Download citation
Download citation
link to html
The crystal structure of the title compound, C15H13NO3, is stabilized by inversion-related N—H...O and C—H...O inter­molecular hydrogen bonds and C—H...π inter­actions. The N—H...O hydrogen bonds generate two C(6) chains, one within the other, and these chains are linked by C—H...O inter­molecular hydrogen bonds forming R44(21) ring motifs. The phthalide part of the mol­ecule is planar, and the dihedral angle between the phthalide group and the other benzene ring is 62.81 (8)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807048714/at2418sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807048714/at2418Isup2.hkl
Contains datablock I

CCDC reference: 667340

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.025
  • wR factor = 0.063
  • Data-to-parameter ratio = 6.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.72 mm PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 6.93
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _reflns_number_total 1227 Count of symmetry unique reflns 1250 Completeness (_total/calc) 98.16% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT792_ALERT_1_G Check the Absolute Configuration of C8 = ... S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phthalides (isobenzofuranones) have important biological activities (Aoki et al., 1973; Lacova, 1973; Elderfield, 1951; Tsi & Tan, 1997; Bellasio, 1974; Roy & Sarkar, 2005). As part of a continuing study of the interplay between molecular conformation and supramolecular aggregation in 3-substituted phthalides, we now report the structure of the title compound, 3-(3-methoxyphenylamino)isobenzofuran-1(3H)-one, (I) (Fig. 1).

The geometry of the molecule of (I) does not show any significant differences from the average geometry found for 2- and 3-metoxy isomers (Odabaşoğlu & Büyükgüngör, 2006b,c) and other isobenzofuran-1(3H)-ones (Büyükgüngör & Odabaşoğlu, 2006a,b, 2007; Odabaşoğlu & Büyükgüngör, 2006a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r; Odabaşoğlu & Büyükgüngör, 2007a,b,c). The phthalide group (C1—C8/O2) is planar, the largest deviation from the mean plane being -0.021 (2) Å for atom C8. The dihedral angle between the mean planes of the phthalide group and the phenyl ring is 62.81 (8) °.

In (I), the crystal packing is stabilized by, N—H···O, C—H···O intermolecular hydrogen bonds and C—H···π interactions (Fig. 2, Table 1). The N—H···O hydrogen bonds generate two C(6) chains one within the other and these chains are linked by C—H···O intermolecular hydrogen bonds forming R44(21) ring motifs (Fig.3) (Etter, 1990). The C12—H12···Cg1 (Cg1 is the centroid of the C9—C14 ring) interaction parameters are given in Table 1.

Related literature top

For related structures, see: Büyükgüngör & Odabaşoğlu, (2006a,b); Odabaşoğlu & Büyükgüngör, (2006a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r; 2007a,b,c). For related literature, see: Aoki et al. (1973); Lacova, (1973); Elderfield (1951); Tsi & Tan (1997); Bellasio (1974); Roy & Sarkar, (2005).

For related literature, see: Büyükgüngör & Odabaşoğlu (2007); Etter (1990).

Experimental top

The title compound was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006a), using phthalaldehydic acid and 3-methoxylaniline as starting materials (yield 90%; m.p. 428–429 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol (95%) solution at room temperature.

Refinement top

All C-bound H atoms were refined using the riding model approximation with d(C—H) = 0.93 for aromatic, d(C—H) = 0.98 for methine and d(C—H) = 0.96 for methyl [Uiso(H) = 1.2 or 1.5Ueq(parent atom)]. N-bound H atom was located in Fourier difference map and refined freely due to its taking part in H-bond. The absolute structure could not be determined, and 1110 Friedel pairs were averaged before the last refinement.

Structure description top

Phthalides (isobenzofuranones) have important biological activities (Aoki et al., 1973; Lacova, 1973; Elderfield, 1951; Tsi & Tan, 1997; Bellasio, 1974; Roy & Sarkar, 2005). As part of a continuing study of the interplay between molecular conformation and supramolecular aggregation in 3-substituted phthalides, we now report the structure of the title compound, 3-(3-methoxyphenylamino)isobenzofuran-1(3H)-one, (I) (Fig. 1).

The geometry of the molecule of (I) does not show any significant differences from the average geometry found for 2- and 3-metoxy isomers (Odabaşoğlu & Büyükgüngör, 2006b,c) and other isobenzofuran-1(3H)-ones (Büyükgüngör & Odabaşoğlu, 2006a,b, 2007; Odabaşoğlu & Büyükgüngör, 2006a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r; Odabaşoğlu & Büyükgüngör, 2007a,b,c). The phthalide group (C1—C8/O2) is planar, the largest deviation from the mean plane being -0.021 (2) Å for atom C8. The dihedral angle between the mean planes of the phthalide group and the phenyl ring is 62.81 (8) °.

In (I), the crystal packing is stabilized by, N—H···O, C—H···O intermolecular hydrogen bonds and C—H···π interactions (Fig. 2, Table 1). The N—H···O hydrogen bonds generate two C(6) chains one within the other and these chains are linked by C—H···O intermolecular hydrogen bonds forming R44(21) ring motifs (Fig.3) (Etter, 1990). The C12—H12···Cg1 (Cg1 is the centroid of the C9—C14 ring) interaction parameters are given in Table 1.

For related structures, see: Büyükgüngör & Odabaşoğlu, (2006a,b); Odabaşoğlu & Büyükgüngör, (2006a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r; 2007a,b,c). For related literature, see: Aoki et al. (1973); Lacova, (1973); Elderfield (1951); Tsi & Tan (1997); Bellasio (1974); Roy & Sarkar, (2005).

For related literature, see: Büyükgüngör & Odabaşoğlu (2007); Etter (1990).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of one within the other two c6 chains [Symmetry codes: (i) x - 1, -y + 1, 1/2 - z; (ii) x, 1 - y, z - 1/2; (iii) 1 - x, y, z - 1/2; (iv) 1 - x, y, -z; (v) x - 1/2, 3/2 - y, z - 1/2].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the holes along the x axis·[Symmetry codes: (i) x - 1, 1 - y, z - 1/2; (ii) x, 1 - y, z + 1/2; (iii) x - 1, y, z].
3-(3-Methoxyanilino)isobenzofuran-1(3H)-one top
Crystal data top
C15H13NO3F(000) = 536
Mr = 255.26Dx = 1.335 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6073 reflections
a = 9.8103 (13) Åθ = 2.9–27.3°
b = 23.541 (3) ŵ = 0.09 mm1
c = 7.259 (1) ÅT = 296 K
β = 130.756 (9)°Prismatic plate, colourless
V = 1269.9 (3) Å30.72 × 0.47 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
1227 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1154 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 1211
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2828
Tmin = 0.954, Tmax = 0.987l = 88
6073 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.1156P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.16 e Å3
1227 reflectionsΔρmin = 0.09 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0125 (17)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1110 Friedel pairs
Secondary atom site location: difference Fourier map
Crystal data top
C15H13NO3V = 1269.9 (3) Å3
Mr = 255.26Z = 4
Monoclinic, CcMo Kα radiation
a = 9.8103 (13) ŵ = 0.09 mm1
b = 23.541 (3) ÅT = 296 K
c = 7.259 (1) Å0.72 × 0.47 × 0.15 mm
β = 130.756 (9)°
Data collection top
Stoe IPDS-2
diffractometer
1227 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1154 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.987Rint = 0.029
6073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.16 e Å3
1227 reflectionsΔρmin = 0.09 e Å3
177 parametersAbsolute structure: Flack (1983), 1110 Friedel pairs
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5126 (3)0.47569 (8)0.2907 (3)0.0423 (4)
C20.3358 (2)0.49461 (7)0.1978 (3)0.0389 (4)
C30.1898 (3)0.46323 (8)0.1291 (3)0.0477 (4)
H30.19350.42380.13540.057*
C40.0393 (3)0.49238 (10)0.0514 (4)0.0558 (5)
H40.06090.47240.00400.067*
C50.0344 (3)0.55134 (10)0.0424 (4)0.0569 (5)
H50.06830.57020.00770.068*
C60.1793 (3)0.58260 (9)0.1066 (4)0.0508 (5)
H60.17480.62200.09700.061*
C70.3302 (2)0.55322 (7)0.1852 (3)0.0394 (4)
C80.5047 (2)0.57507 (8)0.2636 (3)0.0420 (4)
H80.48310.59330.12530.050*
C90.7376 (3)0.64688 (7)0.5373 (3)0.0399 (4)
C100.8079 (3)0.68262 (8)0.7342 (3)0.0478 (4)
H100.76040.68230.81080.057*
C110.9473 (3)0.71831 (8)0.8144 (4)0.0553 (5)
H110.99150.74280.94320.066*
C121.0243 (3)0.71886 (8)0.7084 (4)0.0559 (5)
H121.11960.74310.76550.067*
C130.9560 (3)0.68262 (7)0.5161 (4)0.0478 (4)
C140.8121 (3)0.64691 (7)0.4281 (3)0.0436 (4)
H140.76610.62320.29660.052*
C151.1826 (5)0.70784 (16)0.4999 (7)0.0928 (10)
H15A1.16660.74770.50900.111*
H15B1.21340.70220.40010.111*
H15C1.27740.69350.66030.111*
N10.5904 (2)0.61331 (7)0.4565 (3)0.0483 (4)
O10.5718 (2)0.42796 (6)0.3314 (3)0.0554 (4)
O20.61074 (18)0.52137 (5)0.3283 (2)0.0479 (3)
O31.0211 (2)0.67872 (7)0.3974 (3)0.0660 (4)
H10.577 (3)0.6073 (9)0.563 (5)0.053 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0418 (11)0.0481 (10)0.0414 (9)0.0018 (8)0.0291 (9)0.0004 (7)
C20.0375 (10)0.0433 (9)0.0354 (8)0.0002 (7)0.0236 (8)0.0010 (7)
C30.0446 (12)0.0512 (10)0.0453 (9)0.0092 (9)0.0285 (9)0.0048 (8)
C40.0360 (12)0.0766 (13)0.0497 (10)0.0106 (10)0.0257 (10)0.0027 (11)
C50.0348 (12)0.0795 (14)0.0515 (11)0.0112 (11)0.0260 (10)0.0085 (11)
C60.0448 (12)0.0515 (10)0.0524 (10)0.0112 (9)0.0301 (10)0.0074 (9)
C70.0360 (10)0.0439 (9)0.0365 (8)0.0002 (7)0.0229 (8)0.0012 (7)
C80.0399 (11)0.0434 (9)0.0448 (10)0.0015 (8)0.0286 (9)0.0008 (7)
C90.0390 (10)0.0337 (8)0.0423 (9)0.0010 (7)0.0244 (8)0.0034 (6)
C100.0485 (12)0.0457 (10)0.0497 (10)0.0024 (8)0.0323 (10)0.0014 (8)
C110.0564 (14)0.0456 (10)0.0541 (11)0.0076 (9)0.0318 (11)0.0124 (8)
C120.0514 (13)0.0453 (10)0.0655 (13)0.0125 (9)0.0357 (11)0.0077 (9)
C130.0505 (13)0.0389 (9)0.0565 (10)0.0031 (8)0.0360 (10)0.0017 (8)
C140.0461 (11)0.0365 (8)0.0463 (9)0.0043 (8)0.0294 (9)0.0016 (7)
C150.092 (2)0.110 (2)0.110 (2)0.0432 (18)0.081 (2)0.0240 (18)
N10.0511 (11)0.0514 (9)0.0492 (9)0.0107 (7)0.0357 (9)0.0053 (7)
O10.0625 (10)0.0496 (8)0.0628 (8)0.0147 (7)0.0446 (8)0.0058 (6)
O20.0371 (8)0.0516 (8)0.0577 (8)0.0003 (6)0.0321 (7)0.0014 (6)
O30.0706 (11)0.0706 (10)0.0785 (10)0.0232 (8)0.0582 (10)0.0140 (8)
Geometric parameters (Å, º) top
C1—O11.209 (2)C9—C141.386 (3)
C1—O21.347 (2)C9—C101.393 (3)
C1—C21.461 (3)C9—N11.395 (2)
C2—C71.382 (2)C10—C111.370 (3)
C2—C31.383 (3)C10—H100.9300
C3—C41.371 (3)C11—C121.386 (3)
C3—H30.9300C11—H110.9300
C4—C51.389 (3)C12—C131.380 (3)
C4—H40.9300C12—H120.9300
C5—C61.383 (3)C13—O31.370 (2)
C5—H50.9300C13—C141.389 (3)
C6—C71.376 (3)C14—H140.9300
C6—H60.9300C15—O31.412 (3)
C7—C81.499 (3)C15—H15A0.9600
C8—N11.393 (2)C15—H15B0.9600
C8—O21.504 (2)C15—H15C0.9600
C8—H80.9800N1—H10.87 (2)
O1—C1—O2121.77 (19)C14—C9—N1123.20 (16)
O1—C1—C2129.19 (19)C10—C9—N1117.19 (16)
O2—C1—C2109.04 (15)C11—C10—C9119.68 (18)
C7—C2—C3121.50 (18)C11—C10—H10120.2
C7—C2—C1108.59 (16)C9—C10—H10120.2
C3—C2—C1129.91 (17)C10—C11—C12121.65 (19)
C4—C3—C2117.66 (18)C10—C11—H11119.2
C4—C3—H3121.2C12—C11—H11119.2
C2—C3—H3121.2C13—C12—C11118.34 (19)
C3—C4—C5120.98 (19)C13—C12—H12120.8
C3—C4—H4119.5C11—C12—H12120.8
C5—C4—H4119.5O3—C13—C12124.01 (18)
C6—C5—C4121.27 (19)O3—C13—C14114.89 (17)
C6—C5—H5119.4C12—C13—C14121.10 (18)
C4—C5—H5119.4C9—C14—C13119.62 (16)
C7—C6—C5117.58 (19)C9—C14—H14120.2
C7—C6—H6121.2C13—C14—H14120.2
C5—C6—H6121.2O3—C15—H15A109.5
C6—C7—C2120.99 (18)O3—C15—H15B109.5
C6—C7—C8129.64 (18)H15A—C15—H15B109.5
C2—C7—C8109.37 (16)O3—C15—H15C109.5
N1—C8—C7113.20 (16)H15A—C15—H15C109.5
N1—C8—O2112.88 (15)H15B—C15—H15C109.5
C7—C8—O2102.45 (14)C8—N1—C9124.63 (16)
N1—C8—H8109.4C8—N1—H1116.3 (15)
C7—C8—H8109.4C9—N1—H1115.4 (15)
O2—C8—H8109.4C1—O2—C8110.52 (14)
C14—C9—C10119.60 (17)C13—O3—C15117.35 (19)
O1—C1—C2—C7178.91 (18)N1—C9—C10—C11177.19 (18)
O2—C1—C2—C71.37 (19)C9—C10—C11—C121.7 (3)
O1—C1—C2—C31.1 (3)C10—C11—C12—C130.6 (3)
O2—C1—C2—C3178.65 (17)C11—C12—C13—O3179.4 (2)
C7—C2—C3—C41.1 (3)C11—C12—C13—C140.8 (3)
C1—C2—C3—C4178.88 (18)C10—C9—C14—C130.0 (3)
C2—C3—C4—C50.0 (3)N1—C9—C14—C13178.47 (18)
C3—C4—C5—C61.4 (3)O3—C13—C14—C9179.10 (18)
C4—C5—C6—C71.5 (3)C12—C13—C14—C91.1 (3)
C5—C6—C7—C20.4 (3)C7—C8—N1—C9168.78 (16)
C5—C6—C7—C8179.40 (18)O2—C8—N1—C975.4 (2)
C3—C2—C7—C60.9 (3)C14—C9—N1—C81.9 (3)
C1—C2—C7—C6179.03 (16)C10—C9—N1—C8179.54 (18)
C3—C2—C7—C8178.27 (15)O1—C1—O2—C8179.84 (17)
C1—C2—C7—C81.8 (2)C2—C1—O2—C80.41 (17)
C6—C7—C8—N157.6 (3)N1—C8—O2—C1122.68 (16)
C2—C7—C8—N1123.30 (16)C7—C8—O2—C10.60 (17)
C6—C7—C8—O2179.43 (18)C12—C13—O3—C159.0 (4)
C2—C7—C8—O21.45 (18)C14—C13—O3—C15171.2 (2)
C14—C9—C10—C111.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.15 (3)3.005 (2)165.7 (19)
C4—H4···O2ii0.932.583.394 (3)146
C12—H12···Cg1iii0.932.773.594 (3)148
Symmetry codes: (i) x, y+1, z+1/2; (ii) x1, y+1, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO3
Mr255.26
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)9.8103 (13), 23.541 (3), 7.259 (1)
β (°) 130.756 (9)
V3)1269.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.72 × 0.47 × 0.15
Data collection
DiffractometerStoe IPDS2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.954, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
6073, 1227, 1154
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.07
No. of reflections1227
No. of parameters177
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.09
Absolute structureFlack (1983), 1110 Friedel pairs

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.15 (3)3.005 (2)165.7 (19)
C4—H4···O2ii0.932.583.394 (3)146.2
C12—H12···Cg1iii0.932.773.594 (3)148.2
Symmetry codes: (i) x, y+1, z+1/2; (ii) x1, y+1, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds