Download citation
Download citation
link to html
In the title compound, {[Zn(C10H9O5)2(C10H8N2)(H2O)]·2H2O}n, the Zn atom, which lies on a twofold rotation axis, has a distorted penta­gonal–bipyramidal geometry, involving four O atoms from two 3-(4-carboxy­phen­oxy)propionate groups, two N atoms from two 4,4′-bipyridine ligands and one water mol­ecule, also lying on the symmetry axis. 4,4′-Bipyridine ligands link adjacent Zn atoms, forming a one-dimensional chain structure. Furthermore, a three-dimensional supra­molecular network is buildt up via hydrogen bonding and π–π stacking inter­actions [centroid–centroid distance 3.9096 (9) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050611/bg2117sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050611/bg2117Isup2.hkl
Contains datablock I

CCDC reference: 667205

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.118
  • Data-to-parameter ratio = 15.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Zn1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C13 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 1.79 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Our studies have addressed the metal derivatives of carboxyphenoxypropionic acids which are regarded as excellent candidates for the construction of supramolecular architectures. In this line 3-(p-CPOPH2) is not only a multiple coordination ligand, but also may form regular hydrogen bonds by functioning both as a hydrogen bond donor and acceptor(Gao & Ng, 2006). We have recently reported the structures of the cobalt(II) and the copper(II) complexes incorporating the 3-(4-carboxylatophenoxy)propionate group (Kong et al., 2007; Xiao et al., 2007).

The molecular structure of the title complex [Zn(C10H8N2)(C10H9O5)2(H2O)]n.2n(H2O)is shown in Fig. 1. The 3-(p-CPOP)2- ligand coordinates in a chelating fashion to the Zn atom through the deprotonated carboxylate group while the remaining protonated carboxyl group forms a hydrogen bond with an uncoordinated water molecule. The Zn atom, which lies on a two fold axis displays a distorted pentagonal bipyramid geometry involving four O atoms of the two 3-(4-carboxylatophenoxy)propionic acid groups, two N atom from two 4,4'-bipyridine ligands and one water molecule also lying on the two fold axis. The 4,4'-bipyridine ligands act in a bis-monodentate bridging mode to link two Zn atoms, giving rise to a one-dimensional chain running along the c axis. Furthermore, a three-dimensional supramolecular network is constructed via π-π stacking interactions between the adjacent 3-(p-CPOP)2- ligand rings (centroid-centroid distance being 3.910 Å) and hydrogen-bonding interactions (Fig 2, Table 2).

Related literature top

3-(4-Carboxyphenoxy)propionic acid [3-(p-CPOPH2)] has been reported previously (Gao & Ng, 2006). In our previous work, the copper(II) and cobalt(II) complexes of 3-(p-CPOPH2) have been characterized by X-ray crystallography (Xiao et al., 2007; Kong et al., 2007).

Experimental top

The title complex was prepared by the addition of zinc diacetate dihydrate (10 mmol), 4,4'-bipyridine (10 mmol) to a solution of 3-(p-CPOPH2) (15 mmol) in H2O/EtOH (V/V = 1:1), and the pH value was adjusted to 5 with a NaOH (0.2 M) solution. Colorless crystals were obtained from the filtered solution at room temperature over several days. CH&N analysis. Calc. for C30H32N2O13Zn: C 52.01, H 4.66, N 4.05%. Found: C 52.00, H 4.68, N 4.04%.

Refinement top

H atoms attached to carbon were placed at calculated positions with C—H = 0.93 or 0.97Å and Uiso(H) = 1.2Ueq (C) and were included in the refinement in the riding model approximation. Those bound to oxygen were located in difference Fourier maps and refined with the O—H distance restrained to 0.85 (1)Å and Uiso(H) = 1.5Ueq(O).

Structure description top

Our studies have addressed the metal derivatives of carboxyphenoxypropionic acids which are regarded as excellent candidates for the construction of supramolecular architectures. In this line 3-(p-CPOPH2) is not only a multiple coordination ligand, but also may form regular hydrogen bonds by functioning both as a hydrogen bond donor and acceptor(Gao & Ng, 2006). We have recently reported the structures of the cobalt(II) and the copper(II) complexes incorporating the 3-(4-carboxylatophenoxy)propionate group (Kong et al., 2007; Xiao et al., 2007).

The molecular structure of the title complex [Zn(C10H8N2)(C10H9O5)2(H2O)]n.2n(H2O)is shown in Fig. 1. The 3-(p-CPOP)2- ligand coordinates in a chelating fashion to the Zn atom through the deprotonated carboxylate group while the remaining protonated carboxyl group forms a hydrogen bond with an uncoordinated water molecule. The Zn atom, which lies on a two fold axis displays a distorted pentagonal bipyramid geometry involving four O atoms of the two 3-(4-carboxylatophenoxy)propionic acid groups, two N atom from two 4,4'-bipyridine ligands and one water molecule also lying on the two fold axis. The 4,4'-bipyridine ligands act in a bis-monodentate bridging mode to link two Zn atoms, giving rise to a one-dimensional chain running along the c axis. Furthermore, a three-dimensional supramolecular network is constructed via π-π stacking interactions between the adjacent 3-(p-CPOP)2- ligand rings (centroid-centroid distance being 3.910 Å) and hydrogen-bonding interactions (Fig 2, Table 2).

3-(4-Carboxyphenoxy)propionic acid [3-(p-CPOPH2)] has been reported previously (Gao & Ng, 2006). In our previous work, the copper(II) and cobalt(II) complexes of 3-(p-CPOPH2) have been characterized by X-ray crystallography (Xiao et al., 2007; Kong et al., 2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with 30% probability ellipsoid for the non-H atoms. Dashed lines indicate O—H···O hydrogen bonds.
[Figure 2] Fig. 2. The packing diagram of the title complex. Dashed lines indicate O—H···O hydrogen bonds.
catena-Poly[[[aquabis[3-(4-carboxyphenoxy)propionato- κ2O,O']zinc(II)]-µ-4,4'-bipyridine-κ2N:N'] dihydrate] top
Crystal data top
[Zn(C10H9O5)2(C10H8N2)(H2O)]·2H2OF(000) = 720
Mr = 693.95Dx = 1.510 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 9291 reflections
a = 11.109 (2) Åθ = 3.4–27.5°
b = 6.0063 (12) ŵ = 0.88 mm1
c = 22.871 (5) ÅT = 295 K
β = 90.54 (3)°Block, colorless
V = 1525.9 (5) Å30.28 × 0.24 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3498 independent reflections
Radiation source: fine-focus sealed tube2191 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.791, Tmax = 0.858l = 2928
14159 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3569P]
where P = (Fo2 + 2Fc2)/3
3498 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.78 e Å3
6 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Zn(C10H9O5)2(C10H8N2)(H2O)]·2H2OV = 1525.9 (5) Å3
Mr = 693.95Z = 2
Monoclinic, P2/cMo Kα radiation
a = 11.109 (2) ŵ = 0.88 mm1
b = 6.0063 (12) ÅT = 295 K
c = 22.871 (5) Å0.28 × 0.24 × 0.18 mm
β = 90.54 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3498 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2191 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.858Rint = 0.052
14159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0396 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.78 e Å3
3498 reflectionsΔρmin = 0.74 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.44267 (8)0.75000.03760 (17)
O1W0.50000.1010 (5)0.75000.0547 (8)
O10.2947 (2)0.3990 (4)0.74492 (10)0.0635 (7)
O20.3670 (2)0.7310 (4)0.73806 (10)0.0644 (7)
O2W0.1267 (3)1.7261 (4)0.32819 (10)0.0668 (7)
O30.1899 (2)0.7907 (4)0.62824 (9)0.0560 (6)
O40.1688 (2)1.1631 (4)0.36930 (9)0.0604 (6)
O50.1102 (3)1.4599 (4)0.41913 (9)0.0631 (7)
N10.5053 (2)0.4529 (4)0.65511 (9)0.0400 (5)
C10.2792 (3)0.6033 (6)0.73615 (11)0.0454 (7)
C20.1545 (3)0.6905 (5)0.72592 (13)0.0445 (7)
H10.12220.74030.76290.053*
H20.10400.56980.71180.053*
C30.1476 (3)0.8794 (6)0.68294 (12)0.0525 (8)
H40.06540.93210.67890.063*
H30.19801.00230.69570.063*
C40.1775 (3)0.9169 (5)0.57937 (12)0.0431 (7)
C50.1268 (3)1.1283 (5)0.57735 (13)0.0461 (7)
H50.10001.19660.61130.055*
C60.1166 (3)1.2357 (5)0.52392 (13)0.0455 (7)
H60.08261.37710.52240.055*
C70.1560 (3)1.1377 (5)0.47271 (12)0.0389 (6)
C80.2079 (3)0.9277 (5)0.47588 (12)0.0440 (7)
H80.23560.86040.44200.053*
C90.2191 (3)0.8180 (5)0.52833 (12)0.0444 (7)
H90.25440.67770.52980.053*
C100.1456 (3)1.2510 (5)0.41552 (13)0.0444 (7)
C110.4569 (4)0.2967 (6)0.62145 (13)0.0592 (9)
H110.42390.17220.63940.071*
C120.4531 (3)0.3088 (6)0.56117 (13)0.0573 (9)
H120.41750.19450.53970.069*
C130.5017 (2)0.4896 (5)0.53254 (11)0.0380 (6)
C140.5498 (3)0.6531 (6)0.56790 (13)0.0560 (9)
H140.58190.78090.55120.067*
C150.5506 (3)0.6288 (6)0.62788 (13)0.0577 (9)
H150.58470.74170.65040.069*
H1W10.4378 (6)0.021 (3)0.7461 (18)0.087*
H2W20.178 (3)1.692 (5)0.3021 (14)0.087*
H2W10.145 (3)1.854 (4)0.3420 (15)0.087*
H100.119 (4)1.523 (6)0.3861 (9)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0430 (3)0.0433 (3)0.0264 (2)0.0000.00367 (18)0.000
O1W0.0471 (18)0.0484 (18)0.069 (2)0.0000.0052 (17)0.000
O10.0719 (17)0.0668 (16)0.0520 (13)0.0202 (13)0.0076 (12)0.0169 (12)
O20.0479 (14)0.0886 (18)0.0567 (14)0.0157 (13)0.0051 (12)0.0120 (12)
O2W0.107 (2)0.0466 (13)0.0470 (14)0.0085 (14)0.0125 (14)0.0026 (11)
O30.0745 (16)0.0593 (13)0.0341 (11)0.0200 (12)0.0034 (11)0.0097 (10)
O40.100 (2)0.0482 (12)0.0331 (11)0.0059 (13)0.0030 (12)0.0029 (10)
O50.108 (2)0.0446 (13)0.0374 (11)0.0164 (13)0.0074 (13)0.0050 (10)
N10.0436 (14)0.0492 (14)0.0272 (11)0.0028 (12)0.0038 (10)0.0012 (11)
C10.0460 (18)0.068 (2)0.0223 (13)0.0034 (16)0.0011 (12)0.0004 (13)
C20.0369 (16)0.0593 (18)0.0372 (15)0.0018 (14)0.0029 (13)0.0077 (14)
C30.060 (2)0.062 (2)0.0360 (15)0.0146 (17)0.0026 (15)0.0030 (14)
C40.0448 (17)0.0488 (17)0.0356 (14)0.0033 (14)0.0041 (12)0.0058 (13)
C50.0548 (19)0.0484 (17)0.0353 (15)0.0104 (15)0.0031 (14)0.0007 (13)
C60.0528 (19)0.0436 (16)0.0402 (16)0.0070 (14)0.0010 (14)0.0006 (13)
C70.0431 (17)0.0396 (15)0.0340 (14)0.0010 (13)0.0036 (12)0.0000 (12)
C80.0525 (18)0.0436 (16)0.0358 (14)0.0018 (14)0.0009 (13)0.0045 (13)
C90.0485 (18)0.0421 (16)0.0426 (16)0.0078 (14)0.0046 (14)0.0008 (14)
C100.0548 (19)0.0389 (16)0.0396 (16)0.0011 (14)0.0036 (14)0.0023 (13)
C110.088 (3)0.056 (2)0.0339 (16)0.0196 (19)0.0054 (17)0.0003 (15)
C120.087 (3)0.0542 (19)0.0307 (15)0.0229 (18)0.0090 (16)0.0016 (14)
C130.0366 (15)0.0492 (16)0.0283 (13)0.0007 (12)0.0026 (12)0.0028 (12)
C140.073 (2)0.063 (2)0.0324 (15)0.0270 (18)0.0031 (15)0.0010 (15)
C150.075 (2)0.067 (2)0.0309 (15)0.0289 (19)0.0075 (15)0.0049 (15)
Geometric parameters (Å, º) top
Zn1—O1W2.052 (3)C3—H40.9700
Zn1—N12.172 (2)C3—H30.9700
Zn1—O22.291 (3)C4—C51.390 (4)
Zn1—O12.298 (3)C4—C91.392 (4)
Zn1—O1i2.298 (3)C5—C61.385 (4)
Zn1—N1i2.172 (2)C5—H50.9300
Zn1—O2i2.291 (3)C6—C71.385 (4)
O1W—H1W10.846 (10)C6—H60.9300
O1—C11.255 (4)C7—C81.388 (4)
O2—C11.241 (4)C7—C101.478 (4)
O2W—H2W20.85 (3)C8—C91.373 (4)
O2W—H2W10.85 (3)C8—H80.9300
O3—C41.357 (3)C9—H90.9300
O3—C31.442 (3)C11—C121.381 (4)
O4—C101.212 (3)C11—H110.9300
O5—C101.317 (4)C12—C131.381 (4)
O5—H100.85 (3)C12—H120.9300
N1—C111.324 (4)C13—C141.376 (4)
N1—C151.328 (4)C13—C13ii1.494 (5)
C1—C21.497 (4)C14—C151.379 (4)
C2—C31.503 (4)C14—H140.9300
C2—H10.9700C15—H150.9300
C2—H20.9700
O1W—Zn1—N191.62 (7)C2—C3—H4110.6
O1W—Zn1—N1i91.62 (7)O3—C3—H3110.6
N1—Zn1—N1i176.76 (13)C2—C3—H3110.6
O1W—Zn1—O2i139.10 (6)H4—C3—H3108.7
N1—Zn1—O2i94.27 (9)O3—C4—C5125.2 (3)
N1i—Zn1—O2i83.28 (9)O3—C4—C9114.9 (3)
O1W—Zn1—O2139.10 (6)C5—C4—C9120.0 (3)
N1—Zn1—O283.28 (9)C6—C5—C4119.0 (3)
N1i—Zn1—O294.27 (9)C6—C5—H5120.5
O2i—Zn1—O281.80 (12)C4—C5—H5120.5
O1W—Zn1—O183.44 (6)C7—C6—C5121.6 (3)
N1—Zn1—O189.35 (9)C7—C6—H6119.2
N1i—Zn1—O191.02 (9)C5—C6—H6119.2
O2i—Zn1—O1136.98 (9)C6—C7—C8118.4 (3)
O2—Zn1—O156.05 (8)C6—C7—C10122.0 (3)
O1W—Zn1—O1i83.44 (6)C8—C7—C10119.6 (2)
N1—Zn1—O1i91.02 (9)C9—C8—C7121.0 (3)
N1i—Zn1—O1i89.35 (9)C9—C8—H8119.5
O2i—Zn1—O1i56.05 (8)C7—C8—H8119.5
O2—Zn1—O1i136.98 (9)C8—C9—C4120.0 (3)
O1—Zn1—O1i166.88 (12)C8—C9—H9120.0
Zn1—O1W—H1W1124.6 (11)C4—C9—H9120.0
C1—O1—Zn191.8 (2)O4—C10—O5122.4 (3)
C1—O2—Zn192.5 (2)O4—C10—C7123.8 (3)
H2W2—O2W—H2W1108.5 (16)O5—C10—C7113.8 (2)
C4—O3—C3118.5 (2)N1—C11—C12123.5 (3)
C10—O5—H10109 (3)N1—C11—H11118.2
C11—N1—C15116.4 (2)C12—C11—H11118.2
C11—N1—Zn1123.1 (2)C11—C12—C13120.4 (3)
C15—N1—Zn1120.32 (19)C11—C12—H12119.8
O2—C1—O1119.4 (3)C13—C12—H12119.8
O2—C1—C2121.0 (3)C14—C13—C12115.7 (3)
O1—C1—C2119.5 (3)C14—C13—C13ii122.2 (3)
C1—C2—C3114.1 (3)C12—C13—C13ii122.1 (3)
C1—C2—H1108.7C13—C14—C15120.5 (3)
C3—C2—H1108.7C13—C14—H14119.7
C1—C2—H2108.7C15—C14—H14119.7
C3—C2—H2108.7N1—C15—C14123.5 (3)
H1—C2—H2107.6N1—C15—H15118.3
O3—C3—C2105.9 (2)C14—C15—H15118.3
O3—C3—H4110.6
O1W—Zn1—O1—C1171.21 (17)C4—O3—C3—C2170.9 (3)
N1—Zn1—O1—C179.51 (17)C1—C2—C3—O361.9 (3)
N1i—Zn1—O1—C197.28 (17)C3—O3—C4—C50.0 (5)
O2i—Zn1—O1—C116.1 (2)C3—O3—C4—C9179.2 (3)
O2—Zn1—O1—C12.82 (16)O3—C4—C5—C6178.1 (3)
O1i—Zn1—O1—C1171.21 (17)C9—C4—C5—C61.1 (5)
O1W—Zn1—O2—C16.2 (2)C4—C5—C6—C70.1 (5)
N1—Zn1—O2—C190.92 (18)C5—C6—C7—C80.8 (5)
N1i—Zn1—O2—C191.20 (18)C5—C6—C7—C10180.0 (3)
O2i—Zn1—O2—C1173.8 (2)C6—C7—C8—C90.7 (5)
O1—Zn1—O2—C12.85 (16)C10—C7—C8—C9179.9 (3)
O1i—Zn1—O2—C1175.17 (15)C7—C8—C9—C40.3 (5)
O1W—Zn1—N1—C1130.2 (3)O3—C4—C9—C8178.1 (3)
O2i—Zn1—N1—C11169.7 (3)C5—C4—C9—C81.2 (5)
O2—Zn1—N1—C11109.1 (3)C6—C7—C10—O4173.1 (3)
O1—Zn1—N1—C1153.3 (3)C8—C7—C10—O47.8 (5)
O1i—Zn1—N1—C11113.6 (3)C6—C7—C10—O58.0 (4)
O1W—Zn1—N1—C15154.9 (3)C8—C7—C10—O5171.2 (3)
O2i—Zn1—N1—C1515.4 (3)C15—N1—C11—C120.6 (5)
O2—Zn1—N1—C1565.8 (3)Zn1—N1—C11—C12175.7 (3)
O1—Zn1—N1—C15121.7 (3)N1—C11—C12—C130.4 (6)
O1i—Zn1—N1—C1571.4 (3)C11—C12—C13—C141.6 (5)
Zn1—O2—C1—O15.0 (3)C11—C12—C13—C13ii179.3 (4)
Zn1—O2—C1—C2177.5 (2)C12—C13—C14—C151.7 (5)
Zn1—O1—C1—O25.0 (3)C13ii—C13—C14—C15179.5 (4)
Zn1—O1—C1—C2177.5 (2)C11—N1—C15—C140.4 (5)
O2—C1—C2—C337.8 (4)Zn1—N1—C15—C14175.7 (3)
O1—C1—C2—C3144.6 (3)C13—C14—C15—N10.8 (6)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2iii0.85 (1)1.92 (2)2.681 (4)149 (1)
O2W—H2W2···O1iv0.85 (3)1.93 (3)2.782 (3)177 (4)
O2W—H2W1···O4v0.85 (3)1.98 (3)2.826 (3)173 (4)
O5—H10···O2W0.85 (3)1.80 (2)2.632 (3)164 (4)
Symmetry codes: (iii) x, y1, z; (iv) x, y+2, z1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H9O5)2(C10H8N2)(H2O)]·2H2O
Mr693.95
Crystal system, space groupMonoclinic, P2/c
Temperature (K)295
a, b, c (Å)11.109 (2), 6.0063 (12), 22.871 (5)
β (°) 90.54 (3)
V3)1525.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.28 × 0.24 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.791, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
14159, 3498, 2191
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.118, 1.12
No. of reflections3498
No. of parameters221
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.74

Computer programs: RAPID-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Zn1—O1W2.052 (3)Zn1—O22.291 (3)
Zn1—N12.172 (2)Zn1—O12.298 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.846 (10)1.919 (16)2.681 (4)149.3 (14)
O2W—H2W2···O1ii0.85 (3)1.93 (3)2.782 (3)177 (4)
O2W—H2W1···O4iii0.85 (3)1.98 (3)2.826 (3)173 (4)
O5—H10···O2W0.85 (3)1.803 (15)2.632 (3)164 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z1/2; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds