Download citation
Download citation
link to html
The LaIII atom in the title complex, [La(NO3)3(H2O)3]·2C10H8N2, is irregularly coordinated by three O atoms of three water mol­ecules and six O atoms of three NO3 ligands. This mononuclear complex is further extended into a supra­molecular network structure via O—H...O and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049227/at2414sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049227/at2414Isup2.hkl
Contains datablock I

CCDC reference: 667150

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.028
  • wR factor = 0.082
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) La1 - O2 .. 10.06 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) La1 - O4 .. 17.81 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) La1 - O6 .. 13.15 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) La1 - O7 .. 15.84 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) La1 - O9 .. 12.56 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) La1 - O12 .. 13.62 su PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for O10 PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for La1 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C1 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C11 PLAT420_ALERT_2_B D-H Without Acceptor O3 - H3B ... ?
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.95 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.13 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) La1 - O1 .. 9.82 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) La1 - O3 .. 9.11 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) La1 - O10 .. 8.63 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O6 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O9 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C2 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C4 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C5 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C9 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C10 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.90 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 3.16 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.56
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for La1 (3) 5.20 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 9
0 ALERT level A = In general: serious problem 13 ALERT level B = Potentially serious problem 24 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 34 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, 2002). Owing to Lanthanide metals unique physical and chemical properties, Lanthanide complexes play an important role in special materials having optical, electronic, magnetic and biological importance (Benelli et al., 1992; Daiguebonne et al., 2000; Farrugia et al., 2000). More importantly, since the removal of lanthanides from radioactive highlevel liquid waste (HLLW) has been shown to improve the transmutation of long-lived transuranic elements to shortlived or even stable nuclides (Modolo & Odoj, 1998), the coordination chemistry of the 4f metals continues to attract interest. We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The irregular nine-coordinate environment of the La atom is completed by the three O atoms of three water molecules and six O atoms of three NO3- (Table 1). The La—O bond lengths are in the range 2.357 (2) to 2.389 (2) Å for the O atoms in water molecules. The La—O bond length are in the range 2.446 (2) to 2.521 (3) Å for NO3-. The O—H···O and O—H···N hydrogen bonds link the mononuclear complex into a supramolecular network structure (Fig. 2).

Related literature top

For related structures, see: Benelli et al. (1992); Daiguebonne et al. (2000); Farrugia et al. (2000); Miller & Drillon (2001a,b, 2002); Modolo & Odoj (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Lanthanum trinitrate hexahydrate (324.9 mg, 1 mmol), 4,4'-bipyridyl (312 mg, 2 mmol), and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure for 7 d at 453 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colourless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms of water were located from difference Fourier syntheses and refined with restraints to the O—H distances and the H—O—H angles. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Molecular magnetic compounds, such as molecular ferro- and ferrimagnets, organic magnets, single-molecule magnets and high-spin molecules, have recently attracted attention (Miller & Drillon, 2001a,b, 2002). Owing to Lanthanide metals unique physical and chemical properties, Lanthanide complexes play an important role in special materials having optical, electronic, magnetic and biological importance (Benelli et al., 1992; Daiguebonne et al., 2000; Farrugia et al., 2000). More importantly, since the removal of lanthanides from radioactive highlevel liquid waste (HLLW) has been shown to improve the transmutation of long-lived transuranic elements to shortlived or even stable nuclides (Modolo & Odoj, 1998), the coordination chemistry of the 4f metals continues to attract interest. We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The irregular nine-coordinate environment of the La atom is completed by the three O atoms of three water molecules and six O atoms of three NO3- (Table 1). The La—O bond lengths are in the range 2.357 (2) to 2.389 (2) Å for the O atoms in water molecules. The La—O bond length are in the range 2.446 (2) to 2.521 (3) Å for NO3-. The O—H···O and O—H···N hydrogen bonds link the mononuclear complex into a supramolecular network structure (Fig. 2).

For related structures, see: Benelli et al. (1992); Daiguebonne et al. (2000); Farrugia et al. (2000); Miller & Drillon (2001a,b, 2002); Modolo & Odoj (1998). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I) showing hydrogen bonds as dashed lines.
Triaquatris(nitrato-κ2O,O')lanthanum(III) 4,4'-bipyridine disolvate top
Crystal data top
[La(NO3)3(H2O)3]·2C10H8N2F(000) = 1376
Mr = 691.36Dx = 1.730 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12612 reflections
a = 7.970 (2) Åθ = 2.7–28.2°
b = 20.781 (2) ŵ = 1.68 mm1
c = 16.401 (3) ÅT = 273 K
β = 102.298 (7)°Plane, colourless
V = 2654.1 (9) Å30.49 × 0.38 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
6212 independent reflections
Radiation source: fine-focus sealed tube5157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.493, Tmax = 0.632k = 2727
17534 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.02P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
6212 reflectionsΔρmax = 0.93 e Å3
386 parametersΔρmin = 0.44 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0078 (4)
Crystal data top
[La(NO3)3(H2O)3]·2C10H8N2V = 2654.1 (9) Å3
Mr = 691.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.970 (2) ŵ = 1.68 mm1
b = 20.781 (2) ÅT = 273 K
c = 16.401 (3) Å0.49 × 0.38 × 0.30 mm
β = 102.298 (7)°
Data collection top
Bruker APEXII area-detector
diffractometer
6212 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5157 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 0.632Rint = 0.049
17534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0289 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.93 e Å3
6212 reflectionsΔρmin = 0.44 e Å3
386 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.438501 (17)0.278104 (6)0.274724 (8)0.03525 (7)
O10.4038 (3)0.16647 (11)0.29063 (15)0.0682 (6)
O20.3592 (3)0.25771 (12)0.12823 (14)0.0633 (6)
O30.7158 (3)0.24651 (12)0.25735 (16)0.0638 (5)
O40.5438 (3)0.37217 (10)0.20267 (13)0.0609 (5)
O50.6599 (4)0.45664 (11)0.26918 (16)0.0908 (8)
O60.5855 (3)0.37538 (10)0.33652 (13)0.0661 (6)
O70.6014 (3)0.24707 (11)0.41840 (13)0.0609 (5)
O80.4964 (4)0.24869 (15)0.52941 (14)0.0876 (7)
O90.3482 (3)0.28523 (11)0.41114 (15)0.0714 (7)
O100.2132 (3)0.36337 (11)0.24552 (19)0.0880 (9)
O110.0605 (3)0.34686 (15)0.2212 (3)0.1190 (12)
O120.1162 (3)0.26681 (11)0.24108 (17)0.0656 (6)
N10.5981 (3)0.40299 (11)0.26873 (16)0.0597 (6)
N20.4822 (4)0.26057 (14)0.45497 (16)0.0598 (6)
N30.0856 (3)0.32594 (16)0.23588 (19)0.0714 (8)
N41.0674 (4)0.83522 (15)0.6463 (2)0.0777 (8)
N50.5812 (4)1.08020 (14)0.4039 (2)0.0745 (8)
N60.5071 (4)0.16530 (13)0.0550 (2)0.0805 (9)
N70.1989 (5)0.08374 (17)0.1836 (2)0.0953 (11)
C10.8645 (4)0.92986 (13)0.55189 (18)0.0512 (6)
C20.8741 (7)0.86922 (18)0.5232 (3)0.1192 (19)
H20.80940.85770.47110.143*
C30.9790 (8)0.8245 (2)0.5706 (4)0.140 (2)
H30.98770.78410.54740.168*
C41.0546 (6)0.8937 (2)0.6742 (2)0.1056 (16)
H41.11650.90350.72750.127*
C50.9553 (6)0.9420 (2)0.6299 (2)0.0953 (14)
H50.95110.98250.65350.114*
C60.7631 (4)0.98137 (13)0.50085 (17)0.0508 (6)
C70.7416 (6)1.04134 (17)0.5322 (2)0.0892 (13)
H70.78611.05010.58820.107*
C80.6555 (6)1.08824 (18)0.4818 (3)0.0969 (14)
H80.64961.12890.50480.116*
C90.5993 (6)1.0231 (2)0.3740 (3)0.1067 (16)
H90.54951.01590.31820.128*
C100.6870 (6)0.97233 (19)0.4189 (2)0.0951 (14)
H100.69390.93270.39350.114*
C110.5049 (4)0.03433 (14)0.0113 (2)0.0618 (8)
C120.4307 (6)0.08096 (19)0.0440 (3)0.1083 (18)
H120.37700.06960.09810.130*
C130.4354 (6)0.14446 (19)0.0197 (3)0.1069 (16)
H130.38410.17470.05910.128*
C140.5861 (6)0.12116 (19)0.1079 (3)0.1000 (14)
H140.64470.13450.16040.120*
C150.5858 (6)0.05579 (18)0.0888 (2)0.0942 (13)
H150.64070.02660.12870.113*
C160.0409 (5)0.01783 (16)0.0385 (2)0.0707 (9)
C170.0126 (6)0.08216 (18)0.0486 (3)0.1009 (15)
H170.06060.10510.00690.121*
C180.0926 (7)0.1122 (2)0.1202 (3)0.1071 (16)
H180.07140.15580.12520.129*
C190.2228 (6)0.0216 (2)0.1734 (3)0.0981 (14)
H190.29570.00030.21630.118*
C200.1478 (5)0.01283 (19)0.1041 (2)0.0838 (11)
H200.16890.05670.10120.101*
H1A0.332 (5)0.1409 (16)0.259 (2)0.15 (2)*
H2A0.265 (4)0.268 (2)0.095 (2)0.13 (2)*
H3A0.798 (6)0.220 (3)0.256 (4)0.22 (4)*
H1B0.457 (4)0.1409 (14)0.3308 (17)0.096 (13)*
H2B0.420 (5)0.235 (2)0.102 (2)0.12 (2)*
H3B0.752 (9)0.272 (2)0.298 (3)0.17 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.03376 (10)0.02805 (9)0.03997 (10)0.00117 (5)0.00108 (6)0.00237 (5)
O10.0846 (16)0.0435 (11)0.0659 (13)0.0056 (11)0.0074 (12)0.0100 (10)
O20.0707 (16)0.0557 (12)0.0572 (13)0.0119 (12)0.0006 (12)0.0075 (10)
O30.0490 (13)0.0588 (13)0.0806 (16)0.0109 (11)0.0071 (11)0.0137 (12)
O40.0658 (13)0.0535 (12)0.0579 (11)0.0069 (10)0.0008 (9)0.0015 (9)
O50.119 (2)0.0491 (13)0.0964 (18)0.0300 (14)0.0049 (16)0.0110 (12)
O60.0860 (16)0.0499 (11)0.0570 (12)0.0137 (11)0.0030 (11)0.0040 (9)
O70.0606 (13)0.0597 (12)0.0582 (12)0.0041 (11)0.0026 (10)0.0033 (10)
O80.103 (2)0.1063 (19)0.0494 (13)0.0033 (19)0.0070 (13)0.0055 (13)
O90.0649 (16)0.0839 (17)0.0631 (14)0.0097 (11)0.0085 (12)0.0015 (11)
O100.0500 (14)0.0512 (13)0.159 (3)0.0043 (11)0.0142 (15)0.0212 (15)
O110.0488 (15)0.105 (2)0.201 (4)0.0224 (15)0.0232 (18)0.063 (2)
O120.0519 (12)0.0577 (13)0.0834 (15)0.0018 (11)0.0057 (11)0.0117 (11)
N10.0667 (16)0.0434 (12)0.0624 (15)0.0051 (12)0.0007 (12)0.0084 (11)
N20.0672 (18)0.0585 (14)0.0497 (14)0.0027 (13)0.0036 (13)0.0018 (11)
N30.0442 (15)0.0682 (19)0.101 (2)0.0091 (13)0.0128 (14)0.0302 (15)
N40.0612 (17)0.079 (2)0.094 (2)0.0176 (15)0.0190 (15)0.0369 (17)
N50.0684 (19)0.0596 (17)0.091 (2)0.0056 (14)0.0072 (16)0.0223 (15)
N60.081 (2)0.0556 (16)0.094 (2)0.0138 (15)0.0054 (17)0.0187 (15)
N70.121 (3)0.079 (2)0.078 (2)0.040 (2)0.003 (2)0.0023 (17)
C10.0459 (15)0.0493 (15)0.0585 (16)0.0016 (12)0.0116 (12)0.0107 (12)
C20.155 (4)0.057 (2)0.113 (3)0.034 (3)0.046 (3)0.013 (2)
C30.176 (6)0.062 (3)0.146 (4)0.044 (3)0.046 (4)0.007 (3)
C40.128 (4)0.115 (3)0.064 (2)0.066 (3)0.002 (2)0.008 (2)
C50.120 (3)0.089 (3)0.066 (2)0.046 (3)0.007 (2)0.0045 (19)
C60.0483 (15)0.0460 (14)0.0572 (15)0.0010 (12)0.0093 (12)0.0085 (11)
C70.131 (4)0.0546 (19)0.068 (2)0.023 (2)0.011 (2)0.0029 (16)
C80.136 (4)0.055 (2)0.086 (3)0.029 (2)0.007 (3)0.0037 (18)
C90.133 (4)0.093 (3)0.074 (2)0.026 (3)0.023 (2)0.009 (2)
C100.130 (4)0.066 (2)0.070 (2)0.022 (2)0.021 (2)0.0011 (18)
C110.0572 (18)0.0529 (17)0.0697 (19)0.0152 (15)0.0012 (14)0.0123 (14)
C120.132 (4)0.066 (2)0.097 (3)0.028 (2)0.044 (3)0.022 (2)
C130.128 (4)0.056 (2)0.108 (3)0.024 (2)0.040 (3)0.011 (2)
C140.133 (4)0.069 (2)0.081 (2)0.028 (2)0.016 (2)0.0215 (19)
C150.128 (4)0.064 (2)0.076 (2)0.026 (2)0.012 (2)0.0105 (18)
C160.081 (2)0.0626 (19)0.0657 (19)0.0302 (17)0.0092 (17)0.0075 (15)
C170.145 (4)0.058 (2)0.082 (3)0.026 (2)0.014 (3)0.0054 (18)
C180.158 (4)0.064 (2)0.087 (3)0.032 (3)0.003 (3)0.005 (2)
C190.109 (3)0.088 (3)0.083 (3)0.018 (3)0.012 (2)0.007 (2)
C200.089 (3)0.072 (2)0.080 (2)0.020 (2)0.005 (2)0.0048 (19)
Geometric parameters (Å, º) top
La1—O12.357 (2)C1—C61.487 (4)
La1—O22.389 (2)C2—C31.375 (5)
La1—O32.380 (2)C2—H20.9300
La1—O42.519 (2)C3—H30.9300
La1—O62.446 (2)C4—C51.384 (5)
La1—O72.520 (2)C4—H40.9300
La1—O92.496 (3)C5—H50.9300
La1—O102.495 (2)C6—C101.364 (4)
La1—O122.521 (3)C6—C71.373 (4)
O1—H1A0.87 (3)C7—C81.365 (5)
O1—H1B0.88 (3)C7—H70.9300
O2—H2A0.86 (3)C8—H80.9300
O2—H2B0.86 (4)C9—C101.388 (5)
O3—H3A0.86 (5)C9—H90.9300
O3—H3B0.85 (5)C10—H100.9300
O4—N11.254 (3)C11—C151.371 (5)
O5—N11.219 (3)C11—C121.372 (5)
O6—N11.274 (3)C11—C11i1.472 (6)
O7—N21.259 (3)C12—C131.377 (5)
O8—N21.227 (3)C12—H120.9300
O9—N21.262 (4)C13—H130.9300
O10—N31.263 (4)C14—C151.394 (5)
O11—N31.218 (3)C14—H140.9300
O12—N31.252 (3)C15—H150.9300
N4—C31.310 (6)C16—C171.372 (5)
N4—C41.311 (5)C16—C201.377 (5)
N5—C81.299 (5)C16—C16ii1.490 (6)
N5—C91.302 (5)C17—C181.363 (5)
N6—C131.312 (5)C17—H170.9300
N6—C141.325 (5)C18—H180.9300
N7—C191.322 (5)C19—C201.368 (5)
N7—C181.331 (5)C19—H190.9300
C1—C51.353 (4)C20—H200.9300
C1—C21.353 (4)
O1—La1—O285.67 (8)O7—N2—O9116.9 (3)
O1—La1—O382.86 (9)O11—N3—O12121.9 (3)
O1—La1—O4150.97 (9)O11—N3—O10121.0 (3)
O1—La1—O6145.57 (7)O12—N3—O10117.1 (3)
O1—La1—O772.18 (8)C3—N4—C4115.0 (3)
O1—La1—O984.03 (8)C8—N5—C9115.0 (3)
O1—La1—O10128.55 (9)C13—N6—C14115.8 (3)
O1—La1—O1278.13 (8)C19—N7—C18114.8 (3)
O2—La1—O383.34 (9)C5—C1—C2116.4 (3)
O2—La1—O473.08 (8)C5—C1—C6121.0 (3)
O2—La1—O6124.35 (8)C2—C1—C6122.6 (3)
O2—La1—O7150.27 (8)C1—C2—C3120.4 (4)
O2—La1—O9147.91 (9)C1—C2—H2119.8
O2—La1—O1084.70 (10)C3—C2—H2119.8
O2—La1—O1274.00 (9)N4—C3—C2124.1 (4)
O3—La1—O475.36 (8)N4—C3—H3118.0
O3—La1—O684.41 (9)C2—C3—H3118.0
O3—La1—O774.62 (8)N4—C4—C5124.5 (4)
O3—La1—O9125.16 (8)N4—C4—H4117.7
O3—La1—O10145.23 (8)C5—C4—H4117.7
O3—La1—O12151.29 (9)C1—C5—C4119.5 (4)
O4—La1—O651.31 (7)C1—C5—H5120.2
O4—La1—O7118.73 (7)C4—C5—H5120.2
O4—La1—O9124.26 (7)C10—C6—C7115.4 (3)
O4—La1—O1069.93 (8)C10—C6—C1122.0 (3)
O4—La1—O12113.28 (7)C7—C6—C1122.6 (3)
O6—La1—O773.63 (7)C8—C7—C6120.5 (3)
O6—La1—O977.50 (8)C8—C7—H7119.7
O6—La1—O1075.77 (8)C6—C7—H7119.7
O6—La1—O12122.93 (8)N5—C8—C7124.7 (4)
O7—La1—O950.69 (8)N5—C8—H8117.7
O7—La1—O10124.58 (9)C7—C8—H8117.7
O7—La1—O12118.61 (8)N5—C9—C10125.2 (4)
O9—La1—O1078.28 (9)N5—C9—H9117.4
O9—La1—O1274.15 (9)C10—C9—H9117.4
O10—La1—O1250.65 (8)C6—C10—C9119.0 (4)
O1—La1—H3B94.2 (13)C6—C10—H10120.5
O2—La1—H3B101.0 (9)C9—C10—H10120.5
O6—La1—H3B66.1 (8)C15—C11—C12115.8 (3)
O10—La1—H3B137.3 (13)C15—C11—C11i122.5 (4)
O9—La1—H3B110.0 (11)C12—C11—C11i121.7 (4)
O4—La1—H3B71.5 (16)C11—C12—C13120.3 (4)
O7—La1—H3B62.3 (14)C11—C12—H12119.9
O12—La1—H3B171.0 (7)C13—C12—H12119.9
H1A—O1—H1B103 (2)N6—C13—C12124.5 (4)
H1A—O1—La1128 (3)N6—C13—H13117.7
H1B—O1—La1129 (2)C12—C13—H13117.7
H1B—O1—H1A103 (2)N6—C14—C15123.4 (3)
La1—O1—H1A128 (3)N6—C14—H14118.3
H1A—O1—H1B103 (2)C15—C14—H14118.3
La1—O1—H1B129 (2)C11—C15—C14120.2 (3)
H1A—O1—H1B103 (2)C11—C15—H15119.9
La1—O2—H2A128 (3)C14—C15—H15119.9
La1—O2—H2B124 (3)C17—C16—C20116.6 (3)
H2A—O2—H2B109 (2)C17—C16—C16ii122.2 (4)
La1—O3—H3A156 (5)C20—C16—C16ii121.2 (4)
La1—O3—H3B84 (5)C18—C17—C16119.4 (4)
H3A—O3—H3B107 (6)C18—C17—H17120.3
N1—O4—La194.54 (16)C16—C17—H17120.3
N1—O6—La197.49 (15)N7—C18—C17125.0 (4)
N2—O7—La195.61 (16)N7—C18—H18117.5
N2—O9—La196.67 (19)C17—C18—H18117.5
N3—O10—La196.55 (18)N7—C19—C20124.5 (4)
N3—O12—La195.64 (18)N7—C19—H19117.7
O5—N1—O4122.5 (3)C20—C19—H19117.7
O5—N1—O6120.9 (3)C19—C20—C16119.7 (4)
O4—N1—O6116.6 (2)C19—C20—H20120.2
O8—N2—O7120.7 (3)C16—C20—H20120.2
O8—N2—O9122.4 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N60.86 (4)1.84 (4)2.668 (4)161 (5)
O1—H1A···N70.87 (3)1.87 (3)2.736 (4)173 (5)
O1—H1B···N5iii0.88 (3)1.87 (3)2.747 (3)172 (4)
O3—H3A···N4iv0.86 (5)2.08 (6)2.684 (3)128 (6)
O2—H2A···O8v0.86 (3)2.21 (2)3.002 (4)154 (5)
Symmetry codes: (iii) x, y1, z; (iv) x+2, y+1, z+1; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[La(NO3)3(H2O)3]·2C10H8N2
Mr691.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)7.970 (2), 20.781 (2), 16.401 (3)
β (°) 102.298 (7)
V3)2654.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.49 × 0.38 × 0.30
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.493, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
17534, 6212, 5157
Rint0.049
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 0.99
No. of reflections6212
No. of parameters386
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.44

Computer programs: APEX2 (Bruker, 2005), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Selected geometric parameters (Å, º) top
La1—O12.357 (2)La1—O72.520 (2)
La1—O22.389 (2)La1—O92.496 (3)
La1—O32.380 (2)La1—O102.495 (2)
La1—O42.519 (2)La1—O122.521 (3)
La1—O62.446 (2)
O1—La1—O285.67 (8)O3—La1—O9125.16 (8)
O1—La1—O382.86 (9)O3—La1—O10145.23 (8)
O1—La1—O4150.97 (9)O3—La1—O12151.29 (9)
O1—La1—O6145.57 (7)O4—La1—O651.31 (7)
O1—La1—O772.18 (8)O4—La1—O7118.73 (7)
O1—La1—O984.03 (8)O4—La1—O9124.26 (7)
O1—La1—O10128.55 (9)O4—La1—O1069.93 (8)
O1—La1—O1278.13 (8)O4—La1—O12113.28 (7)
O2—La1—O383.34 (9)O6—La1—O773.63 (7)
O2—La1—O473.08 (8)O6—La1—O977.50 (8)
O2—La1—O6124.35 (8)O6—La1—O1075.77 (8)
O2—La1—O7150.27 (8)O6—La1—O12122.93 (8)
O2—La1—O9147.91 (9)O7—La1—O950.69 (8)
O2—La1—O1084.70 (10)O7—La1—O10124.58 (9)
O2—La1—O1274.00 (9)O7—La1—O12118.61 (8)
O3—La1—O475.36 (8)O9—La1—O1078.28 (9)
O3—La1—O684.41 (9)O9—La1—O1274.15 (9)
O3—La1—O774.62 (8)O10—La1—O1250.65 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N60.86 (4)1.84 (4)2.668 (4)161 (5)
O1—H1A···N70.87 (3)1.87 (3)2.736 (4)173 (5)
O1—H1B···N5i0.88 (3)1.87 (3)2.747 (3)172 (4)
O3—H3A···N4ii0.86 (5)2.08 (6)2.684 (3)128 (6)
O2—H2A···O8iii0.86 (3)2.21 (2)3.002 (4)154 (5)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z+1; (iii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds