Download citation
Download citation
link to html
In the title compound, [Cu2Cl3(C18H25N3)2]Cl, the asymmetric unit consists of one half of a μ-chlorido-bis­[{N-benzyl-N′-[2-(benzyl­amino)eth­yl]ethane-1,2-diamine}chloridocopper(II)] complex cation and one chloride anion lying on a twofold rotation axis. The two CuII centres are symmetry-related by a twofold rotation axis passing through the bridging Cl atom. The Cu atoms exhibit a distorted square-pyramidal coordination environment. The basal and apical Cu—Cl bond lengths are 2.254 (2) and 2.658 (2) Å, respectively. The Cu...Cu distance and Cu—Cl—Cu angle are 4.349 (6) Å and 109.8 (2)°, respectively. In the crystal structure, the mol­ecules of the complex are linked into chains along b and a by C—H...π hydrogen bonds. The chloride anion links these chains along c into a three-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051434/bg2104sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051434/bg2104Isup2.hkl
Contains datablock I

CCDC reference: 653347

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.056
  • wR factor = 0.103
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.27 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - Cl2 .. 5.74 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C13 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C13 -C18 1.36 Ang. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 15 PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3 ... ?
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 3398 Count of symmetry unique reflns 1927 Completeness (_total/calc) 176.34% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1471 Fraction of Friedel pairs measured 0.763 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of N1 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of N3 = . S PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.09 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Dinuclear copper(II) complexes, especially those containing a chlorine bridging ligand, have been the subject of extensive reseach because of their magnetic exchange interactions between ligand-bridged copper atoms, which mimic the biological active site in copper proteins (Lee et al., 2005; Rapheal et al., 2007). In the classical case, the copper atom is five coordinate and bridged by a monochlorine atom or eventually two chlorine atoms, depending on the coordination environment. Here, we report the synthesis and crystal structure of a new monochlorine bridged dicopper(II) complex, [Cu2 Cl3 (C18 H25 N3)2]+.Cl- (I).

In complex (I), the copper atom is five coordinated by one tridentate chelating (N-benzyl-N'-[2-(benzylamino)ethyl)]ethane-1,2-diamine) ligand and two chloride atoms, to form a distorted square pyramid geometry (Fig. 1). Three N atoms of the ligand and a monodentate chlorine are at the basal square plane, while the bridging chlorine atom is at the apical position. The Cu1 atom is shifted by 0.202 (3)Å from the basal plane towards the apical site. The dihedral angles between the basal plane and the C6—C11 (Cg1) and C13—C18 (Cg2) phenyl rings are 48.9 (3)° and 62.1 (3)°, respectively. Coordination distances are shown in Table 1. The Cu···Cu separation is 4.349 (6) Å, and the Cu—Cl—Cu angle is 109.8 (2)°.

In the crystal structure, C—H···π hydrogen bonds link the molecules into two types of chains running along b and a respectively (Fig. 2 and 3, Table 2). The chloride anion,, which also resides on a two fold axis, in turn, link these chains along the c direction (Fig. 4, Table 2), into a three-dimensinal network structure.

Related literature top

For related literature, see: Lee et al. (2005); Rapheal et al. (2007).

Experimental top

N1-benzyl-N2-(2-(benzylamino)ethyl)ethane-1,2-diamine (4 mmol) was dissolved in ethanol (20 ml), and an aqueous solution (10 ml) of cupric chloride (2 mmol) was added. The reaction mixture was stirred 4 h at 323–333k. The solution was then cooled slowly to room temperature and filtered. Blue crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution.

Refinement top

The space group was uniquely assigned from the systematic absences. All H atoms were located in difference Fourier maps. H atoms bonded to C and N atoms were treated as riding atoms, with C—H distances of 0.93 Å (aryl), 0.97 Å(methylene) and N—H distances of 0.91 Å (amine), and with Uiso(H) = 1.2Ueq(C,N) (aryl, methylene, amine).

Structure description top

Dinuclear copper(II) complexes, especially those containing a chlorine bridging ligand, have been the subject of extensive reseach because of their magnetic exchange interactions between ligand-bridged copper atoms, which mimic the biological active site in copper proteins (Lee et al., 2005; Rapheal et al., 2007). In the classical case, the copper atom is five coordinate and bridged by a monochlorine atom or eventually two chlorine atoms, depending on the coordination environment. Here, we report the synthesis and crystal structure of a new monochlorine bridged dicopper(II) complex, [Cu2 Cl3 (C18 H25 N3)2]+.Cl- (I).

In complex (I), the copper atom is five coordinated by one tridentate chelating (N-benzyl-N'-[2-(benzylamino)ethyl)]ethane-1,2-diamine) ligand and two chloride atoms, to form a distorted square pyramid geometry (Fig. 1). Three N atoms of the ligand and a monodentate chlorine are at the basal square plane, while the bridging chlorine atom is at the apical position. The Cu1 atom is shifted by 0.202 (3)Å from the basal plane towards the apical site. The dihedral angles between the basal plane and the C6—C11 (Cg1) and C13—C18 (Cg2) phenyl rings are 48.9 (3)° and 62.1 (3)°, respectively. Coordination distances are shown in Table 1. The Cu···Cu separation is 4.349 (6) Å, and the Cu—Cl—Cu angle is 109.8 (2)°.

In the crystal structure, C—H···π hydrogen bonds link the molecules into two types of chains running along b and a respectively (Fig. 2 and 3, Table 2). The chloride anion,, which also resides on a two fold axis, in turn, link these chains along the c direction (Fig. 4, Table 2), into a three-dimensinal network structure.

For related literature, see: Lee et al. (2005); Rapheal et al. (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids drawn at a 30% probability level. Unlabelled atoms in the cation are related to labelled ones by (-x, y, -z).
[Figure 2] Fig. 2. A partial packing view of (I), showing the formation of a hydrogen-bonded chain along b, built from C—H···Cg1(π) interactions, Cg1: C6—C11. For clarity, H atomes not involved in hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [symmetry code: (A) - x, y, - z, (B) x, -1 + y, z, (C) x, 1 + y, - z, (D) - x, - 1 + y, - z, (E) - x, 1 + y, -z].
[Figure 3] Fig. 3. A partial packing view of (I), showing the formation of a hydrogen-bonded chain along a, built from C—H···Cg1(π) interactions, Cg1: C6—C11. For clarity, H atoms not involved in hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [symmetry code: (A) - x, y, - z, (I) 1/2 - x, -1/2 + y, - z, (J) 1 - x, -1 + y, - z].
[Figure 4] Fig. 4. A partial packing view of (I), showing the C—H···Cl interaction linking the above referenced chains along c. For clarity, H atomes not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [symmetry code: (A) - x, y, - z, (F) x, y, 1 + z, (G) x, y, - 1 + z, (H) - x, y, 1 - z].
µ-Chlorido-bis({N-benzyl-N'-[2-(benzylamino)ethyl]ethane- 1,2-diamine}chloridocopper(II)) top
Crystal data top
[Cu2Cl3(C18H25N3)2]ClF(000) = 868
Mr = 835.70Dx = 1.376 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 896 reflections
a = 25.584 (3) Åθ = 2.9–25.3°
b = 7.4506 (11) ŵ = 1.35 mm1
c = 11.5739 (15) ÅT = 298 K
β = 113.926 (2)°Block, blue
V = 2016.6 (5) Å30.27 × 0.14 × 0.11 mm
Z = 2
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3398 independent reflections
Radiation source: fine-focus sealed tube1758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2830
Tmin = 0.712, Tmax = 0.866k = 88
5224 measured reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0208P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3398 reflectionsΔρmax = 0.91 e Å3
219 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Flack (1983), 1474 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Cu2Cl3(C18H25N3)2]ClV = 2016.6 (5) Å3
Mr = 835.70Z = 2
Monoclinic, C2Mo Kα radiation
a = 25.584 (3) ŵ = 1.35 mm1
b = 7.4506 (11) ÅT = 298 K
c = 11.5739 (15) Å0.27 × 0.14 × 0.11 mm
β = 113.926 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3398 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1758 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.866Rint = 0.056
5224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.91 e Å3
S = 1.00Δρmin = 0.40 e Å3
3398 reflectionsAbsolute structure: Flack (1983), 1474 Friedel pairs
219 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00397 (4)0.58358 (18)0.18416 (10)0.0507 (3)
Cl10.06597 (8)0.8020 (3)0.0790 (2)0.0635 (7)
Cl20.00000.3784 (4)0.00000.0528 (9)
Cl30.00000.7398 (8)0.50000.176 (3)
N10.0678 (2)0.7293 (9)0.2071 (6)0.0408 (18)
H10.06580.75720.12880.049*
N20.0526 (3)0.4103 (10)0.3005 (6)0.054 (2)
H20.05810.32520.25010.065*
N30.0622 (3)0.4348 (10)0.2208 (7)0.056 (2)
H30.07210.50160.27460.067*
C10.1169 (3)0.6147 (12)0.2676 (8)0.047 (2)
H1A0.15090.68730.30880.057*
H1B0.12250.54010.20480.057*
C20.1072 (3)0.4948 (11)0.3664 (8)0.056 (3)
H2A0.13720.40530.39950.067*
H2B0.10700.56670.43600.067*
C30.0265 (4)0.3159 (13)0.3769 (8)0.060 (3)
H3A0.02760.39210.44570.072*
H3B0.04760.20690.41250.072*
C40.0348 (4)0.2709 (13)0.2912 (9)0.062 (3)
H4A0.03570.17640.23270.074*
H4B0.05510.22930.34110.074*
C50.0710 (3)0.8999 (12)0.2756 (8)0.057 (3)
H5A0.06800.87340.35470.068*
H5B0.03860.97430.22560.068*
C60.1253 (3)1.0044 (10)0.3033 (9)0.048 (2)
C70.1353 (3)1.0868 (16)0.2091 (8)0.060 (2)
H70.10761.08100.12680.071*
C80.1848 (4)1.1774 (12)0.2322 (11)0.070 (3)
H80.19061.23120.16580.084*
C90.2256 (4)1.1893 (13)0.3517 (13)0.080 (4)
H90.25981.24890.36710.097*
C100.2165 (4)1.1132 (16)0.4498 (10)0.082 (3)
H100.24431.12310.53190.098*
C110.1657 (4)1.0207 (11)0.4267 (9)0.066 (3)
H110.15910.97070.49320.079*
C120.1162 (3)0.3945 (14)0.1112 (8)0.071 (3)
H12A0.10710.32430.05110.086*
H12B0.13270.50680.07030.086*
C130.1609 (3)0.2938 (14)0.1405 (9)0.059 (3)
C140.1898 (4)0.3716 (15)0.2039 (10)0.088 (3)
H140.18020.48710.23600.105*
C150.2333 (5)0.2800 (17)0.2209 (11)0.100 (4)
H150.25410.33710.26010.120*
C160.2455 (4)0.1112 (19)0.1818 (11)0.094 (4)
H160.27370.04900.19650.113*
C170.2171 (4)0.0308 (14)0.1209 (11)0.096 (4)
H170.22650.08600.09140.116*
C180.1744 (4)0.1184 (18)0.1018 (10)0.082 (4)
H180.15420.05910.06220.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0451 (5)0.0497 (6)0.0583 (7)0.0005 (7)0.0218 (5)0.0036 (8)
Cl10.0548 (15)0.0638 (18)0.0719 (18)0.0134 (12)0.0258 (14)0.0096 (14)
Cl20.064 (2)0.052 (2)0.044 (2)0.0000.0224 (17)0.000
Cl30.255 (7)0.139 (6)0.203 (7)0.0000.166 (6)0.000
N10.040 (4)0.046 (5)0.037 (5)0.002 (3)0.016 (4)0.004 (4)
N20.054 (5)0.062 (5)0.044 (5)0.006 (4)0.018 (4)0.013 (4)
N30.047 (5)0.065 (6)0.055 (5)0.002 (4)0.020 (4)0.010 (4)
C10.029 (4)0.034 (6)0.075 (6)0.000 (4)0.017 (4)0.000 (5)
C20.055 (6)0.053 (6)0.052 (6)0.005 (5)0.012 (5)0.000 (5)
C30.074 (7)0.058 (7)0.049 (6)0.004 (5)0.028 (6)0.007 (5)
C40.078 (7)0.050 (7)0.067 (7)0.002 (5)0.039 (6)0.002 (6)
C50.062 (6)0.052 (7)0.062 (7)0.009 (5)0.031 (5)0.006 (6)
C60.037 (5)0.036 (6)0.058 (7)0.002 (4)0.005 (5)0.004 (5)
C70.059 (6)0.051 (6)0.054 (6)0.005 (8)0.009 (5)0.004 (7)
C80.078 (8)0.056 (7)0.074 (8)0.023 (6)0.027 (7)0.018 (6)
C90.061 (7)0.052 (7)0.123 (11)0.026 (5)0.031 (8)0.026 (7)
C100.069 (7)0.051 (9)0.086 (9)0.010 (7)0.009 (6)0.007 (7)
C110.077 (7)0.053 (8)0.054 (7)0.005 (5)0.013 (7)0.000 (5)
C120.059 (6)0.097 (9)0.053 (7)0.016 (6)0.018 (6)0.002 (6)
C130.046 (6)0.057 (7)0.081 (8)0.001 (5)0.032 (6)0.004 (6)
C140.092 (8)0.069 (8)0.133 (10)0.000 (6)0.076 (8)0.008 (7)
C150.107 (9)0.085 (10)0.158 (12)0.016 (8)0.105 (9)0.008 (9)
C160.085 (7)0.066 (10)0.155 (11)0.006 (8)0.072 (7)0.012 (10)
C170.093 (9)0.058 (10)0.154 (12)0.013 (6)0.067 (9)0.011 (7)
C180.066 (7)0.089 (11)0.102 (8)0.010 (7)0.045 (6)0.010 (9)
Geometric parameters (Å, º) top
Cu1—N21.999 (7)C5—H5A0.9700
Cu1—N32.035 (6)C5—H5B0.9700
Cu1—N12.055 (6)C6—C71.363 (11)
Cu1—Cl12.254 (2)C6—C111.388 (10)
Cu1—Cl22.658 (2)C7—C81.363 (11)
Cu1—Cl33.798 (2)C7—H70.9300
Cl2—Cu1i2.658 (2)C8—C91.357 (13)
N1—C11.444 (9)C8—H80.9300
N1—C51.482 (9)C9—C101.370 (13)
N1—H10.9100C9—H90.9300
N2—C21.437 (8)C10—C111.398 (11)
N2—C31.483 (9)C10—H100.9300
N2—H20.9100C11—H110.9300
N3—C41.478 (10)C12—C131.518 (10)
N3—C121.478 (8)C12—H12A0.9700
N3—H30.9100C12—H12B0.9700
C1—C21.547 (10)C13—C141.364 (11)
C1—H1A0.9700C13—C181.379 (15)
C1—H1B0.9700C14—C151.386 (12)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.331 (15)
C3—C41.515 (9)C15—H150.9300
C3—H3A0.9700C16—C171.342 (13)
C3—H3B0.9700C16—H160.9300
C4—H4A0.9700C17—C181.365 (12)
C4—H4B0.9700C17—H170.9300
C5—C61.508 (10)C18—H180.9300
N2—Cu1—N384.2 (3)N3—C4—H4A110.1
N2—Cu1—N183.6 (3)C3—C4—H4A110.1
N3—Cu1—N1162.2 (3)N3—C4—H4B110.1
N2—Cu1—Cl1171.5 (2)C3—C4—H4B110.1
N3—Cu1—Cl195.2 (2)H4A—C4—H4B108.4
N1—Cu1—Cl194.85 (19)N1—C5—C6113.8 (7)
N2—Cu1—Cl285.18 (19)N1—C5—H5A108.8
N3—Cu1—Cl297.1 (2)C6—C5—H5A108.8
N1—Cu1—Cl294.85 (19)N1—C5—H5B108.8
Cl1—Cu1—Cl2103.26 (9)C6—C5—H5B108.8
N2—Cu1—Cl379.64 (19)H5A—C5—H5B107.7
N3—Cu1—Cl372.7 (2)C7—C6—C11118.7 (8)
N1—Cu1—Cl392.3 (2)C7—C6—C5121.2 (8)
Cl1—Cu1—Cl392.12 (10)C11—C6—C5120.2 (9)
Cl2—Cu1—Cl3162.39 (11)C8—C7—C6121.8 (8)
Cu1—Cl2—Cu1i109.79 (12)C8—C7—H7119.1
C1—N1—C5113.5 (6)C6—C7—H7119.1
C1—N1—Cu1107.8 (5)C9—C8—C7120.1 (10)
C5—N1—Cu1112.0 (5)C9—C8—H8119.9
C1—N1—H1107.8C7—C8—H8119.9
C5—N1—H1107.8C8—C9—C10119.9 (10)
Cu1—N1—H1107.8C8—C9—H9120.1
C2—N2—C3117.9 (7)C10—C9—H9120.1
C2—N2—Cu1110.9 (6)C9—C10—C11120.2 (9)
C3—N2—Cu1109.3 (5)C9—C10—H10119.9
C2—N2—H2106.0C11—C10—H10119.9
C3—N2—H2106.0C6—C11—C10119.2 (9)
Cu1—N2—H2106.0C6—C11—H11120.4
C4—N3—C12112.0 (7)C10—C11—H11120.4
C4—N3—Cu1109.9 (5)N3—C12—C13115.8 (7)
C12—N3—Cu1116.0 (5)N3—C12—H12A108.3
C4—N3—H3106.0C13—C12—H12A108.3
C12—N3—H3106.0N3—C12—H12B108.3
Cu1—N3—H3106.0C13—C12—H12B108.3
N1—C1—C2109.4 (6)H12A—C12—H12B107.4
N1—C1—H1A109.8C14—C13—C18117.3 (9)
C2—C1—H1A109.8C14—C13—C12122.2 (10)
N1—C1—H1B109.8C18—C13—C12120.5 (9)
C2—C1—H1B109.8C13—C14—C15120.6 (10)
H1A—C1—H1B108.2C13—C14—H14119.7
N2—C2—C1105.9 (7)C15—C14—H14119.7
N2—C2—H2A110.6C16—C15—C14120.6 (11)
C1—C2—H2A110.6C16—C15—H15119.7
N2—C2—H2B110.6C14—C15—H15119.7
C1—C2—H2B110.6C15—C16—C17119.9 (11)
H2A—C2—H2B108.7C15—C16—H16120.1
N2—C3—C4108.2 (7)C17—C16—H16120.1
N2—C3—H3A110.1C16—C17—C18120.8 (12)
C4—C3—H3A110.1C16—C17—H17119.6
N2—C3—H3B110.1C18—C17—H17119.6
C4—C3—H3B110.1C17—C18—C13120.8 (10)
H3A—C3—H3B108.4C17—C18—H18119.6
N3—C4—C3108.2 (8)C13—C18—H18119.6
N2—Cu1—Cl2—Cu1i137.1 (2)Cu1—N1—C1—C237.5 (8)
N3—Cu1—Cl2—Cu1i139.3 (2)C3—N2—C2—C1167.9 (7)
N1—Cu1—Cl2—Cu1i53.97 (18)Cu1—N2—C2—C140.9 (7)
Cl1—Cu1—Cl2—Cu1i42.18 (6)N1—C1—C2—N252.2 (8)
Cl3—Cu1—Cl2—Cu1i167.59 (13)C2—N2—C3—C4168.9 (7)
N2—Cu1—N1—C112.1 (5)Cu1—N2—C3—C441.1 (8)
N3—Cu1—N1—C159.5 (12)C12—N3—C4—C3164.4 (6)
Cl1—Cu1—N1—C1176.2 (5)Cu1—N3—C4—C333.8 (8)
Cl2—Cu1—N1—C172.5 (5)N2—C3—C4—N349.2 (9)
Cl3—Cu1—N1—C191.4 (5)C1—N1—C5—C653.1 (10)
N2—Cu1—N1—C5113.5 (5)Cu1—N1—C5—C6175.6 (6)
N3—Cu1—N1—C566.1 (11)N1—C5—C6—C770.4 (11)
Cl1—Cu1—N1—C558.2 (5)N1—C5—C6—C11110.6 (8)
Cl2—Cu1—N1—C5161.9 (5)C11—C6—C7—C82.9 (14)
Cl3—Cu1—N1—C534.2 (5)C5—C6—C7—C8178.1 (8)
N3—Cu1—N2—C2149.5 (6)C6—C7—C8—C90.7 (15)
N1—Cu1—N2—C217.4 (5)C7—C8—C9—C101.4 (15)
Cl2—Cu1—N2—C2112.9 (5)C8—C9—C10—C111.1 (16)
Cl3—Cu1—N2—C276.1 (5)C7—C6—C11—C103.1 (12)
N3—Cu1—N2—C317.9 (5)C5—C6—C11—C10177.9 (8)
N1—Cu1—N2—C3149.0 (5)C9—C10—C11—C61.1 (15)
Cl2—Cu1—N2—C3115.6 (5)C4—N3—C12—C1356.4 (10)
Cl3—Cu1—N2—C355.5 (5)Cu1—N3—C12—C13176.2 (7)
N2—Cu1—N3—C49.3 (6)N3—C12—C13—C1470.1 (12)
N1—Cu1—N3—C456.5 (12)N3—C12—C13—C18110.7 (11)
Cl1—Cu1—N3—C4179.2 (5)C18—C13—C14—C154.0 (16)
Cl2—Cu1—N3—C475.1 (6)C12—C13—C14—C15175.3 (9)
Cl3—Cu1—N3—C490.2 (5)C13—C14—C15—C163.7 (18)
N2—Cu1—N3—C12137.6 (6)C14—C15—C16—C172.6 (19)
N1—Cu1—N3—C12175.1 (8)C15—C16—C17—C181.9 (19)
Cl1—Cu1—N3—C1250.9 (6)C16—C17—C18—C132.4 (17)
Cl2—Cu1—N3—C1253.2 (6)C14—C13—C18—C173.4 (16)
Cl3—Cu1—N3—C12141.5 (6)C12—C13—C18—C17175.9 (9)
C5—N1—C1—C287.2 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl30.972.823.640 (11)143
C2—H2A···Cg1ii0.972.743.547 (9)141
C15—H15···Cg1iii0.932.973.872 (14)163
Symmetry codes: (ii) x, y1, z; (iii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl3(C18H25N3)2]Cl
Mr835.70
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)25.584 (3), 7.4506 (11), 11.5739 (15)
β (°) 113.926 (2)
V3)2016.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.27 × 0.14 × 0.11
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.712, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
5224, 3398, 1758
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.103, 1.00
No. of reflections3398
No. of parameters219
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.40
Absolute structureFlack (1983), 1474 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected bond lengths (Å) top
Cu1—N21.999 (7)Cu1—Cl12.254 (2)
Cu1—N32.035 (6)Cu1—Cl22.658 (2)
Cu1—N12.055 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cl30.972.823.640 (11)142.6
C2—H2A···Cg1i0.972.743.547 (9)141
C15—H15···Cg1ii0.932.973.872 (14)163
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds