Download citation
Download citation
link to html
The title compound, [Rh(C10H15)(C4H4N2)(C2H3N)2](PF6)2 or [Cp*Rh(NCMe)2(N2C4H4)](PF6)2, where Cp* is penta­methyl­cyclo­penta­dienyl, was obtained from the treatment of an acetonitrile solution of [Cp*Rh(NCMe)3](PF6)2 with an excess of pyrimidine. The RhIII center is coordinated by one Cp* ring, two acetonitrile ligands and one pyrimidine ligand in a pseudo-octa­hedral geometry. Both PF6 anions are disordered (site occupancies ca 0.4:0.6, and 0.3:0.4:0.3).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044716/zl2063sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044716/zl2063Isup2.hkl
Contains datablock I

CCDC reference: 663628

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.037
  • wR factor = 0.100
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT432_ALERT_2_B Short Inter X...Y Contact C11 .. F23 .. 2.82 Ang. PLAT432_ALERT_2_B Short Inter X...Y Contact C11 .. F4 .. 2.83 Ang. PLAT432_ALERT_2_B Short Inter X...Y Contact C15 .. F16 .. 2.83 Ang.
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P3 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P5 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P4 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 40.00 Perc. PLAT432_ALERT_2_C Short Inter X...Y Contact C13 .. F28 .. 2.96 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C17 .. F30 .. 2.89 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 241
0 ALERT level A = In general: serious problem 3 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

While pyrimidine and pyrimidine derivatives are biologically relevant, only 120 crystal structures with metal–pyrimidine bonds have been reported, none of which contain Cp co-ligands (Barnett et al., 2005; Nedelec & Rochon, 2001; and Sharma et al., 1998). Here we report the crystal structure of [Cp*Rh(NCMe)2(N2C4H4)](PF6)2 as an unique half-sandwich pyrimidine adduct. The Rh—N distance for the two acetonitrile ligands are 2.093 (2) and 2.109 (2) Å. The coordinated pyrimidine has a longer Rh—N distance of 2.148 (2) Å. The N—Rh—N angles are slightly contracted ranging from 86.05 (9) to 88.74 (10)°.

Related literature top

For selected literature on metal–pyrimidine complexes, see: Barnett et al. (2005); Nedelec & Rochon (2001); Sharma et al. (1998). For the synthesis of [Cp*Rh(NCMe)3](PF6)2, see: White et al. (1992).

Experimental top

[Cp*Rh(NCMe)3](PF6)2 was prepared according to literature methods (White et al., 1992). The compound was synthesized by dissolving 95 mg (0.15 mmol) [Cp*Rh(NCMe)3](PF6)2 and 35 mg (0.44 mmol) pyrimidine in 2 ml MeCN. Yellow crystals were grown at room temperature by vapor diffusion of diethylether into an acetonitrile solution.

Refinement top

The proposed model includes multiple disordered sites for the two anions. Disordered anion moieties were refined as rigid, idealized groups with similar amplitude restraints imposed on displacement parameters for overlapping sites separated by less than Van der Waals radii using an effective standard deviation of 0.01 Å. The single idealized group refinement for the first set converged with some principal mean square atomic displacements that differed by as much as a factor of ten and some that were nearly isotropic. This suggested that a single rigid body with anisotropic displacement parameters was a poor fit to the observed data. In addition, residual electron density in excess of 2 e/Å3 from a subsequent difference Fourier map clearly indicated multiple potential surfaces for this anion. After refining two rigid groups (P1, P3) for the first set, residual density from a subsequent difference Fourier map indicated reasonable atomic positions for a third group. The proposed model for the second anion set (P2, P4) was developed simultaneously in a like manner. Methyl H atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H···H distances. Remaining H atoms were included as riding idealized contributors. Methyl H atom U's were assigned as 1.5 times Ueq of the carrier atom; remaining H atom U's were assigned as 1.2 times the carrier Ueq.

Structure description top

While pyrimidine and pyrimidine derivatives are biologically relevant, only 120 crystal structures with metal–pyrimidine bonds have been reported, none of which contain Cp co-ligands (Barnett et al., 2005; Nedelec & Rochon, 2001; and Sharma et al., 1998). Here we report the crystal structure of [Cp*Rh(NCMe)2(N2C4H4)](PF6)2 as an unique half-sandwich pyrimidine adduct. The Rh—N distance for the two acetonitrile ligands are 2.093 (2) and 2.109 (2) Å. The coordinated pyrimidine has a longer Rh—N distance of 2.148 (2) Å. The N—Rh—N angles are slightly contracted ranging from 86.05 (9) to 88.74 (10)°.

For selected literature on metal–pyrimidine complexes, see: Barnett et al. (2005); Nedelec & Rochon (2001); Sharma et al. (1998). For the synthesis of [Cp*Rh(NCMe)3](PF6)2, see: White et al. (1992).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker, 2005); program(s) used to refine structure: SHELXTL (Bruker, 2005); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: XCIF (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. SHELXTL/XP (Bruker, 2005) plot showing 50% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Disordered anions were draw schematically with minimal labels for clarity.
Bis(acetonitrile-κN)(η5-pentamethylcyclopentadienyl)(pyrimidine- κN)rhodium(III) bis(hexafluoridophosphate) top
Crystal data top
[Rh(C10H15)(C4H4N2)(C2H3N)2](PF6)2F(000) = 2752
Mr = 690.27Dx = 1.770 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9298 reflections
a = 14.4046 (8) Åθ = 2.2–30.7°
b = 14.7669 (7) ŵ = 0.89 mm1
c = 24.3537 (13) ÅT = 193 K
V = 5180.3 (5) Å3Prism, yellow
Z = 80.36 × 0.36 × 0.32 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7612 independent reflections
Radiation source: fine-focus sealed tube6384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
profile data from φ and ω scansθmax = 30.1°, θmin = 1.7°
Absorption correction: integration
(SHELXTL and XPREP; Bruker, 2005)
h = 2019
Tmin = 0.625, Tmax = 0.813k = 2020
93720 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters not refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0435P)2 + 9.0148P]
where P = (Fo2 + 2Fc2)/3
7612 reflections(Δ/σ)max = 0.017
459 parametersΔρmax = 0.93 e Å3
241 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Rh(C10H15)(C4H4N2)(C2H3N)2](PF6)2V = 5180.3 (5) Å3
Mr = 690.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.4046 (8) ŵ = 0.89 mm1
b = 14.7669 (7) ÅT = 193 K
c = 24.3537 (13) Å0.36 × 0.36 × 0.32 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7612 independent reflections
Absorption correction: integration
(SHELXTL and XPREP; Bruker, 2005)
6384 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.813Rint = 0.026
93720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037241 restraints
wR(F2) = 0.100H-atom parameters not refined
S = 1.04Δρmax = 0.93 e Å3
7612 reflectionsΔρmin = 0.72 e Å3
459 parameters
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Five frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP (Bruker, 2005) before using SAINT/SADABS (Bruker, 2005) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure was phased by direct methods. Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks in the final difference Fourier map were in the vicinity of atoms F7 and F3; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed no dependence on amplitude or resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.568281 (13)0.322308 (12)0.639265 (8)0.02201 (6)
C10.59292 (19)0.43808 (17)0.69007 (11)0.0269 (5)
C20.68007 (17)0.39330 (16)0.67877 (10)0.0239 (5)
C30.67538 (19)0.30338 (17)0.70001 (11)0.0275 (5)
C40.5845 (2)0.2917 (2)0.72445 (11)0.0318 (6)
C50.53674 (19)0.3764 (2)0.72025 (11)0.0315 (5)
C60.5700 (3)0.5338 (2)0.67585 (15)0.0435 (7)
H6A0.58980.57370.70570.065*
H6B0.50280.53960.67050.065*
H6C0.60220.55080.64190.065*
C70.7606 (2)0.4361 (2)0.65047 (12)0.0353 (6)
H7A0.79960.46720.67750.053*
H7B0.73810.47990.62340.053*
H7C0.79720.38930.63190.053*
C80.7502 (2)0.2337 (2)0.69899 (14)0.0441 (7)
H8A0.77950.23010.73530.066*
H8B0.79690.25050.67160.066*
H8C0.72350.17470.68950.066*
C90.5515 (3)0.2092 (3)0.75445 (17)0.0576 (10)
H9A0.56620.21510.79360.086*
H9B0.58260.15550.73960.086*
H9C0.48430.20300.74980.086*
C100.4433 (2)0.3962 (3)0.74368 (15)0.0548 (10)
H10A0.44920.40880.78300.082*
H10B0.40260.34380.73830.082*
H10C0.41670.44910.72510.082*
N10.42867 (16)0.31056 (16)0.61660 (11)0.0320 (5)
C110.3546 (2)0.30076 (18)0.60177 (12)0.0319 (5)
C120.2609 (2)0.2874 (2)0.58173 (15)0.0462 (8)
H12A0.24240.33950.55930.069*
H12B0.21840.28140.61290.069*
H12C0.25850.23220.55940.069*
C130.6125 (2)0.42360 (19)0.52430 (11)0.0337 (6)
N20.59482 (18)0.38485 (16)0.56298 (9)0.0317 (5)
C140.6351 (3)0.4750 (3)0.47474 (13)0.0520 (9)
H14A0.62400.53960.48130.078*
H14B0.59580.45430.44440.078*
H14C0.70050.46560.46530.078*
N30.58730 (16)0.19358 (15)0.59979 (10)0.0280 (4)
C150.6593 (2)0.17756 (19)0.56566 (12)0.0345 (6)
H150.70320.22500.56100.041*
N40.67417 (19)0.10158 (18)0.53820 (11)0.0402 (6)
C160.6122 (2)0.0354 (2)0.54516 (14)0.0408 (7)
H160.62020.01960.52550.049*
C170.5376 (2)0.0438 (2)0.57957 (15)0.0415 (7)
H170.49490.00450.58470.050*
C180.5271 (2)0.12540 (19)0.60656 (13)0.0353 (6)
H180.47580.13340.63060.042*
P10.4462 (3)0.2436 (2)0.43923 (14)0.0403 (15)0.408 (5)
F10.3842 (4)0.3239 (3)0.4127 (3)0.081 (2)0.408 (5)
F20.5083 (4)0.1632 (3)0.4658 (3)0.090 (2)0.408 (5)
F30.4497 (4)0.1931 (4)0.38019 (18)0.072 (2)0.408 (5)
F40.4428 (5)0.2940 (4)0.49825 (19)0.076 (2)0.408 (5)
F50.3525 (3)0.1885 (3)0.4546 (2)0.0509 (17)0.408 (5)
F60.5400 (3)0.2986 (4)0.4238 (3)0.078 (2)0.408 (5)
P20.28776 (14)0.02841 (15)0.67394 (8)0.0362 (6)0.588 (5)
F70.18034 (15)0.0385 (4)0.65521 (14)0.0862 (18)0.588 (5)
F80.39517 (16)0.0183 (3)0.69267 (14)0.0647 (14)0.588 (5)
F90.2574 (3)0.0414 (2)0.73750 (9)0.0506 (13)0.588 (5)
F100.3182 (2)0.0155 (3)0.61038 (9)0.0713 (17)0.588 (5)
F110.3014 (3)0.13688 (15)0.66808 (17)0.0900 (18)0.588 (5)
F120.2742 (3)0.08006 (16)0.67979 (17)0.0821 (15)0.588 (5)
P30.4535 (4)0.2487 (3)0.43830 (17)0.034 (3)0.304 (4)
F130.4356 (6)0.3326 (5)0.4798 (3)0.061 (2)0.304 (4)
F140.4713 (6)0.1648 (4)0.3967 (3)0.055 (2)0.304 (4)
F150.3741 (5)0.2876 (5)0.3975 (3)0.077 (2)0.304 (4)
F160.5329 (5)0.2098 (6)0.4791 (3)0.099 (3)0.304 (4)
F170.3759 (5)0.1897 (5)0.4705 (3)0.080 (3)0.304 (4)
F180.5311 (5)0.3078 (5)0.4061 (3)0.083 (3)0.304 (4)
P40.2829 (2)0.04411 (19)0.66883 (12)0.0334 (7)0.412 (5)
F190.2476 (4)0.0260 (3)0.73103 (13)0.0478 (17)0.412 (5)
F200.3182 (3)0.0622 (3)0.60663 (13)0.0514 (16)0.412 (5)
F210.1967 (3)0.1128 (4)0.6591 (2)0.087 (2)0.412 (5)
F220.3690 (4)0.0246 (4)0.6786 (2)0.090 (2)0.412 (5)
F230.2198 (4)0.0395 (4)0.6474 (2)0.088 (2)0.412 (5)
F240.3460 (4)0.1277 (3)0.6903 (2)0.079 (2)0.412 (5)
P50.4569 (3)0.2483 (3)0.44008 (16)0.028 (2)0.288 (4)
F250.4469 (6)0.2722 (6)0.37544 (17)0.085 (2)0.288 (4)
F260.4668 (6)0.2243 (6)0.50474 (18)0.094 (2)0.288 (4)
F270.3520 (4)0.2086 (5)0.4403 (3)0.057 (2)0.288 (4)
F280.5617 (4)0.2879 (6)0.4399 (4)0.090 (3)0.288 (4)
F290.4174 (6)0.3477 (4)0.4557 (4)0.077 (3)0.288 (4)
F300.4963 (6)0.1488 (4)0.4244 (4)0.082 (2)0.288 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02173 (10)0.02244 (10)0.02185 (10)0.00308 (7)0.00013 (7)0.00192 (6)
C10.0279 (12)0.0266 (11)0.0262 (12)0.0018 (9)0.0002 (10)0.0038 (9)
C20.0234 (11)0.0271 (11)0.0212 (10)0.0023 (9)0.0004 (9)0.0015 (9)
C30.0292 (13)0.0275 (11)0.0259 (12)0.0013 (9)0.0046 (10)0.0012 (9)
C40.0334 (14)0.0382 (14)0.0237 (12)0.0083 (11)0.0022 (10)0.0078 (10)
C50.0244 (12)0.0458 (15)0.0242 (12)0.0021 (11)0.0030 (10)0.0020 (11)
C60.054 (2)0.0292 (14)0.0475 (18)0.0098 (13)0.0076 (15)0.0049 (13)
C70.0292 (14)0.0434 (15)0.0332 (14)0.0106 (12)0.0028 (11)0.0006 (11)
C80.0438 (17)0.0386 (15)0.0498 (18)0.0137 (13)0.0116 (15)0.0009 (13)
C90.068 (2)0.058 (2)0.047 (2)0.0242 (19)0.0037 (18)0.0267 (18)
C100.0317 (16)0.091 (3)0.0420 (18)0.0036 (17)0.0129 (14)0.0070 (19)
N10.0289 (12)0.0328 (11)0.0342 (12)0.0012 (9)0.0028 (9)0.0024 (9)
C110.0314 (14)0.0301 (12)0.0343 (14)0.0025 (10)0.0041 (11)0.0027 (10)
C120.0342 (16)0.0484 (17)0.056 (2)0.0040 (14)0.0166 (15)0.0043 (15)
C130.0392 (15)0.0328 (13)0.0290 (13)0.0071 (11)0.0004 (11)0.0003 (10)
N20.0364 (12)0.0327 (11)0.0260 (11)0.0072 (10)0.0013 (9)0.0011 (9)
C140.071 (2)0.0529 (19)0.0322 (16)0.0148 (18)0.0076 (16)0.0122 (14)
N30.0289 (11)0.0249 (9)0.0302 (11)0.0024 (8)0.0014 (9)0.0007 (8)
C150.0324 (14)0.0336 (13)0.0376 (15)0.0033 (11)0.0032 (12)0.0026 (11)
N40.0398 (14)0.0374 (13)0.0434 (14)0.0025 (11)0.0020 (11)0.0061 (11)
C160.0440 (17)0.0309 (13)0.0475 (18)0.0039 (12)0.0075 (14)0.0073 (12)
C170.0397 (16)0.0274 (13)0.057 (2)0.0057 (12)0.0040 (15)0.0009 (13)
C180.0339 (14)0.0285 (12)0.0435 (16)0.0052 (11)0.0011 (12)0.0020 (11)
P10.048 (3)0.036 (2)0.037 (3)0.0051 (19)0.012 (2)0.0006 (19)
F10.085 (4)0.055 (4)0.103 (5)0.004 (3)0.015 (4)0.031 (4)
F20.092 (4)0.069 (4)0.108 (5)0.019 (3)0.065 (4)0.008 (4)
F30.078 (4)0.085 (5)0.053 (4)0.003 (4)0.001 (3)0.022 (4)
F40.096 (4)0.084 (5)0.047 (4)0.017 (4)0.004 (3)0.027 (3)
F50.056 (3)0.050 (3)0.046 (4)0.019 (3)0.010 (3)0.015 (3)
F60.042 (3)0.077 (4)0.116 (6)0.037 (3)0.013 (4)0.015 (4)
P20.0333 (11)0.0463 (10)0.0290 (9)0.0026 (8)0.0009 (7)0.0082 (8)
F70.038 (2)0.173 (5)0.048 (2)0.005 (3)0.0042 (17)0.030 (3)
F80.0369 (19)0.106 (4)0.051 (2)0.013 (2)0.0052 (17)0.023 (2)
F90.064 (3)0.049 (2)0.038 (2)0.006 (2)0.005 (2)0.0008 (18)
F100.054 (2)0.130 (5)0.0303 (19)0.007 (3)0.0069 (17)0.004 (2)
F110.136 (5)0.051 (2)0.083 (4)0.003 (3)0.022 (3)0.032 (2)
F120.101 (4)0.059 (2)0.087 (3)0.018 (2)0.021 (3)0.020 (2)
P30.035 (4)0.032 (4)0.036 (4)0.011 (3)0.003 (4)0.005 (3)
F130.081 (5)0.062 (5)0.040 (5)0.012 (4)0.014 (4)0.021 (4)
F140.084 (6)0.026 (3)0.056 (5)0.008 (3)0.007 (4)0.012 (3)
F150.082 (5)0.064 (5)0.085 (5)0.007 (4)0.037 (4)0.014 (4)
F160.102 (5)0.098 (5)0.098 (5)0.031 (5)0.041 (4)0.000 (5)
F170.077 (5)0.083 (5)0.078 (6)0.022 (4)0.000 (5)0.012 (4)
F180.075 (5)0.073 (5)0.101 (6)0.009 (4)0.008 (5)0.004 (5)
P40.0357 (15)0.0394 (12)0.0251 (13)0.0036 (10)0.0032 (10)0.0008 (10)
F190.059 (4)0.064 (4)0.020 (2)0.018 (3)0.002 (2)0.000 (2)
F200.044 (3)0.079 (4)0.032 (3)0.009 (3)0.004 (2)0.006 (3)
F210.071 (4)0.116 (5)0.074 (4)0.032 (4)0.023 (3)0.032 (4)
F220.080 (5)0.119 (5)0.070 (4)0.050 (4)0.006 (4)0.010 (4)
F230.109 (5)0.094 (4)0.062 (4)0.064 (4)0.012 (4)0.014 (3)
F240.093 (5)0.088 (5)0.056 (4)0.055 (4)0.026 (4)0.020 (3)
P50.031 (3)0.025 (3)0.028 (3)0.008 (3)0.009 (3)0.005 (3)
F250.096 (5)0.092 (5)0.068 (4)0.002 (5)0.004 (4)0.023 (4)
F260.099 (5)0.113 (5)0.070 (4)0.010 (5)0.031 (4)0.012 (4)
F270.044 (4)0.067 (5)0.060 (5)0.018 (4)0.005 (3)0.000 (4)
F280.059 (5)0.098 (5)0.112 (7)0.007 (5)0.001 (5)0.029 (5)
F290.092 (5)0.060 (4)0.078 (6)0.020 (4)0.000 (5)0.023 (5)
F300.101 (5)0.052 (4)0.092 (5)0.020 (4)0.007 (5)0.004 (4)
Geometric parameters (Å, º) top
Rh1—N12.093 (2)C14—H14C0.9800
Rh1—N22.110 (2)N3—C181.339 (3)
Rh1—C42.136 (3)N3—C151.350 (4)
Rh1—C12.140 (2)C15—N41.324 (4)
Rh1—N32.148 (2)C15—H150.9500
Rh1—C22.149 (2)N4—C161.335 (4)
Rh1—C32.156 (3)C16—C171.368 (5)
Rh1—C52.176 (3)C16—H160.9500
C1—C51.423 (4)C17—C181.381 (4)
C1—C21.445 (4)C17—H170.9500
C1—C61.492 (4)C18—H180.9500
C2—C31.427 (3)P1—F41.6199
C2—C71.490 (4)P1—F61.6199
C3—C41.448 (4)P1—F51.6200
C3—C81.491 (4)P1—F11.6201
C4—C51.432 (4)P1—F31.6201
C4—C91.498 (4)P1—F21.6202
C5—C101.491 (4)P2—F101.6198
C6—H6A0.9800P2—F71.6199
C6—H6B0.9800P2—F81.6200
C6—H6C0.9800P2—F121.6200
C7—H7A0.9800P2—F111.6200
C7—H7B0.9800P2—F91.6200
C7—H7C0.9800P3—F161.6199
C8—H8A0.9800P3—F131.6199
C8—H8B0.9800P3—F181.6200
C8—H8C0.9800P3—F171.6201
C9—H9A0.9800P3—F141.6201
C9—H9B0.9800P3—F151.6202
C9—H9C0.9800P4—F231.6199
C10—H10A0.9800P4—F211.6200
C10—H10B0.9800P4—F221.6200
C10—H10C0.9800P4—F201.6200
N1—C111.136 (4)P4—F191.6200
C11—C121.449 (4)P4—F241.6201
C12—H12A0.9800P5—F251.6198
C12—H12B0.9800P5—F271.6198
C12—H12C0.9800P5—F301.6199
C13—N21.131 (4)P5—F281.6200
C13—C141.462 (4)P5—F291.6201
C14—H14A0.9800P5—F261.6202
C14—H14B0.9800
N1—Rh1—N288.75 (10)C13—C14—H14A109.5
N1—Rh1—C4110.11 (10)C13—C14—H14B109.5
N2—Rh1—C4158.14 (10)H14A—C14—H14B109.5
N1—Rh1—C1112.22 (10)C13—C14—H14C109.5
N2—Rh1—C197.43 (9)H14A—C14—H14C109.5
C4—Rh1—C165.76 (11)H14B—C14—H14C109.5
N1—Rh1—N386.05 (9)C18—N3—C15116.2 (2)
N2—Rh1—N388.29 (9)C18—N3—Rh1121.9 (2)
C4—Rh1—N3103.49 (10)C15—N3—Rh1121.91 (18)
C1—Rh1—N3160.86 (10)N4—C15—N3125.7 (3)
N1—Rh1—C2151.48 (10)N4—C15—H15117.1
N2—Rh1—C292.57 (9)N3—C15—H15117.1
C4—Rh1—C265.57 (10)C15—N4—C16116.7 (3)
C1—Rh1—C239.38 (10)N4—C16—C17122.5 (3)
N3—Rh1—C2122.45 (9)N4—C16—H16118.8
N1—Rh1—C3149.10 (10)C17—C16—H16118.8
N2—Rh1—C3122.10 (10)C16—C17—C18117.2 (3)
C4—Rh1—C339.44 (10)C16—C17—H17121.4
C1—Rh1—C365.67 (10)C18—C17—H17121.4
N3—Rh1—C395.81 (9)N3—C18—C17121.8 (3)
C2—Rh1—C338.71 (9)N3—C18—H18119.1
N1—Rh1—C593.95 (10)C17—C18—H18119.1
N2—Rh1—C5132.47 (11)F4—P1—F690.0
C4—Rh1—C538.77 (11)F4—P1—F590.0
C1—Rh1—C538.48 (10)F6—P1—F5180.0
N3—Rh1—C5139.24 (10)F4—P1—F190.0
C2—Rh1—C564.63 (10)F6—P1—F190.0
C3—Rh1—C564.85 (10)F5—P1—F190.0
C5—C1—C2107.4 (2)F4—P1—F3180.0
C5—C1—C6126.9 (3)F6—P1—F390.0
C2—C1—C6125.6 (3)F5—P1—F390.0
C5—C1—Rh172.13 (15)F1—P1—F390.0
C2—C1—Rh170.64 (14)F4—P1—F290.0
C6—C1—Rh1125.8 (2)F6—P1—F290.0
C3—C2—C1108.4 (2)F5—P1—F290.0
C3—C2—C7126.8 (2)F1—P1—F2180.0
C1—C2—C7124.8 (2)F3—P1—F290.0
C3—C2—Rh170.90 (14)F10—P2—F790.0
C1—C2—Rh169.98 (14)F10—P2—F890.0
C7—C2—Rh1125.68 (18)F7—P2—F8180.0
C2—C3—C4107.6 (2)F10—P2—F1290.0
C2—C3—C8127.0 (3)F7—P2—F1290.0
C4—C3—C8125.3 (3)F8—P2—F1290.0
C2—C3—Rh170.39 (14)F10—P2—F1190.0
C4—C3—Rh169.56 (15)F7—P2—F1190.0
C8—C3—Rh1126.6 (2)F8—P2—F1190.0
C5—C4—C3107.5 (2)F12—P2—F11180.0
C5—C4—C9126.4 (3)F10—P2—F9180.0
C3—C4—C9125.7 (3)F7—P2—F990.0
C5—C4—Rh172.12 (15)F8—P2—F990.0
C3—C4—Rh171.00 (15)F12—P2—F990.0
C9—C4—Rh1127.7 (2)F11—P2—F990.0
C1—C5—C4108.8 (2)F16—P3—F1390.0
C1—C5—C10125.9 (3)F16—P3—F1890.0
C4—C5—C10125.3 (3)F13—P3—F1890.0
C1—C5—Rh169.39 (14)F16—P3—F1790.0
C4—C5—Rh169.11 (15)F13—P3—F1790.0
C10—C5—Rh1127.4 (2)F18—P3—F17180.0
C1—C6—H6A109.5F16—P3—F1490.0
C1—C6—H6B109.5F13—P3—F14180.0
H6A—C6—H6B109.5F18—P3—F1490.0
C1—C6—H6C109.5F17—P3—F1490.0
H6A—C6—H6C109.5F16—P3—F15180.0
H6B—C6—H6C109.5F13—P3—F1590.0
C2—C7—H7A109.5F18—P3—F1590.0
C2—C7—H7B109.5F17—P3—F1590.0
H7A—C7—H7B109.5F14—P3—F1590.0
C2—C7—H7C109.5F23—P4—F2190.0
H7A—C7—H7C109.5F23—P4—F2290.0
H7B—C7—H7C109.5F21—P4—F22180.0
C3—C8—H8A109.5F23—P4—F2090.0
C3—C8—H8B109.5F21—P4—F2090.0
H8A—C8—H8B109.5F22—P4—F2090.0
C3—C8—H8C109.5F23—P4—F1990.0
H8A—C8—H8C109.5F21—P4—F1990.0
H8B—C8—H8C109.5F22—P4—F1990.0
C4—C9—H9A109.5F20—P4—F19180.0
C4—C9—H9B109.5F23—P4—F24180.0
H9A—C9—H9B109.5F21—P4—F2490.0
C4—C9—H9C109.5F22—P4—F2490.0
H9A—C9—H9C109.5F20—P4—F2490.0
H9B—C9—H9C109.5F19—P4—F2490.0
C5—C10—H10A109.5F25—P5—F2790.0
C5—C10—H10B109.5F25—P5—F3090.0
H10A—C10—H10B109.5F27—P5—F3090.0
C5—C10—H10C109.5F25—P5—F2890.0
H10A—C10—H10C109.5F27—P5—F28180.0
H10B—C10—H10C109.5F30—P5—F2890.0
C11—N1—Rh1175.8 (3)F25—P5—F2990.0
N1—C11—C12178.7 (4)F27—P5—F2990.0
C11—C12—H12A109.5F30—P5—F29180.0
C11—C12—H12B109.5F28—P5—F2990.0
H12A—C12—H12B109.5F25—P5—F26180.0
C11—C12—H12C109.5F27—P5—F2690.0
H12A—C12—H12C109.5F30—P5—F2690.0
H12B—C12—H12C109.5F28—P5—F2690.0
N2—C13—C14179.1 (3)F29—P5—F2690.0
C13—N2—Rh1174.6 (2)

Experimental details

Crystal data
Chemical formula[Rh(C10H15)(C4H4N2)(C2H3N)2](PF6)2
Mr690.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)14.4046 (8), 14.7669 (7), 24.3537 (13)
V3)5180.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.36 × 0.36 × 0.32
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionIntegration
(SHELXTL and XPREP; Bruker, 2005)
Tmin, Tmax0.625, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
93720, 7612, 6384
Rint0.026
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.04
No. of reflections7612
No. of parameters459
No. of restraints241
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.93, 0.72

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2005), SHELXTL (Bruker, 2005), XCIF (Bruker, 2005).

Selected bond lengths (Å) top
Rh1—N12.093 (2)Rh1—N32.148 (2)
Rh1—N22.110 (2)Rh1—C22.149 (2)
Rh1—C42.136 (3)Rh1—C32.156 (3)
Rh1—C12.140 (2)Rh1—C52.176 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds