClO4, the CoIII ion has a distorted octa­hedral coordination geometry formed by four N atoms from two chelating bipyridine ligands and two N atoms from azide groups, with the two azide groups in cis positions. The crystal structure is stabilized by weak C—H...O and C—H...N hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807046806/xu2329sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807046806/xu2329Isup2.hkl
Contains datablock I

CCDC reference: 663657

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.045
  • wR factor = 0.142
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for N8 - N9 .. 5.13 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N9 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for Cl1 PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C1 .. 3.01 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (3) 3.55
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

At present, studies on self-assembly processes involving metal ions and inorganic or organic ligands have intensely attracted much attention in the fields of supramolecular chemistry and crystal engineering. The azide anion as an excellent versatile inorganic ligand has synthesized a great deal of compounds with attractive structural diversity, which possess potential application on metalloenzymes, and antiferromagnetic or ferromagnetic type interactions between the metallic centres (Baffert et al., 2001; Zhang et al., 2000; Aebersold et al., 1998). Many complexes with the pseudohalide azide anion N3- and 2,2'-bipyridine ligand have been synthesized and their structure have been reported, such as [Cd(N3)2(C10H8N2)2] (Jian et al., 2005), [Mn(N3)2(C10H8N2)2] (Cheng et al., 2004), [Zn(N3)2(C10H8N2)2]·H2O (Jian et al., 2004) and [Ni(N3)2(C10H8N2)2]·H2O (Urtiaga et al., 1995). In this paper, we report the crystal structure of the title compound.

The asymmetric unit of crystal of the title compound comprises one mononuclear cobalt complex and one perchlorate (Fig. 1). The CoIII cation is six-coordinated to four N atoms from two chelating 2,2'-bipyridyl ligands and two other N atoms from two azide anion ligands. The two 2,2'-bipyridine ligands are bonded in bidentate mode to cobalt, forming five-membered chelate rings. Selected geometric parameters are listed in Table 1. The distances of four dative Co—N are not much different from that of the two Co—Nazide. The metal ion and six N atoms form a distorted octahedral geometry with the Co—N bond lengths in the range from 1.935 (3) to 1.949 (3) Å. The two azide ligands are practically linear [N7—N6···N5 (177.0 (4) °), N10—N9···N8 (176.2 (4) °)], which occupy cis-positions in the coordination polyhedron. No hydrogen bonding occurs between the Co complex cation and perchlorate anion. The similar coordination mode are observed in the structures of [Co(N3)2(C10H8N2)2]·Cl·2H2O (Tang et al., 2004), [Co(N3)2(C10H8N2)2]·NO3·2H2O (Chen, 2002).

In this crystal structure, there are some weak C—H···O and C—H···N hydrogen-bond interactions (Table 2), all of which stabilize the crystal structure.

Related literature top

For general background, see: Aebersold et al. (1998); Baffert et al. (2001); Zhang et al. (2000). For related structures, see: Chen (2002); Cheng et al. (2004); Jian et al. (2004, 2005); Tang et al. (2004); Urtiaga et al. (1995).

Experimental top

The complex was synthesized hydrothermally under autogenous pressure. A mixture of cobalt(II) perchlorate hexahydrate (73.2 mg, 0.2 mmol), 2,2'-bipyridine (62.4 mg, 0.4 mmol), sodium azide (26.4 mg, 0.4 mmol), 3,5-pyrazoledicarboxylic acid (34.8 mg, 0.2 mmol) and H2O (15 ml) was sealed in a 40 ml stainless steel reactor with a Teflon liner and heated directly to 433 K. After maintaining this temperature for 72 h, the mixture was cooled slowly to room temperature at a rate of 5 K.h-. Pink block-shaped crystals were obtained by filtration in 40% yield. Analysis calculated for C20H16ClCoN10O4(%): C 43.30, H 2.91, N 25.25; found: C 43.24, H 2.89, N 25.21.

Refinement top

All H atoms were placed in geometrically idealized positions with C—H = 0.93 Å and refined in the riding-model approximation, Uiso(H) = 1.2Ueq(C).

Structure description top

At present, studies on self-assembly processes involving metal ions and inorganic or organic ligands have intensely attracted much attention in the fields of supramolecular chemistry and crystal engineering. The azide anion as an excellent versatile inorganic ligand has synthesized a great deal of compounds with attractive structural diversity, which possess potential application on metalloenzymes, and antiferromagnetic or ferromagnetic type interactions between the metallic centres (Baffert et al., 2001; Zhang et al., 2000; Aebersold et al., 1998). Many complexes with the pseudohalide azide anion N3- and 2,2'-bipyridine ligand have been synthesized and their structure have been reported, such as [Cd(N3)2(C10H8N2)2] (Jian et al., 2005), [Mn(N3)2(C10H8N2)2] (Cheng et al., 2004), [Zn(N3)2(C10H8N2)2]·H2O (Jian et al., 2004) and [Ni(N3)2(C10H8N2)2]·H2O (Urtiaga et al., 1995). In this paper, we report the crystal structure of the title compound.

The asymmetric unit of crystal of the title compound comprises one mononuclear cobalt complex and one perchlorate (Fig. 1). The CoIII cation is six-coordinated to four N atoms from two chelating 2,2'-bipyridyl ligands and two other N atoms from two azide anion ligands. The two 2,2'-bipyridine ligands are bonded in bidentate mode to cobalt, forming five-membered chelate rings. Selected geometric parameters are listed in Table 1. The distances of four dative Co—N are not much different from that of the two Co—Nazide. The metal ion and six N atoms form a distorted octahedral geometry with the Co—N bond lengths in the range from 1.935 (3) to 1.949 (3) Å. The two azide ligands are practically linear [N7—N6···N5 (177.0 (4) °), N10—N9···N8 (176.2 (4) °)], which occupy cis-positions in the coordination polyhedron. No hydrogen bonding occurs between the Co complex cation and perchlorate anion. The similar coordination mode are observed in the structures of [Co(N3)2(C10H8N2)2]·Cl·2H2O (Tang et al., 2004), [Co(N3)2(C10H8N2)2]·NO3·2H2O (Chen, 2002).

In this crystal structure, there are some weak C—H···O and C—H···N hydrogen-bond interactions (Table 2), all of which stabilize the crystal structure.

For general background, see: Aebersold et al. (1998); Baffert et al. (2001); Zhang et al. (2000). For related structures, see: Chen (2002); Cheng et al. (2004); Jian et al. (2004, 2005); Tang et al. (2004); Urtiaga et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997.

Figures top
[Figure 1] Fig. 1. The structure of complex (I), with displacement ellipsoids drawn at the 30% probability level.
Diazidobis(2,2'-bipyridine)cobalt(III) perchlorate top
Crystal data top
[Co(N3)2(C10H8N2)2]ClO4F(000) = 1128
Mr = 554.81Dx = 1.623 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2749 reflections
a = 15.0375 (17) Åθ = 2.7–21.4°
b = 8.1402 (9) ŵ = 0.93 mm1
c = 18.966 (2) ÅT = 291 K
β = 101.970 (1)°Block, pink
V = 2271.1 (4) Å30.31 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4180 independent reflections
Radiation source: fine-focus sealed tube3043 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1718
Tmin = 0.761, Tmax = 0.894k = 99
14394 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0775P)2 + 1.0728P]
where P = (Fo2 + 2Fc2)/3
4180 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(N3)2(C10H8N2)2]ClO4V = 2271.1 (4) Å3
Mr = 554.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.0375 (17) ŵ = 0.93 mm1
b = 8.1402 (9) ÅT = 291 K
c = 18.966 (2) Å0.31 × 0.21 × 0.12 mm
β = 101.970 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4180 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3043 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.894Rint = 0.039
14394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
4180 reflectionsΔρmin = 0.45 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57781 (7)0.81455 (13)0.15942 (5)0.0604 (3)
O10.6113 (4)0.6733 (5)0.1936 (3)0.159 (2)
O20.5838 (5)0.9370 (6)0.2087 (3)0.195 (3)
O30.6181 (6)0.8543 (12)0.1072 (4)0.263 (5)
O40.4896 (4)0.7874 (8)0.1272 (5)0.229 (4)
Co10.20342 (3)0.00720 (5)0.04533 (2)0.03801 (18)
N10.15295 (19)0.1446 (4)0.10508 (14)0.0418 (7)
N20.30938 (19)0.1351 (3)0.07175 (14)0.0417 (7)
N30.16283 (18)0.1110 (3)0.04490 (15)0.0412 (7)
N40.25327 (18)0.1564 (3)0.01633 (15)0.0408 (7)
N50.2487 (2)0.1398 (4)0.13068 (16)0.0495 (8)
N60.1938 (2)0.1810 (4)0.16520 (16)0.0500 (8)
N70.1441 (3)0.2227 (5)0.20088 (19)0.0715 (10)
N80.0904 (2)0.1302 (4)0.02225 (16)0.0465 (7)
N90.09487 (19)0.2771 (4)0.02498 (16)0.0488 (8)
N100.0945 (3)0.4182 (5)0.0286 (3)0.0877 (13)
C10.3899 (3)0.1159 (5)0.0523 (2)0.0542 (10)
H10.39800.02710.02350.065*
C20.4604 (3)0.2238 (6)0.0740 (2)0.0632 (11)
H20.51540.20740.05990.076*
C30.4496 (3)0.3554 (6)0.1163 (2)0.0641 (11)
H30.49670.43010.13060.077*
C40.3675 (3)0.3757 (5)0.1373 (2)0.0573 (10)
H40.35880.46370.16640.069*
C50.2985 (2)0.2634 (4)0.11455 (17)0.0438 (8)
C60.2093 (2)0.2669 (4)0.13491 (17)0.0429 (8)
C70.1844 (3)0.3782 (5)0.1817 (2)0.0536 (10)
H70.22360.46270.20100.064*
C80.1004 (3)0.3628 (5)0.1999 (2)0.0614 (11)
H80.08280.43570.23220.074*
C90.0433 (3)0.2389 (6)0.1697 (2)0.0612 (11)
H90.01360.22720.18110.073*
C100.0711 (3)0.1316 (5)0.1222 (2)0.0525 (9)
H100.03200.04820.10150.063*
C110.1199 (3)0.2562 (5)0.0540 (2)0.0526 (9)
H110.11020.31250.01350.063*
C120.0897 (3)0.3244 (5)0.1206 (2)0.0624 (11)
H120.06020.42540.12510.075*
C130.1034 (3)0.2427 (6)0.1806 (2)0.0728 (13)
H130.08340.28730.22630.087*
C140.1472 (3)0.0933 (6)0.1720 (2)0.0632 (11)
H140.15640.03520.21220.076*
C150.1775 (2)0.0299 (4)0.10371 (19)0.0450 (8)
C160.2262 (2)0.1256 (4)0.08716 (18)0.0422 (8)
C170.2435 (3)0.2360 (5)0.1382 (2)0.0581 (10)
H170.22430.21390.18710.070*
C180.2896 (3)0.3788 (5)0.1157 (2)0.0642 (11)
H180.30020.45580.14920.077*
C190.3195 (3)0.4068 (5)0.0437 (2)0.0599 (11)
H190.35250.50100.02770.072*
C200.3001 (2)0.2938 (5)0.0048 (2)0.0508 (9)
H200.32010.31340.05380.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0696 (7)0.0567 (6)0.0549 (6)0.0027 (5)0.0127 (5)0.0042 (5)
O10.255 (6)0.086 (3)0.104 (3)0.066 (3)0.038 (3)0.006 (3)
O20.348 (9)0.079 (3)0.156 (5)0.010 (5)0.048 (5)0.049 (4)
O30.288 (9)0.394 (12)0.145 (5)0.100 (9)0.130 (6)0.037 (7)
O40.100 (4)0.178 (6)0.353 (11)0.004 (4)0.083 (5)0.016 (6)
Co10.0382 (3)0.0406 (3)0.0342 (3)0.0025 (2)0.00499 (19)0.00220 (19)
N10.0430 (16)0.0463 (17)0.0351 (15)0.0052 (13)0.0059 (12)0.0004 (13)
N20.0433 (16)0.0449 (17)0.0359 (15)0.0002 (13)0.0060 (12)0.0006 (13)
N30.0425 (16)0.0400 (16)0.0387 (15)0.0044 (13)0.0031 (12)0.0021 (13)
N40.0420 (16)0.0398 (16)0.0400 (15)0.0029 (13)0.0072 (12)0.0006 (13)
N50.0480 (18)0.057 (2)0.0420 (16)0.0055 (15)0.0065 (14)0.0082 (15)
N60.059 (2)0.0506 (19)0.0377 (16)0.0017 (16)0.0036 (15)0.0022 (14)
N70.085 (3)0.081 (3)0.050 (2)0.019 (2)0.0189 (19)0.0043 (19)
N80.0432 (17)0.0416 (19)0.0523 (18)0.0008 (14)0.0047 (13)0.0041 (14)
N90.0409 (17)0.054 (2)0.0514 (18)0.0035 (15)0.0089 (14)0.0128 (16)
N100.077 (3)0.049 (2)0.134 (4)0.005 (2)0.014 (3)0.021 (3)
C10.050 (2)0.057 (2)0.057 (2)0.0012 (19)0.0148 (18)0.0039 (19)
C20.045 (2)0.073 (3)0.073 (3)0.008 (2)0.014 (2)0.002 (2)
C30.061 (3)0.069 (3)0.061 (3)0.023 (2)0.008 (2)0.002 (2)
C40.066 (3)0.052 (2)0.052 (2)0.011 (2)0.0073 (19)0.0047 (18)
C50.049 (2)0.044 (2)0.0361 (18)0.0011 (16)0.0041 (15)0.0023 (16)
C60.050 (2)0.044 (2)0.0327 (17)0.0062 (16)0.0034 (15)0.0012 (15)
C70.062 (2)0.050 (2)0.046 (2)0.0061 (19)0.0028 (18)0.0080 (18)
C80.070 (3)0.062 (3)0.052 (2)0.018 (2)0.013 (2)0.010 (2)
C90.054 (2)0.074 (3)0.058 (2)0.012 (2)0.0173 (19)0.010 (2)
C100.048 (2)0.060 (3)0.050 (2)0.0028 (18)0.0107 (17)0.0054 (18)
C110.061 (2)0.042 (2)0.053 (2)0.0079 (18)0.0083 (18)0.0021 (17)
C120.073 (3)0.048 (2)0.061 (3)0.012 (2)0.003 (2)0.013 (2)
C130.094 (3)0.068 (3)0.051 (2)0.007 (3)0.004 (2)0.017 (2)
C140.086 (3)0.061 (3)0.042 (2)0.011 (2)0.013 (2)0.005 (2)
C150.050 (2)0.044 (2)0.0405 (19)0.0015 (16)0.0085 (16)0.0018 (16)
C160.0434 (19)0.043 (2)0.0416 (19)0.0020 (16)0.0130 (15)0.0022 (16)
C170.067 (3)0.063 (3)0.045 (2)0.009 (2)0.0123 (19)0.0076 (19)
C180.071 (3)0.058 (3)0.067 (3)0.007 (2)0.023 (2)0.017 (2)
C190.060 (2)0.052 (3)0.071 (3)0.016 (2)0.021 (2)0.001 (2)
C200.051 (2)0.048 (2)0.053 (2)0.0103 (18)0.0096 (17)0.0009 (18)
Geometric parameters (Å, º) top
Cl1—O31.304 (5)C4—C51.383 (5)
Cl1—O21.357 (5)C4—H40.9300
Cl1—O41.359 (5)C5—C61.472 (5)
Cl1—O11.364 (4)C6—C71.373 (5)
Co1—N11.935 (3)C7—C81.383 (6)
Co1—N41.941 (3)C7—H70.9300
Co1—N81.942 (3)C8—C91.371 (6)
Co1—N51.947 (3)C8—H80.9300
Co1—N31.948 (3)C9—C101.380 (5)
Co1—N21.949 (3)C9—H90.9300
N1—C101.341 (4)C10—H100.9300
N1—C61.353 (4)C11—C121.369 (5)
N2—C11.346 (4)C11—H110.9300
N2—C51.353 (4)C12—C131.370 (6)
N3—C111.341 (4)C12—H120.9300
N3—C151.353 (4)C13—C141.376 (6)
N4—C201.338 (4)C13—H130.9300
N4—C161.344 (4)C14—C151.382 (5)
N5—N61.202 (4)C14—H140.9300
N6—N71.158 (4)C15—C161.463 (5)
N8—N91.198 (4)C16—C171.385 (5)
N9—N101.151 (5)C17—C181.375 (6)
C1—C21.372 (5)C17—H170.9300
C1—H10.9300C18—C191.365 (6)
C2—C31.368 (6)C18—H180.9300
C2—H20.9300C19—C201.375 (5)
C3—C41.385 (6)C19—H190.9300
C3—H30.9300C20—H200.9300
O3—Cl1—O2111.4 (5)N2—C5—C4121.5 (3)
O3—Cl1—O4105.3 (6)N2—C5—C6113.7 (3)
O2—Cl1—O4110.4 (5)C4—C5—C6124.8 (3)
O3—Cl1—O1112.7 (5)N1—C6—C7121.7 (3)
O2—Cl1—O1109.1 (3)N1—C6—C5113.7 (3)
O4—Cl1—O1107.8 (4)C7—C6—C5124.6 (3)
N1—Co1—N4178.80 (11)C6—C7—C8119.1 (4)
N1—Co1—N891.71 (12)C6—C7—H7120.4
N4—Co1—N888.34 (12)C8—C7—H7120.4
N1—Co1—N588.79 (12)C9—C8—C7119.2 (4)
N4—Co1—N592.41 (12)C9—C8—H8120.4
N8—Co1—N592.31 (13)C7—C8—H8120.4
N1—Co1—N396.30 (12)C8—C9—C10119.4 (4)
N4—Co1—N382.50 (12)C8—C9—H9120.3
N8—Co1—N387.51 (12)C10—C9—H9120.3
N5—Co1—N3174.91 (12)N1—C10—C9121.7 (4)
N1—Co1—N282.47 (12)N1—C10—H10119.1
N4—Co1—N297.44 (12)C9—C10—H10119.1
N8—Co1—N2173.90 (12)N3—C11—C12122.3 (4)
N5—Co1—N289.40 (12)N3—C11—H11118.8
N3—Co1—N291.30 (12)C12—C11—H11118.8
C10—N1—C6118.9 (3)C11—C12—C13119.4 (4)
C10—N1—Co1125.7 (3)C11—C12—H12120.3
C6—N1—Co1115.3 (2)C13—C12—H12120.3
C1—N2—C5118.7 (3)C12—C13—C14118.8 (4)
C1—N2—Co1126.5 (3)C12—C13—H13120.6
C5—N2—Co1114.8 (2)C14—C13—H13120.6
C11—N3—C15118.8 (3)C13—C14—C15119.8 (4)
C11—N3—Co1127.1 (2)C13—C14—H14120.1
C15—N3—Co1114.1 (2)C15—C14—H14120.1
C20—N4—C16119.1 (3)N3—C15—C14120.8 (3)
C20—N4—Co1126.0 (2)N3—C15—C16113.9 (3)
C16—N4—Co1114.3 (2)C14—C15—C16125.3 (3)
N6—N5—Co1116.5 (2)N4—C16—C17121.1 (3)
N7—N6—N5177.0 (4)N4—C16—C15114.2 (3)
N9—N8—Co1117.8 (2)C17—C16—C15124.7 (3)
N10—N9—N8176.2 (4)C18—C17—C16119.1 (4)
N2—C1—C2121.8 (4)C18—C17—H17120.4
N2—C1—H1119.1C16—C17—H17120.4
C2—C1—H1119.1C19—C18—C17119.5 (4)
C3—C2—C1119.9 (4)C19—C18—H18120.3
C3—C2—H2120.0C17—C18—H18120.3
C1—C2—H2120.0C18—C19—C20119.1 (4)
C2—C3—C4118.9 (4)C18—C19—H19120.5
C2—C3—H3120.5C20—C19—H19120.5
C4—C3—H3120.5N4—C20—C19122.1 (4)
C5—C4—C3119.1 (4)N4—C20—H20119.0
C5—C4—H4120.4C19—C20—H20119.0
C3—C4—H4120.4
N8—Co1—N1—C105.9 (3)Co1—N2—C5—C4179.5 (3)
N5—Co1—N1—C1086.3 (3)C1—N2—C5—C6177.2 (3)
N3—Co1—N1—C1093.6 (3)Co1—N2—C5—C62.0 (4)
N2—Co1—N1—C10175.9 (3)C3—C4—C5—N20.5 (6)
N8—Co1—N1—C6178.4 (2)C3—C4—C5—C6177.8 (3)
N5—Co1—N1—C689.3 (2)C10—N1—C6—C70.4 (5)
N3—Co1—N1—C690.7 (2)Co1—N1—C6—C7176.3 (3)
N2—Co1—N1—C60.3 (2)C10—N1—C6—C5177.3 (3)
N1—Co1—N2—C1178.1 (3)Co1—N1—C6—C51.4 (4)
N4—Co1—N2—C13.1 (3)N2—C5—C6—N12.2 (4)
N5—Co1—N2—C189.3 (3)C4—C5—C6—N1179.4 (3)
N3—Co1—N2—C185.7 (3)N2—C5—C6—C7175.4 (3)
N1—Co1—N2—C51.0 (2)C4—C5—C6—C73.0 (6)
N4—Co1—N2—C5177.8 (2)N1—C6—C7—C81.2 (5)
N5—Co1—N2—C589.9 (2)C5—C6—C7—C8176.2 (3)
N3—Co1—N2—C595.2 (2)C6—C7—C8—C91.2 (6)
N1—Co1—N3—C114.0 (3)C7—C8—C9—C100.4 (6)
N4—Co1—N3—C11175.9 (3)C6—N1—C10—C90.5 (5)
N8—Co1—N3—C1195.5 (3)Co1—N1—C10—C9175.0 (3)
N2—Co1—N3—C1178.6 (3)C8—C9—C10—N10.5 (6)
N1—Co1—N3—C15172.9 (2)C15—N3—C11—C120.6 (6)
N4—Co1—N3—C157.2 (2)Co1—N3—C11—C12176.3 (3)
N8—Co1—N3—C1581.5 (3)N3—C11—C12—C130.1 (7)
N2—Co1—N3—C15104.5 (3)C11—C12—C13—C140.1 (7)
N8—Co1—N4—C2092.5 (3)C12—C13—C14—C150.9 (7)
N5—Co1—N4—C200.2 (3)C11—N3—C15—C141.4 (5)
N3—Co1—N4—C20179.8 (3)Co1—N3—C15—C14175.9 (3)
N2—Co1—N4—C2089.5 (3)C11—N3—C15—C16179.0 (3)
N8—Co1—N4—C1678.2 (2)Co1—N3—C15—C163.7 (4)
N5—Co1—N4—C16170.4 (2)C13—C14—C15—N31.5 (6)
N3—Co1—N4—C169.5 (2)C13—C14—C15—C16178.9 (4)
N2—Co1—N4—C1699.9 (2)C20—N4—C16—C172.0 (5)
N1—Co1—N5—N653.8 (3)Co1—N4—C16—C17169.3 (3)
N4—Co1—N5—N6126.3 (3)C20—N4—C16—C15178.6 (3)
N8—Co1—N5—N637.8 (3)Co1—N4—C16—C1510.0 (4)
N2—Co1—N5—N6136.3 (3)N3—C15—C16—N44.1 (5)
N1—Co1—N8—N9134.8 (3)C14—C15—C16—N4176.3 (4)
N4—Co1—N8—N946.4 (3)N3—C15—C16—C17175.2 (3)
N5—Co1—N8—N946.0 (3)C14—C15—C16—C174.4 (6)
N3—Co1—N8—N9129.0 (3)N4—C16—C17—C180.3 (6)
C5—N2—C1—C20.9 (5)C15—C16—C17—C18179.5 (4)
Co1—N2—C1—C2180.0 (3)C16—C17—C18—C191.9 (6)
N2—C1—C2—C30.2 (6)C17—C18—C19—C202.2 (6)
C1—C2—C3—C41.0 (6)C16—N4—C20—C191.7 (5)
C2—C3—C4—C50.6 (6)Co1—N4—C20—C19168.6 (3)
C1—N2—C5—C41.2 (5)C18—C19—C20—N40.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N80.932.382.906 (5)115
C11—H11···N10i0.932.363.142 (6)141
C13—H13···O2ii0.932.563.322 (6)139
C14—H14···O1iii0.932.463.305 (6)152
C17—H17···O1iii0.932.553.430 (6)157
C18—H18···O1iv0.932.473.326 (6)154
C20—H20···N50.932.432.938 (5)114
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(N3)2(C10H8N2)2]ClO4
Mr554.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)15.0375 (17), 8.1402 (9), 18.966 (2)
β (°) 101.970 (1)
V3)2271.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.31 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.761, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
14394, 4180, 3043
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.142, 1.03
No. of reflections4180
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.45

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL (Bruker, 1997.

Selected geometric parameters (Å, º) top
Co1—N11.935 (3)Co1—N51.947 (3)
Co1—N41.941 (3)Co1—N31.948 (3)
Co1—N81.942 (3)Co1—N21.949 (3)
N1—Co1—N4178.80 (11)N8—Co1—N387.51 (12)
N1—Co1—N891.71 (12)N5—Co1—N3174.91 (12)
N4—Co1—N888.34 (12)N1—Co1—N282.47 (12)
N1—Co1—N588.79 (12)N4—Co1—N297.44 (12)
N4—Co1—N592.41 (12)N8—Co1—N2173.90 (12)
N8—Co1—N592.31 (13)N5—Co1—N289.40 (12)
N1—Co1—N396.30 (12)N3—Co1—N291.30 (12)
N4—Co1—N382.50 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···N80.932.382.906 (5)115
C11—H11···N10i0.932.363.142 (6)141
C13—H13···O2ii0.932.563.322 (6)139
C14—H14···O1iii0.932.463.305 (6)152
C17—H17···O1iii0.932.553.430 (6)157
C18—H18···O1iv0.932.473.326 (6)154
C20—H20···N50.932.432.938 (5)114
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds