Download citation
Download citation
link to html
The Ni atom in the title compound, [Ni(C17H19N2S)Cl], is tetra­coordinated by a naphtholate O atom, a diazene N atom, a Cl atom and an S atom in an approximately square-planar geometry. The crystal packing is stabilized by one inter­molecular C—H...Cl inter­action and two inter­molecular π–π inter­actions; the centroid-to-centroid distances are 3.745 (3) and 3.744 (3) Å, and the corresponding perpendicular distances are 3.528 and 3.541 Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049719/at2422sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049719/at2422Isup2.hkl
Contains datablock I

CCDC reference: 667168

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.045
  • wR factor = 0.113
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT027_ALERT_3_B _diffrn_reflns_theta_full (too) Low ............ 24.99 Deg.
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT128_ALERT_4_C Non-standard setting of Space group Pna21 .... Pn21a PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 24.99 From the CIF: _reflns_number_total 2728 Count of symmetry unique reflns 1436 Completeness (_total/calc) 189.97% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1292 Fraction of Friedel pairs measured 0.900 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.50 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Due to their potential biological activities, square planar Ni(II) complexes of various tridentate ONS ligands have been the subject of recent studies (Ali et al. 2002). Some of them have also been found to catalyse important reactions related to CO-dehydrogenase and silane alcoholosis (Lu et al., 1993; Barber et al., 1992). Against this background, we report here the crystal structure of (I).

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom numbering scheme. The nickel atom along with donor set of four atoms lie nearly in a plane. Selected bond lengths, bond angles and torsion angles are listed in Table 1. The packing arrangement of (I) is shown in Fig. 2. The N=N bond length 1.286 (5) is slightly greater than that in the free azoarenes (Das et al., 2006). Two nearly planar fragment in the molecular structure of (I) may be identified: the nickel atom, diazene unit, the chlorine atom and the naphtholato unit (A), the sulfur atom and the phenyl moiety (B). The dehedral angle between the planes A/B is 4.15 (16)°. The crystal packing is stabilized by one intermolecular C—H···Cli [Symmetry code: (i) x, y, -1 + z.] interaction (Fig. 3; Table 2) and two intermolecular ππ interactions (Bagchi et al., 2007); the Cg3-Cg4ii and Cg4-Cg3iii [Symmetry codes: (ii) x, y, 1 + z; (iii) x, y, -1 + z. Cg3 and Cg4 are the centroids of C1—C10 and C5—C9 rings respectively.] distances are 3.745 (3) and 3.744 (3) Å (Fig. 4); the corresponding perpendicular distances are 3.528 and 3.541 Å respectively. No C—H···π(arene) interaction is present in (I).

Related literature top

For related literature, see: Ali et al. (2002); Bagchi et al. (2007); Das et al. (2006); Barber et al. (1992); Lu et al. (1993).

Experimental top

The title compound was synthesized by boiling 1-{2-(methylsulfanyl)phenyldiazenyl}naphthol and NiCl2, 2H2O in aqueous ethanol on water bath for one hour. The resulting precipitate was recrystallized from dichloromethane–hexane(1:4 v/v) producing crystals suitable for X-ray crystallography. Yield: 65%.

Refinement top

H atoms were included at calculated positions as riding atoms with C—H set to 0.93 Å for (aromatic) and 0.96 Å for (CH3) H atoms, with Uiso(H) = 1.2Ueq(C) (1.5Ueq for methyl group).

Structure description top

Due to their potential biological activities, square planar Ni(II) complexes of various tridentate ONS ligands have been the subject of recent studies (Ali et al. 2002). Some of them have also been found to catalyse important reactions related to CO-dehydrogenase and silane alcoholosis (Lu et al., 1993; Barber et al., 1992). Against this background, we report here the crystal structure of (I).

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom numbering scheme. The nickel atom along with donor set of four atoms lie nearly in a plane. Selected bond lengths, bond angles and torsion angles are listed in Table 1. The packing arrangement of (I) is shown in Fig. 2. The N=N bond length 1.286 (5) is slightly greater than that in the free azoarenes (Das et al., 2006). Two nearly planar fragment in the molecular structure of (I) may be identified: the nickel atom, diazene unit, the chlorine atom and the naphtholato unit (A), the sulfur atom and the phenyl moiety (B). The dehedral angle between the planes A/B is 4.15 (16)°. The crystal packing is stabilized by one intermolecular C—H···Cli [Symmetry code: (i) x, y, -1 + z.] interaction (Fig. 3; Table 2) and two intermolecular ππ interactions (Bagchi et al., 2007); the Cg3-Cg4ii and Cg4-Cg3iii [Symmetry codes: (ii) x, y, 1 + z; (iii) x, y, -1 + z. Cg3 and Cg4 are the centroids of C1—C10 and C5—C9 rings respectively.] distances are 3.745 (3) and 3.744 (3) Å (Fig. 4); the corresponding perpendicular distances are 3.528 and 3.541 Å respectively. No C—H···π(arene) interaction is present in (I).

For related literature, see: Ali et al. (2002); Bagchi et al. (2007); Das et al. (2006); Barber et al. (1992); Lu et al. (1993).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular arrangement of (I) in the ab plane.
[Figure 3] Fig. 3. The intra molecular C—H···Cl interaction in (I) shown by dotted line [Symmetry code: (i) x, y, -1 + z.].
[Figure 4] Fig. 4. The inter molecular ππ interaction for (I), indicated by the dotted line. [Symmetry codes: (ii) x, y, 1 + z; (iii) x, y, -1 + z. Cg3 & Cg4 are the centroids of C1—C10 & C5—C9 rings respectively.], H atoms are omitted for clarity.
Chlorido{1-[2-(methylsulfanyl)phenyldiazenyl]naphtholato-κ3O,N,S}nickel(II) top
Crystal data top
[Ni(C17H19N2S)Cl]F(000) = 792
Mr = 387.51Dx = 1.665 Mg m3
Orthorhombic, Pn21aMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ac -2nCell parameters from 2728 reflections
a = 28.717 (4) Åθ = 1.4–25.0°
b = 11.5393 (14) ŵ = 1.57 mm1
c = 4.6660 (6) ÅT = 293 K
V = 1546.2 (3) Å3Block, brown
Z = 40.42 × 0.30 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2728 independent reflections
Radiation source: fine-focus sealed tube2579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3434
Tmin = 0.581, Tmax = 0.744k = 1313
13677 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
2728 reflectionsΔρmax = 0.64 e Å3
209 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983), with 1292 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
[Ni(C17H19N2S)Cl]V = 1546.2 (3) Å3
Mr = 387.51Z = 4
Orthorhombic, Pn21aMo Kα radiation
a = 28.717 (4) ŵ = 1.57 mm1
b = 11.5393 (14) ÅT = 293 K
c = 4.6660 (6) Å0.42 × 0.30 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2728 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2579 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.744Rint = 0.050
13677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.113Δρmax = 0.64 e Å3
S = 1.19Δρmin = 0.51 e Å3
2728 reflectionsAbsolute structure: Flack (1983), with 1292 Freidel pairs
209 parametersAbsolute structure parameter: 0.04 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.56150 (2)0.00129 (5)0.28733 (11)0.03227 (19)
S10.54404 (5)0.18260 (11)0.2816 (3)0.0355 (3)
O10.57767 (14)0.1511 (3)0.3416 (8)0.0424 (9)
C120.58366 (17)0.2283 (5)0.0137 (10)0.0347 (11)
C20.61100 (19)0.2046 (5)0.2164 (10)0.0359 (12)
C10.64243 (17)0.1529 (4)0.0188 (11)0.0328 (11)
C110.61433 (15)0.1454 (4)0.0855 (10)0.0284 (10)
N10.64058 (13)0.0413 (3)0.0621 (8)0.0315 (9)
C80.7118 (2)0.1748 (5)0.3035 (12)0.0465 (14)
H80.70990.09710.35520.056*
C30.6169 (2)0.3253 (5)0.2821 (12)0.0470 (14)
H30.59630.36080.40830.056*
C160.64729 (18)0.1740 (5)0.2918 (11)0.0390 (12)
H160.66780.11840.36210.047*
C40.6514 (2)0.3882 (5)0.1664 (11)0.0472 (15)
H40.65420.46580.21740.057*
C140.6185 (2)0.3707 (5)0.2884 (11)0.0488 (15)
H140.62000.44620.35760.059*
C100.67968 (17)0.2211 (5)0.1069 (11)0.0344 (11)
C150.64898 (19)0.2874 (5)0.3907 (12)0.0408 (13)
H150.67100.30770.52800.049*
C90.68426 (19)0.3401 (5)0.0339 (12)0.0408 (13)
N20.60954 (13)0.0300 (3)0.0295 (8)0.0270 (9)
C170.4890 (2)0.2028 (5)0.1036 (14)0.0492 (15)
H17A0.48590.28230.04620.074*
H17B0.46420.18300.23220.074*
H17C0.48760.15390.06250.074*
C50.7201 (2)0.4051 (6)0.1506 (12)0.0472 (14)
H50.72330.48230.09750.057*
C130.58585 (19)0.3419 (4)0.0849 (11)0.0391 (12)
H130.56550.39770.01400.047*
C70.7461 (2)0.2437 (5)0.4200 (15)0.0557 (16)
H70.76660.21270.55410.067*
C60.7505 (2)0.3591 (5)0.3389 (13)0.0548 (16)
H60.77420.40450.41460.066*
Cl10.50075 (5)0.02334 (13)0.5684 (4)0.0566 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0357 (3)0.0281 (3)0.0330 (3)0.0016 (3)0.0049 (2)0.0013 (4)
S10.0442 (8)0.0305 (7)0.0318 (7)0.0008 (6)0.0014 (5)0.0027 (6)
O10.042 (2)0.030 (2)0.054 (2)0.0021 (17)0.0135 (19)0.0033 (17)
C120.041 (3)0.032 (2)0.031 (3)0.004 (2)0.004 (2)0.003 (2)
C20.039 (3)0.034 (3)0.035 (3)0.000 (2)0.001 (2)0.002 (2)
C10.030 (3)0.030 (3)0.038 (3)0.002 (2)0.000 (2)0.002 (2)
C110.025 (2)0.029 (2)0.031 (3)0.002 (2)0.009 (2)0.006 (2)
N10.030 (2)0.030 (2)0.035 (2)0.0012 (17)0.0033 (18)0.0008 (17)
C80.045 (3)0.040 (3)0.055 (4)0.002 (3)0.014 (3)0.002 (3)
C30.054 (4)0.034 (3)0.053 (3)0.001 (3)0.008 (3)0.012 (3)
C160.032 (3)0.038 (3)0.047 (3)0.002 (2)0.000 (2)0.005 (2)
C40.066 (4)0.031 (3)0.045 (3)0.006 (3)0.002 (3)0.008 (2)
C140.069 (4)0.034 (3)0.043 (3)0.005 (3)0.007 (3)0.010 (3)
C100.030 (3)0.038 (3)0.035 (3)0.001 (2)0.002 (2)0.004 (2)
C150.039 (3)0.041 (3)0.042 (3)0.009 (2)0.001 (2)0.012 (2)
C90.047 (3)0.033 (3)0.042 (3)0.005 (2)0.001 (2)0.003 (2)
N20.023 (2)0.028 (2)0.030 (2)0.0004 (17)0.0031 (16)0.0012 (16)
C170.043 (3)0.055 (4)0.050 (3)0.012 (3)0.001 (3)0.013 (3)
C50.050 (4)0.036 (3)0.056 (3)0.014 (3)0.004 (3)0.002 (3)
C130.050 (3)0.022 (3)0.045 (3)0.008 (2)0.001 (3)0.002 (2)
C70.046 (3)0.051 (4)0.070 (4)0.002 (3)0.021 (3)0.009 (3)
C60.049 (4)0.051 (4)0.064 (4)0.009 (3)0.010 (3)0.013 (3)
Cl10.0605 (9)0.0400 (8)0.0694 (10)0.0014 (6)0.0323 (7)0.0028 (7)
Geometric parameters (Å, º) top
Ni1—O11.836 (4)C3—H30.9300
Ni1—N21.860 (4)C16—C151.388 (8)
Ni1—S12.1516 (14)C16—H160.9300
Ni1—Cl12.2009 (15)C4—C91.439 (8)
S1—C121.771 (5)C4—H40.9300
S1—C171.800 (6)C14—C131.374 (8)
O1—C21.280 (6)C14—C151.386 (8)
C12—C111.380 (7)C14—H140.9300
C12—C131.391 (7)C10—C91.421 (7)
C2—C11.421 (7)C15—H150.9300
C2—C31.437 (8)C9—C51.385 (8)
C1—N11.343 (6)C17—H17A0.9600
C1—C101.452 (7)C17—H17B0.9600
C11—C161.390 (7)C17—H17C0.9600
C11—N21.442 (6)C5—C61.346 (8)
N1—N21.286 (5)C5—H50.9300
C8—C71.379 (8)C13—H130.9300
C8—C101.407 (8)C7—C61.390 (8)
C8—H80.9300C7—H70.9300
C3—C41.341 (8)C6—H60.9300
O1—Ni1—N294.14 (16)C9—C4—H4118.8
O1—Ni1—S1172.66 (13)C13—C14—C15120.0 (5)
N2—Ni1—S189.52 (12)C13—C14—H14120.0
O1—Ni1—Cl189.69 (12)C15—C14—H14120.0
N2—Ni1—Cl1175.02 (12)C8—C10—C9117.6 (5)
S1—Ni1—Cl187.04 (6)C8—C10—C1122.7 (5)
C12—S1—C17101.5 (3)C9—C10—C1119.7 (5)
C12—S1—Ni198.54 (19)C14—C15—C16121.2 (5)
C17—S1—Ni1109.6 (2)C14—C15—H15119.4
C2—O1—Ni1126.0 (3)C16—C15—H15119.4
C11—C12—C13120.9 (5)C5—C9—C10119.8 (5)
C11—C12—S1116.2 (4)C5—C9—C4122.3 (5)
C13—C12—S1122.9 (4)C10—C9—C4117.9 (5)
O1—C2—C1124.7 (5)N1—N2—C11113.7 (4)
O1—C2—C3117.3 (5)N1—N2—Ni1127.9 (3)
C1—C2—C3118.0 (5)C11—N2—Ni1118.4 (3)
N1—C1—C2124.0 (5)S1—C17—H17A109.5
N1—C1—C10115.8 (5)S1—C17—H17B109.5
C2—C1—C10120.2 (5)H17A—C17—H17B109.5
C12—C11—C16120.2 (5)S1—C17—H17C109.5
C12—C11—N2117.0 (4)H17A—C17—H17C109.5
C16—C11—N2122.8 (4)H17B—C17—H17C109.5
N2—N1—C1123.2 (4)C6—C5—C9121.6 (6)
C7—C8—C10120.4 (6)C6—C5—H5119.2
C7—C8—H8119.8C9—C5—H5119.2
C10—C8—H8119.8C14—C13—C12119.2 (5)
C4—C3—C2121.8 (5)C14—C13—H13120.4
C4—C3—H3119.1C12—C13—H13120.4
C2—C3—H3119.1C8—C7—C6120.6 (6)
C15—C16—C11118.5 (5)C8—C7—H7119.7
C15—C16—H16120.7C6—C7—H7119.7
C11—C16—H16120.7C5—C6—C7119.8 (5)
C3—C4—C9122.5 (5)C5—C6—H6120.1
C3—C4—H4118.8C7—C6—H6120.1
N2—Ni1—S1—C125.10 (19)C2—C1—C10—C8180.0 (5)
Cl1—Ni1—S1—C12171.29 (17)N1—C1—C10—C9179.9 (5)
N2—Ni1—S1—C17110.7 (3)C2—C1—C10—C90.7 (7)
Cl1—Ni1—S1—C1765.7 (2)C13—C14—C15—C160.2 (9)
N2—Ni1—O1—C22.0 (4)C11—C16—C15—C140.3 (8)
Cl1—Ni1—O1—C2174.8 (4)C8—C10—C9—C51.5 (8)
C17—S1—C12—C11117.6 (4)C1—C10—C9—C5179.2 (5)
Ni1—S1—C12—C115.4 (4)C8—C10—C9—C4179.8 (5)
C17—S1—C12—C1365.3 (5)C1—C10—C9—C40.4 (8)
Ni1—S1—C12—C13177.5 (4)C3—C4—C9—C5179.3 (6)
Ni1—O1—C2—C12.3 (7)C3—C4—C9—C100.6 (9)
Ni1—O1—C2—C3177.9 (4)C1—N1—N2—C11179.9 (4)
O1—C2—C1—N10.6 (8)C1—N1—N2—Ni10.6 (6)
C3—C2—C1—N1179.6 (5)C12—C11—N2—N1176.9 (4)
O1—C2—C1—C10178.8 (5)C16—C11—N2—N14.5 (6)
C3—C2—C1—C101.0 (7)C12—C11—N2—Ni12.5 (5)
C13—C12—C11—C161.6 (8)C16—C11—N2—Ni1176.1 (4)
S1—C12—C11—C16178.8 (4)O1—Ni1—N2—N10.7 (4)
C13—C12—C11—N2179.8 (4)S1—Ni1—N2—N1174.3 (4)
S1—C12—C11—N22.6 (6)O1—Ni1—N2—C11178.6 (3)
C2—C1—N1—N20.9 (8)S1—Ni1—N2—C115.0 (3)
C10—C1—N1—N2179.7 (4)C10—C9—C5—C61.7 (9)
O1—C2—C3—C4178.6 (5)C4—C9—C5—C6179.6 (6)
C1—C2—C3—C41.2 (8)C15—C14—C13—C120.7 (8)
C12—C11—C16—C151.0 (8)C11—C12—C13—C141.4 (8)
N2—C11—C16—C15179.6 (4)S1—C12—C13—C14178.4 (4)
C2—C3—C4—C91.0 (9)C10—C8—C7—C61.9 (10)
C7—C8—C10—C90.3 (9)C9—C5—C6—C70.1 (10)
C7—C8—C10—C1179.0 (5)C8—C7—C6—C51.7 (10)
N1—C1—C10—C80.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cl1i0.962.703.628 (6)163
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C17H19N2S)Cl]
Mr387.51
Crystal system, space groupOrthorhombic, Pn21a
Temperature (K)293
a, b, c (Å)28.717 (4), 11.5393 (14), 4.6660 (6)
V3)1546.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.42 × 0.30 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.581, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
13677, 2728, 2579
Rint0.050
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.113, 1.19
No. of reflections2728
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.51
Absolute structureFlack (1983), with 1292 Freidel pairs
Absolute structure parameter0.04 (2)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Ni1—O11.836 (4)Ni1—S12.1516 (14)
Ni1—N21.860 (4)Ni1—Cl12.2009 (15)
O1—Ni1—N294.14 (16)O1—Ni1—Cl189.69 (12)
N2—Ni1—S189.52 (12)S1—Ni1—Cl187.04 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17C···Cl1i0.962.703.628 (6)163
Symmetry code: (i) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds