Download citation
Download citation
link to html
In the title compound, [Pd(C8H4O4)(C3H4N2)2(H2O)]n, two monodendate imidazole ligands are bonded to the PdII atom, and individual units are linked into chains by 1,3-benzene­dicarboxyl­ate anions. The PdII atom is seven-coordinated by two N atoms from two imidazole ligands, four O atoms from two independent 1,3-benzene­dicarboxyl­ate anions and one water mol­ecule, exhibiting a distorted penta­gonal–bipyramidal coordination environment. One of the carboxyl­ate O atoms at the base of the pyramid is bonded only very loosely, with a Pd—O distance of 2.771 (2) Å [cf. 2.312 (2)–2.488 (3) Å for the other Pd—O distances]. N—H...O and O—H...O hydrogen-bonding inter­actions link parallel chains together.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044315/zl2039sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044315/zl2039Isup2.hkl
Contains datablock I

CCDC reference: 1259340

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.031
  • wR factor = 0.071
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.80 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Pd1 (2) 1.35 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound, poly[aqua (benzene-1,3-dicarboxylato) bis(imidazole) palladium(II)].

The molecular structure of the title compound is shown in Fig. 1. Pd(II) is seven-coordianted with two N atoms from two imidazole ligands, four O atoms from two independent 1,3-benzene dicarboxylate, and one water molecule. The palladium ion exhibits a distorted pentagonal bipyramidal coordination environment with one of the imidazole ligands and the water molecule being located in the two apical positions, and the N and O atoms of the remaining imidazole and the carboxylate ions in the basal plane. One of the carboxylate ions is coordinated to the Pd(II) ion in an asymmetric fashion with the Pd(1)—O(3) bond being with 2.771 (2) Å much longer than the other Pd—O bonding distances (2.312 (2) to 2.488 (3) Å). The 1,3-benzene dicarboxylate ions bridge neigboring Pd(II) ion to gives rise to one-dimensional zigzag chains (Fig. 2). N—H···O and O—H···O hydrogen bonding interactions connect the parallel chains with each other stabilize the structure (see the hydrogen-bond geometry table for numerical values and Figure 3 for a packing diagram showing the H-bond interactions).

Related literature top

For related literature, see: Church & Halvorson (1959); Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997).

Experimental top

A mixture of palladium acetate (0.5 mmol), imidazole (1.0 mmol), benzene-1,3-dicarboxylic acid (0.5 mmol), H2O (8 ml) and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 413 K for three days. Colorless crystals were obtained after cooling to room temperature with a yield of 27%. Anal. Calc. for C14H14N4O5Pd: C 39.56, H 3.30, N 13.19%; Found: C 39.51, H 3.27, N 13.17%.

Refinement top

O—H and N—H hydrogen atoms were located in difference density maps and were refined with distance restraints of d(O—H) = 0.82 (2) Å, d(N—H) = 0.88 (2) Å. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å. Uiso(H) for the water H atoms was set to 1.5Ueq, all others to 1.2Ueq of the respective carrier atom.

Structure description top

In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). Herein, we report the synthesis and X-ray crystal structure analysis of the title compound, poly[aqua (benzene-1,3-dicarboxylato) bis(imidazole) palladium(II)].

The molecular structure of the title compound is shown in Fig. 1. Pd(II) is seven-coordianted with two N atoms from two imidazole ligands, four O atoms from two independent 1,3-benzene dicarboxylate, and one water molecule. The palladium ion exhibits a distorted pentagonal bipyramidal coordination environment with one of the imidazole ligands and the water molecule being located in the two apical positions, and the N and O atoms of the remaining imidazole and the carboxylate ions in the basal plane. One of the carboxylate ions is coordinated to the Pd(II) ion in an asymmetric fashion with the Pd(1)—O(3) bond being with 2.771 (2) Å much longer than the other Pd—O bonding distances (2.312 (2) to 2.488 (3) Å). The 1,3-benzene dicarboxylate ions bridge neigboring Pd(II) ion to gives rise to one-dimensional zigzag chains (Fig. 2). N—H···O and O—H···O hydrogen bonding interactions connect the parallel chains with each other stabilize the structure (see the hydrogen-bond geometry table for numerical values and Figure 3 for a packing diagram showing the H-bond interactions).

For related literature, see: Church & Halvorson (1959); Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Chains of the title compound along the [010] direction.
[Figure 3] Fig. 3. Packing diagram, viewed along the [010] direction. Dashed lines indicate hydrogen bonds, hydrogen atoms themselves are omitted for clarity.
Poly[aqua(µ4-benzene-1,3-dicarboxylato-κ4O:O':O'':O''') bis(imidazole-κN)palladium(II)] top
Crystal data top
[Pd(C8H4O4)(C3H4N2)2(H2O)]F(000) = 848
Mr = 424.69Dx = 1.684 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3516 reflections
a = 8.5814 (17) Åθ = 1.7–27.0°
b = 19.426 (4) ŵ = 1.14 mm1
c = 10.118 (2) ÅT = 293 K
β = 96.62 (3)°Cube, colourless
V = 1675.5 (6) Å30.43 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3280 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 109
Tmin = 0.640, Tmax = 0.788k = 2311
8842 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
3280 reflections(Δ/σ)max = 0.003
229 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Pd(C8H4O4)(C3H4N2)2(H2O)]V = 1675.5 (6) Å3
Mr = 424.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5814 (17) ŵ = 1.14 mm1
b = 19.426 (4) ÅT = 293 K
c = 10.118 (2) Å0.43 × 0.28 × 0.22 mm
β = 96.62 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3280 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2523 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.788Rint = 0.031
8842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0314 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.40 e Å3
3280 reflectionsΔρmin = 0.63 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.37425 (3)0.126490 (13)1.00522 (2)0.03491 (10)
C10.4890 (4)0.2744 (2)0.8764 (4)0.0612 (10)
H10.44730.26300.79020.073*
C20.5780 (5)0.3305 (2)0.9103 (5)0.0653 (11)
H20.60970.36380.85300.078*
C30.5445 (4)0.2718 (2)1.0866 (4)0.0641 (11)
H30.55040.25881.17550.077*
C40.0640 (5)0.2230 (2)0.9641 (5)0.0741 (13)
H40.12560.26240.96300.089*
C50.0908 (5)0.2224 (3)0.9456 (6)0.1025 (19)
H50.15650.26010.92720.123*
C60.0034 (5)0.1199 (2)0.9826 (6)0.0913 (17)
H60.00090.07260.99590.110*
C70.4815 (4)0.09640 (18)0.7491 (3)0.0413 (8)
C80.5730 (3)0.08147 (17)0.6351 (3)0.0368 (7)
C90.7237 (4)0.0550 (2)0.6573 (3)0.0533 (10)
H90.76840.04600.74380.064*
C100.8084 (4)0.0420 (2)0.5512 (4)0.0663 (12)
H100.90910.02380.56650.080*
C110.5089 (4)0.09436 (17)0.5050 (3)0.0388 (7)
H110.40720.11140.48890.047*
C120.7429 (4)0.0560 (2)0.4226 (3)0.0555 (10)
H120.80020.04760.35160.067*
C130.5931 (4)0.08233 (17)0.3994 (3)0.0397 (8)
C140.5215 (5)0.09758 (19)0.2596 (3)0.0505 (9)
N10.4694 (3)0.23673 (16)0.9882 (3)0.0532 (8)
N20.6116 (4)0.32854 (18)1.0435 (4)0.0638 (9)
H210.682 (4)0.3538 (18)1.096 (3)0.077*
N30.1206 (3)0.15876 (16)0.9847 (3)0.0482 (7)
N40.1346 (4)0.1571 (3)0.9587 (6)0.1079 (16)
H200.229 (3)0.140 (3)0.935 (6)0.129*
O10.2779 (3)0.01164 (13)0.9913 (2)0.0496 (6)
O20.5538 (3)0.09052 (13)0.8661 (2)0.0489 (6)
O30.3421 (3)0.11470 (14)0.7305 (2)0.0593 (7)
O40.3885 (3)0.12419 (16)0.2416 (2)0.0722 (8)
O50.5971 (4)0.08483 (16)0.1641 (2)0.0753 (9)
H220.296 (6)0.006 (2)0.920 (3)0.113*
H230.327 (5)0.013 (2)1.048 (4)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02806 (14)0.04265 (16)0.03440 (14)0.00380 (12)0.00523 (9)0.00091 (12)
C10.055 (2)0.061 (3)0.065 (3)0.003 (2)0.0070 (19)0.006 (2)
C20.054 (2)0.062 (3)0.079 (3)0.008 (2)0.004 (2)0.011 (2)
C30.059 (2)0.074 (3)0.061 (2)0.016 (2)0.012 (2)0.013 (2)
C40.046 (2)0.051 (3)0.126 (4)0.010 (2)0.011 (2)0.004 (3)
C50.046 (3)0.066 (3)0.193 (6)0.021 (2)0.003 (3)0.021 (4)
C60.034 (2)0.057 (3)0.181 (5)0.002 (2)0.008 (3)0.004 (3)
C70.044 (2)0.047 (2)0.0327 (17)0.0011 (17)0.0051 (14)0.0022 (15)
C80.0366 (17)0.0414 (19)0.0331 (16)0.0007 (15)0.0074 (13)0.0008 (14)
C90.042 (2)0.080 (3)0.0361 (18)0.010 (2)0.0005 (15)0.0035 (18)
C100.044 (2)0.109 (4)0.048 (2)0.018 (2)0.0117 (17)0.000 (2)
C110.0363 (17)0.0436 (19)0.0364 (17)0.0022 (16)0.0031 (14)0.0011 (15)
C120.051 (2)0.080 (3)0.0386 (19)0.004 (2)0.0174 (16)0.0040 (19)
C130.0437 (19)0.0415 (19)0.0339 (17)0.0019 (16)0.0050 (14)0.0011 (15)
C140.069 (3)0.048 (2)0.0343 (19)0.003 (2)0.0053 (18)0.0017 (16)
N10.0498 (18)0.0557 (19)0.0534 (18)0.0094 (16)0.0024 (14)0.0037 (16)
N20.0489 (19)0.061 (2)0.082 (3)0.0150 (17)0.0069 (17)0.0165 (19)
N30.0309 (15)0.0496 (18)0.064 (2)0.0047 (14)0.0043 (13)0.0022 (15)
N40.036 (2)0.076 (3)0.210 (5)0.001 (2)0.011 (3)0.020 (3)
O10.0518 (15)0.0479 (15)0.0500 (15)0.0053 (12)0.0090 (12)0.0011 (12)
O20.0502 (14)0.0645 (16)0.0324 (12)0.0089 (13)0.0065 (10)0.0026 (11)
O30.0444 (14)0.089 (2)0.0459 (14)0.0201 (14)0.0101 (11)0.0048 (13)
O40.0713 (19)0.103 (2)0.0404 (14)0.0198 (18)0.0011 (13)0.0079 (14)
O50.109 (2)0.086 (2)0.0328 (13)0.0261 (19)0.0157 (14)0.0034 (14)
Geometric parameters (Å, º) top
Pd1—N32.252 (3)C7—O31.242 (4)
Pd1—N12.305 (3)C7—O21.276 (4)
Pd1—O22.311 (2)C7—C81.497 (4)
Pd1—O12.378 (3)C8—C91.386 (4)
Pd1—O4i2.382 (2)C8—C111.390 (4)
Pd1—O5i2.487 (3)C9—C101.387 (4)
C1—C21.353 (5)C9—H90.9300
C1—N11.374 (5)C10—C121.383 (5)
C1—H10.9300C10—H100.9300
C2—N21.346 (5)C11—C131.377 (4)
C2—H20.9300C11—H110.9300
C3—N11.312 (4)C12—C131.379 (4)
C3—N21.340 (5)C12—H120.9300
C3—H30.9300C13—C141.505 (4)
C4—C51.321 (6)C14—O41.247 (4)
C4—N31.347 (5)C14—O51.249 (4)
C4—H40.9300N2—H210.901 (19)
C5—N41.335 (7)N4—H200.88 (2)
C5—H50.9300O1—H220.83 (3)
C6—N31.302 (5)O1—H230.83 (4)
C6—N41.336 (5)O4—Pd1ii2.382 (2)
C6—H60.9300O5—Pd1ii2.487 (3)
N3—Pd1—N194.67 (11)C11—C8—C7120.6 (3)
N3—Pd1—O2137.15 (9)C8—C9—C10120.3 (3)
N1—Pd1—O288.21 (10)C8—C9—H9119.9
N3—Pd1—O185.99 (10)C10—C9—H9119.9
N1—Pd1—O1172.26 (9)C12—C10—C9120.0 (3)
O2—Pd1—O186.09 (9)C12—C10—H10120.0
N3—Pd1—O4i92.00 (10)C9—C10—H10120.0
N1—Pd1—O4i96.59 (11)C13—C11—C8121.2 (3)
O2—Pd1—O4i130.19 (9)C13—C11—H11119.4
O1—Pd1—O4i91.10 (9)C8—C11—H11119.4
N3—Pd1—O5i144.39 (9)C13—C12—C10120.2 (3)
N1—Pd1—O5i95.63 (11)C13—C12—H12119.9
O2—Pd1—O5i77.22 (8)C10—C12—H12119.9
O1—Pd1—O5i88.23 (10)C11—C13—C12119.6 (3)
O4i—Pd1—O5i52.98 (9)C11—C13—C14120.1 (3)
C2—C1—N1109.8 (4)C12—C13—C14120.3 (3)
C2—C1—H1125.1O4—C14—O5121.1 (3)
N1—C1—H1125.1O4—C14—C13119.1 (3)
N2—C2—C1106.3 (4)O5—C14—C13119.7 (4)
N2—C2—H2126.8C3—N1—C1104.6 (3)
C1—C2—H2126.8C3—N1—Pd1124.9 (3)
N1—C3—N2111.8 (4)C1—N1—Pd1129.3 (3)
N1—C3—H3124.1C3—N2—C2107.4 (3)
N2—C3—H3124.1C3—N2—H21123 (3)
C5—C4—N3110.6 (4)C2—N2—H21129 (3)
C5—C4—H4124.7C6—N3—C4104.8 (3)
N3—C4—H4124.7C6—N3—Pd1128.3 (3)
C4—C5—N4106.5 (4)C4—N3—Pd1126.8 (3)
C4—C5—H5126.7C5—N4—C6106.9 (4)
N4—C5—H5126.7C5—N4—H20126 (4)
N3—C6—N4111.1 (4)C6—N4—H20125 (4)
N3—C6—H6124.4Pd1—O1—H22110 (4)
N4—C6—H6124.4Pd1—O1—H23111 (4)
O3—C7—O2121.5 (3)H22—O1—H23103 (5)
O3—C7—C8121.4 (3)C7—O2—Pd1104.5 (2)
O2—C7—C8117.1 (3)C14—O4—Pd1ii95.4 (2)
C9—C8—C11118.7 (3)C14—O5—Pd1ii90.4 (2)
C9—C8—C7120.6 (3)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H22···O5iii0.83 (3)2.02 (3)2.743 (4)145 (5)
O1—H23···O2iv0.83 (4)1.97 (4)2.762 (3)162 (5)
N2—H21···O3v0.90 (2)1.92 (2)2.801 (4)165 (4)
N4—H20···O2vi0.88 (2)2.14 (2)3.020 (5)173 (5)
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y, z+2; (v) x+1/2, y+1/2, z+1/2; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C8H4O4)(C3H4N2)2(H2O)]
Mr424.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.5814 (17), 19.426 (4), 10.118 (2)
β (°) 96.62 (3)
V3)1675.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.640, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
8842, 3280, 2523
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.00
No. of reflections3280
No. of parameters229
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.63

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H22···O5i0.83 (3)2.02 (3)2.743 (4)145 (5)
O1—H23···O2ii0.83 (4)1.97 (4)2.762 (3)162 (5)
N2—H21···O3iii0.901 (19)1.92 (2)2.801 (4)165 (4)
N4—H20···O2iv0.88 (2)2.14 (2)3.020 (5)173 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds