Download citation
Download citation
link to html
Recently, a new mineral species, monoclinic marrucciite, mercury lead anti­mony sulfide, Hg3Pb16Sb18S46 [Orlandi et al. (2007). Eur. J. Mineral. 19, 267-279], was discovered in the Fe-Ba deposit of Buca della Vena, Apuan Alps (Italy). In that report, the crystal structure was refined to R = 0.096. Our new discovery of crystals of this sulfosalt in the Gelnica ore district, situated in the Spissko-gemerské rudohorie mountain range, Slovak Republic, has now allowed a substanti­ally more precise determination of the crystal structure (R = 0.024). The monoclinic unit cell contains 19 independent cation positions (including two mixed SbIII/PbII positions) and 23 independent S positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806040980/bi2073sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806040980/bi2073Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](b-S) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.024
  • wR factor = 0.045
  • Data-to-parameter ratio = 19.3

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level C PLAT220_ALERT_2_C Large Non-Solvent S Ueq(max)/Ueq(min) ... 2.98 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for S14 PLAT301_ALERT_3_C Main Residue Disorder ......................... 5.00 Perc. PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 16.27 Deg. SB10 -S20 -SB10 1.555 1.555 4.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 16.27 Deg. SB10 -S20 -SB10 4.555 1.555 1.555
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The structure model proposed by Orlandi et al. (2007) is, in basic outline, confirmed; only minor deviations were found. The most striking difference is the absence of 2b superstructure diffraction spots, which were observed in the marrucciite from Bucca della Vena. Consequently, no split positions with half-occupancy occur in the structure model proposed in the present paper. Moreover, we present anisotropic displacement parameters for all atoms of the marrucciite structure.

Fig. 1 depicts the projection of the crystal structure of the title compound along b. The asymmetric unit contains two HgII positions, seven pure PbII positions, eight pure SbIII positions, two mixed PbII/SbIII positions [refined to Pb0.612 (5)Sb0.388 (5) and Pb0.388 (6)Sb0.612 (6)] and 23 S positions. One of the main characteristics of the structure of this compound is the ordering of Sb atoms to form so-called lone electron pair micelles (Fig. 1, left part) where the stereochemically active lone pairs of electrons on Sb are accommodated.

Related literature top

For the description and relation of the crystal structure of marrucciite to other mineral species and related compounds, see Orlandi et al. (2007).

Experimental top

Black needle fragments of the mineral marrucciite were found embedded in a quartz-siderite vein in the Gelnica ore district. They were separated from quartz by means of hydrofluoric acid. Of many fibrous crystals that were examined, only a few were suitable for X-ray single-crystal structure determination.

Refinement top

For the disordered sites Pb8/Sb8 and Pb9/Sb9, atoms on the same site were constrained to have identical atomic coordinates and anisotropic displacement parameters, and the site occupancy factores at each site were constrained to sum to unity. No other constraints were apllied. The highest residual peak in the final difference Fourier map was 0.7 Å from Sb1 and the deepest hole 0.44 Å from Sb1.

Structure description top

The structure model proposed by Orlandi et al. (2007) is, in basic outline, confirmed; only minor deviations were found. The most striking difference is the absence of 2b superstructure diffraction spots, which were observed in the marrucciite from Bucca della Vena. Consequently, no split positions with half-occupancy occur in the structure model proposed in the present paper. Moreover, we present anisotropic displacement parameters for all atoms of the marrucciite structure.

Fig. 1 depicts the projection of the crystal structure of the title compound along b. The asymmetric unit contains two HgII positions, seven pure PbII positions, eight pure SbIII positions, two mixed PbII/SbIII positions [refined to Pb0.612 (5)Sb0.388 (5) and Pb0.388 (6)Sb0.612 (6)] and 23 S positions. One of the main characteristics of the structure of this compound is the ordering of Sb atoms to form so-called lone electron pair micelles (Fig. 1, left part) where the stereochemically active lone pairs of electrons on Sb are accommodated.

For the description and relation of the crystal structure of marrucciite to other mineral species and related compounds, see Orlandi et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: Jana2000 (Petricek et al., 2000); molecular graphics: DIAMOND 3 (Brandenburg and Putz, 2005); software used to prepare material for publication: Jana2000.

Figures top
[Figure 1] Fig. 1. A projection along b of the crystal structure of marrucciite, monoclinic Hg3Pb16Sb18S48. Grey areas (left side of figure) highlight lone electron pair micelles.
(I) top
Crystal data top
Hg3Pb16S46Sb18F(000) = 6412
Mr = 7583.1Dx = 6.055 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2yCell parameters from 9276 reflections
a = 48.124 (11) Åθ = 2.5–26.5°
b = 4.1083 (2) ŵ = 44.67 mm1
c = 23.990 (5) ÅT = 292 K
β = 118.76 (2)°Prism, black
V = 4158.2 (15) Å30.04 × 0.02 × 0.00230 mm
Z = 2
Data collection top
Oxford Diffraction XCalibur CCD
diffractometer
4942 independent reflections
Radiation source: X-ray tube3000 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 8.3438 pixels mm-1θmax = 26.6°, θmin = 2.5°
Rotation method data acquisition using ω scansh = 5960
Absorption correction: analytical
Clark & Reid (1995)
k = 55
Tmin = 0.198, Tmax = 0.805l = 3030
26009 measured reflections
Refinement top
Refinement on F2256 parameters
R[F2 > 2σ(F2)] = 0.024Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F2) = 0.045(Δ/σ)max = 0.031
S = 0.85Δρmax = 1.20 e Å3
4942 reflectionsΔρmin = 1.09 e Å3
Crystal data top
Hg3Pb16S46Sb18V = 4158.2 (15) Å3
Mr = 7583.1Z = 2
Monoclinic, C2/mMo Kα radiation
a = 48.124 (11) ŵ = 44.67 mm1
b = 4.1083 (2) ÅT = 292 K
c = 23.990 (5) Å0.04 × 0.02 × 0.00230 mm
β = 118.76 (2)°
Data collection top
Oxford Diffraction XCalibur CCD
diffractometer
4942 independent reflections
Absorption correction: analytical
Clark & Reid (1995)
3000 reflections with I > 3σ(I)
Tmin = 0.198, Tmax = 0.805Rint = 0.052
26009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024256 parameters
wR(F2) = 0.045Δρmax = 1.20 e Å3
S = 0.85Δρmin = 1.09 e Å3
4942 reflections
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors are based on F, with F set to zero for negative F2. The threshold expression of F2 > n*σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2000, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger then the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.42917 (2)00.01409 (5)0.0410 (5)
Sb20.29529 (2)00.04272 (5)0.0326 (4)
S10.04720 (8)00.04514 (15)0.0315 (15)
S20.34675 (8)00.04430 (13)0.0183 (14)
Pb10.160743 (13)00.05141 (2)0.0257 (2)
S30.22457 (8)00.04890 (17)0.0483 (19)
S40.90931 (7)00.05559 (14)0.0235 (14)
Sb30.52171 (2)00.08609 (5)0.0467 (5)
S50.61989 (7)00.08618 (14)0.0190 (13)
S60.81662 (9)00.13629 (17)0.053 (2)
S70.00105 (8)00.13619 (15)0.0269 (14)
Sb40.74970 (2)00.15156 (4)0.0228 (4)
Pb20.880439 (12)00.14750 (2)0.0219 (2)
S80.69971 (7)00.15478 (14)0.0193 (13)
Pb30.110919 (12)00.16376 (2)0.0242 (2)
Sb90.464070 (18)00.18486 (4)0.0415 (4)0.612 (6)
Pb90.4640700.1848620.0415 (4)0.388 (6)
S90.57042 (7)00.18714 (14)0.0190 (13)
S100.27134 (8)00.23034 (15)0.0310 (15)
Sb50.33940 (2)00.24093 (4)0.0229 (4)
S110.39219 (7)00.24290 (14)0.0187 (13)
S120.95232 (8)00.24303 (14)0.0253 (15)
Pb80.052297 (17)00.25068 (3)0.0319 (4)0.612 (5)
Sb80.05229700.2506830.0319 (4)0.388 (5)
S130.66387 (7)00.24881 (13)0.0178 (13)
Pb40.215046 (13)00.26212 (2)0.0271 (2)
S140.52026 (8)00.27747 (14)0.0235 (14)
S150.85629 (10)00.32046 (17)0.052 (2)
S160.12719 (9)00.33026 (16)0.0437 (18)
S170.76523 (7)00.34565 (13)0.0194 (13)
Pb50.931045 (13)00.34166 (2)0.0258 (2)
Sb60.67121 (2)00.35664 (4)0.0245 (4)
Pb60.313833 (12)00.37726 (2)0.0259 (2)
Pb70.026006 (13)00.38264 (2)0.0255 (2)
S180.48083 (7)00.38906 (13)0.0182 (13)
S190.21658 (8)00.39248 (16)0.0443 (18)
S200.57670 (8)00.41998 (14)0.0233 (14)
Hg10.129886 (14)00.43129 (3)0.0323 (3)
Sb70.76574 (2)00.44928 (4)0.0293 (5)
S210.86164 (7)00.46313 (13)0.0178 (13)
S220.94500 (7)00.47995 (14)0.0188 (13)
S230.30691 (8)00.48875 (15)0.0297 (15)
Hg20.500.50.0271 (3)
Sb100.59584 (3)0.0842 (3)0.53354 (5)0.0196 (6)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0181 (5)0.0697 (8)0.0277 (5)00.0050 (4)0
Sb20.0193 (5)0.0187 (5)0.0557 (6)00.0149 (5)0
S10.0209 (19)0.055 (3)0.0199 (17)00.0105 (15)0
S20.0292 (19)0.0127 (17)0.0171 (16)00.0145 (14)0
Pb10.0381 (3)0.0180 (3)0.0249 (3)00.0185 (3)0
S30.017 (2)0.098 (4)0.026 (2)00.0077 (16)0
S40.0183 (18)0.034 (2)0.0193 (16)00.0097 (14)0
Sb30.0328 (6)0.0650 (8)0.0242 (5)00.0009 (5)0
S50.0168 (17)0.0203 (18)0.0176 (16)00.0063 (13)0
S60.018 (2)0.113 (4)0.032 (2)00.0153 (17)0
S70.0181 (18)0.040 (2)0.0193 (17)00.0068 (14)0
Sb40.0172 (5)0.0269 (5)0.0241 (5)00.0098 (4)0
Pb20.0259 (3)0.0175 (3)0.0232 (3)00.0127 (2)0
S80.0218 (18)0.0180 (18)0.0168 (16)00.0082 (14)0
Pb30.0262 (3)0.0226 (3)0.0280 (3)00.0165 (2)0
Sb90.0259 (5)0.0376 (6)0.0552 (6)00.0149 (4)0
Pb90.0259 (5)0.0376 (6)0.0552 (6)00.0149 (4)0
S90.0142 (17)0.0216 (19)0.0180 (16)00.0053 (13)0
S100.0231 (19)0.050 (3)0.0181 (17)00.0085 (15)0
Sb50.0252 (5)0.0250 (5)0.0225 (5)00.0146 (4)0
S110.0184 (17)0.0153 (18)0.0189 (16)00.0062 (14)0
S120.028 (2)0.034 (2)0.0205 (17)00.0165 (15)0
Pb80.0472 (5)0.0259 (4)0.0341 (4)00.0287 (4)0
Sb80.0472 (5)0.0259 (4)0.0341 (4)00.0287 (4)0
S130.0179 (17)0.0193 (18)0.0142 (15)00.0062 (13)0
Pb40.0285 (3)0.0205 (3)0.0245 (3)00.0065 (2)0
S140.0219 (19)0.031 (2)0.0168 (16)00.0088 (14)0
S150.041 (3)0.090 (4)0.027 (2)00.0183 (19)0
S160.028 (2)0.086 (3)0.0161 (17)00.0094 (16)0
S170.0217 (18)0.0160 (18)0.0154 (16)00.0048 (14)0
Pb50.0339 (3)0.0169 (3)0.0244 (3)00.0123 (2)0
Sb60.0391 (6)0.0181 (5)0.0153 (4)00.0123 (4)0
Pb60.0244 (3)0.0251 (3)0.0266 (3)00.0109 (2)0
Pb70.0322 (3)0.0251 (3)0.0234 (3)00.0168 (2)0
S180.0179 (17)0.0174 (18)0.0181 (16)00.0077 (14)0
S190.019 (2)0.090 (4)0.0230 (19)00.0097 (16)0
S200.0218 (19)0.024 (2)0.0158 (16)00.0025 (14)0
Hg10.0443 (4)0.0367 (4)0.0230 (3)00.0219 (3)0
Sb70.0457 (6)0.0193 (5)0.0383 (5)00.0326 (5)0
S210.0189 (17)0.0179 (18)0.0141 (15)00.0059 (13)0
S220.0169 (17)0.0227 (19)0.0176 (16)00.0090 (14)0
S230.0227 (19)0.045 (2)0.0176 (17)00.0063 (15)0
Hg20.0288 (4)0.0328 (5)0.0176 (4)00.0096 (3)0
Sb100.0213 (6)0.0203 (12)0.0162 (5)0.0021 (5)0.0082 (4)0.0009 (5)
Geometric parameters (Å, º) top
Hg1—S21i2.364 (3)Sb3—S7iv2.851 (3)
Hg1—S162.364 (4)Sb3—S7v2.851 (3)
Hg2—S182.360 (3)Sb3—S92.430 (3)
Pb1ii—S22.971 (3)Sb4vi—S32.980 (3)
Pb1iii—S22.971 (3)Sb4vii—S32.980 (3)
Pb2—S62.951 (5)Sb4—S82.444 (4)
Pb2—S11iv2.921 (2)Sb4—S10iv2.6424 (19)
Pb2—S11v2.921 (2)Sb4—S10v2.6424 (19)
Pb3iv—S52.940 (3)Sb5—S112.519 (4)
Pb3v—S52.940 (3)Sb5—S15vi2.651 (2)
Pb5—S122.996 (4)Sb5—S15vii2.651 (2)
Pb5—S18iv2.938 (2)Sb6—S132.437 (4)
Pb5—S18v2.938 (2)Sb6vi—S162.796 (3)
Pb6iv—S172.926 (2)S16—Sb6vii2.796 (3)
Pb6v—S172.926 (2)Sb6—S19iv2.814 (3)
Pb6—S232.850 (4)Sb6—S19v2.814 (3)
Pb7—S20vi2.979 (3)Sb7—S172.474 (4)
Pb7—S20vii2.979 (3)Sb7vi—S192.928 (2)
Pb7—S22i2.896 (3)Sb7vii—S192.928 (2)
Pb8—S72.711 (3)Sb7—S23iv2.690 (2)
Pb8iv—S92.930 (3)Sb7—S23v2.690 (2)
Pb8v—S92.930 (3)Sb8iv—S92.930 (3)
Pb8—S14vi2.822 (3)Sb8v—S92.930 (3)
Pb8—S14vii2.822 (3)Sb8—S14vi2.822 (3)
Pb9—S12vi2.692 (3)Sb8—S14vii2.822 (3)
Pb9—S12vii2.692 (3)Sb8—S72.711 (3)
Pb9—S142.543 (3)Sb9—S12vi2.692 (3)
Sb1—S4vi2.653 (3)Sb9—S12vii2.692 (3)
Sb1—S4vii2.653 (3)Sb9—S142.543 (3)
Sb1—S5viii2.428 (3)Sb10ix—S212.637 (3)
Sb2—S22.459 (4)Sb10x—S212.637 (3)
Sb2—S3iii2.818 (3)Sb10ix—S222.505 (3)
Sb2—S3ii2.818 (3)Sb10x—S222.505 (3)
Sb2—S6vi2.845 (3)Sb10—S202.445 (3)
Sb2—S6vii2.845 (3)Sb10xi—S202.445 (3)
Sb3vi—S12.802 (3)Sb10—Sb10xi0.6919 (15)
Sb3vii—S12.802 (3)
S4vi—Sb1—S4vii101.46 (11)S9vi—Pb8—S14vi86.57 (9)
S4vi—Sb1—S5viii91.01 (9)S9vi—Pb8—S14vii163.93 (7)
S4vii—Sb1—S4vi101.46 (11)S9vii—Pb8—S9vi89.03 (8)
S4vii—Sb1—S5viii91.01 (9)S9vii—Pb8—S14vi163.93 (7)
S2—Sb2—S3iii88.47 (11)S9vii—Pb8—S14vii86.57 (9)
S2—Sb2—S3ii88.47 (11)S14vi—Pb8—S14vii93.43 (9)
S2—Sb2—S6vi90.53 (11)S14vii—Pb8—S14vi93.43 (9)
S2—Sb2—S6vii90.53 (11)S7—Sb8—S9vi81.18 (8)
S3iii—Sb2—S3ii93.58 (8)S7—Sb8—S9vii81.18 (8)
S3iii—Sb2—S6vi86.98 (8)S7—Sb8—S14vi82.88 (8)
S3iii—Sb2—S6vii178.84 (11)S7—Sb8—S14vii82.88 (8)
S3ii—Sb2—S3iii93.58 (8)S9vi—Sb8—S9vii89.03 (8)
S3ii—Sb2—S6vi178.84 (11)S9vi—Sb8—S14vi86.57 (9)
S3ii—Sb2—S6vii86.98 (8)S9vi—Sb8—S14vii163.93 (7)
S6vi—Sb2—S6vii92.44 (8)S9vii—Sb8—S9vi89.03 (8)
S6vii—Sb2—S6vi92.44 (8)S9vii—Sb8—S14vi163.93 (7)
Sb3vi—S1—Sb3vii94.31 (14)S9vii—Sb8—S14vii86.57 (9)
Sb3vii—S1—Sb3vi94.31 (14)S14vi—Sb8—S14vii93.43 (9)
Sb2—S2—Pb1iii103.96 (8)S14vii—Sb8—S14vi93.43 (9)
Sb2—S2—Pb1ii103.96 (8)Sb9—S14—Pb8iv105.60 (8)
Pb1iii—S2—Pb1ii87.49 (9)Sb9—S14—Pb8v105.60 (8)
Pb1ii—S2—Pb1iii87.49 (9)Sb9—S14—Sb8iv105.60 (8)
S2iii—Pb1—S2ii87.49 (7)Sb9—S14—Sb8v105.60 (8)
S2ii—Pb1—S2iii87.49 (7)Pb9—S14—Pb8iv105.60 (8)
Sb2iii—S3—Sb2ii93.58 (11)Pb9—S14—Pb8v105.60 (8)
Sb2iii—S3—Sb4vi89.578 (19)Pb9—S14—Sb8iv105.60 (8)
Sb2iii—S3—Sb4vii175.88 (10)Pb9—S14—Sb8v105.60 (8)
Sb2ii—S3—Sb2iii93.58 (11)Pb8iv—S14—Pb8v93.43 (13)
Sb2ii—S3—Sb4vi175.88 (10)Pb8iv—S14—Sb8v93.43 (13)
Sb2ii—S3—Sb4vii89.578 (19)Pb8v—S14—Pb8iv93.43 (13)
Sb4vi—S3—Sb4vii87.15 (9)Pb8v—S14—Sb8iv93.43 (13)
Sb4vii—S3—Sb4vi87.15 (9)Sb8iv—S14—Sb8v93.43 (12)
Sb1iv—S4—Sb1v101.46 (15)Sb8v—S14—Sb8iv93.43 (12)
Sb1v—S4—Sb1iv101.46 (15)Sb5iv—S15—Sb5v101.58 (13)
S1iv—Sb3—S1v94.31 (10)Sb5v—S15—Sb5iv101.58 (13)
S1iv—Sb3—S7iv86.64 (9)Sb6vi—S16—Sb6vii94.55 (12)
S1iv—Sb3—S7v176.19 (8)Sb6vi—S16—Hg196.08 (8)
S1iv—Sb3—S988.55 (9)Sb6vii—S16—Sb6vi94.55 (12)
S1v—Sb3—S1iv94.31 (10)Sb6vii—S16—Hg196.08 (8)
S1v—Sb3—S7iv176.19 (8)Pb6iv—S17—Pb6v89.19 (9)
S1v—Sb3—S7v86.64 (9)Pb6iv—S17—Sb796.85 (7)
S1v—Sb3—S988.55 (9)Pb6v—S17—Pb6iv89.19 (9)
S7iv—Sb3—S7v92.18 (10)Pb6v—S17—Sb796.85 (7)
S7iv—Sb3—S987.78 (9)S12—Pb5—S18iv77.34 (8)
S7v—Sb3—S7iv92.18 (10)S12—Pb5—S18v77.34 (8)
S7v—Sb3—S987.78 (9)S18iv—Pb5—S18v88.73 (6)
Sb1viii—S5—Pb3iv104.96 (10)S18v—Pb5—S18iv88.73 (6)
Sb1viii—S5—Pb3v104.96 (10)S13—Sb6—S16iv93.02 (10)
Pb3iv—S5—Pb3v88.64 (11)S13—Sb6—S16v93.02 (10)
Pb3v—S5—Pb3iv88.64 (11)S13—Sb6—S19iv91.10 (10)
Sb2iv—S6—Sb2v92.44 (11)S13—Sb6—S19v91.10 (10)
Sb2iv—S6—Pb292.10 (13)S16iv—Sb6—S16v94.55 (9)
Sb2v—S6—Sb2iv92.44 (11)S16iv—Sb6—S19iv85.69 (8)
Sb2v—S6—Pb292.10 (13)S16iv—Sb6—S19v175.85 (12)
Sb3vi—S7—Sb3vii92.18 (13)S16v—Sb6—S16iv94.55 (9)
Sb3vi—S7—Pb893.36 (9)S16v—Sb6—S19iv175.85 (12)
Sb3vi—S7—Sb893.36 (9)S16v—Sb6—S19v85.69 (8)
Sb3vii—S7—Sb3vi92.18 (13)S19iv—Sb6—S19v93.76 (8)
Sb3vii—S7—Pb893.36 (9)S19v—Sb6—S19iv93.76 (8)
Sb3vii—S7—Sb893.36 (9)S17vi—Pb6—S17vii89.19 (7)
S3iv—Sb4—S3v87.15 (7)S17vi—Pb6—S2378.66 (8)
S3iv—Sb4—S890.69 (10)S17vii—Pb6—S17vi89.19 (7)
S3iv—Sb4—S10iv85.35 (7)S17vii—Pb6—S2378.66 (8)
S3iv—Sb4—S10v172.09 (10)S20vi—Pb7—S20vii87.20 (7)
S3v—Sb4—S3iv87.15 (7)S20vi—Pb7—S22i77.37 (8)
S3v—Sb4—S890.69 (10)S20vii—Pb7—S20vi87.20 (7)
S3v—Sb4—S10iv172.09 (10)S20vii—Pb7—S22i77.37 (8)
S3v—Sb4—S10v85.35 (7)Pb5vi—S18—Pb5vii88.73 (8)
S8—Sb4—S10iv91.87 (11)Pb5vi—S18—Hg2103.89 (11)
S8—Sb4—S10v91.87 (11)Pb5vii—S18—Pb5vi88.73 (8)
S10iv—Sb4—S10v102.04 (8)Pb5vii—S18—Hg2103.89 (11)
S10v—Sb4—S10iv102.04 (8)Sb6vi—S19—Sb6vii93.76 (11)
S6—Pb2—S11iv82.66 (9)Sb6vi—S19—Sb7vi87.97 (2)
S6—Pb2—S11v82.66 (9)Sb6vi—S19—Sb7vii171.40 (16)
S11iv—Pb2—S11v89.38 (7)Sb6vii—S19—Sb6vi93.76 (11)
S11v—Pb2—S11iv89.38 (7)Sb6vii—S19—Sb7vi171.40 (16)
S5vi—Pb3—S5vii88.64 (8)Sb6vii—S19—Sb7vii87.97 (2)
S5vii—Pb3—S5vi88.64 (8)Sb7vi—S19—Sb7vii89.11 (9)
S12vi—Sb9—S12vii99.48 (10)Sb7vii—S19—Sb7vi89.11 (9)
S12vi—Sb9—S1486.98 (9)Pb7iv—S20—Pb7v87.20 (9)
S12vii—Sb9—S12vi99.48 (10)Pb7iv—S20—Sb10104.34 (13)
S12vii—Sb9—S1486.98 (9)Pb7iv—S20—Sb10xi93.01 (10)
S12vi—Pb9—S12vii99.48 (10)Pb7v—S20—Pb7iv87.20 (9)
S12vi—Pb9—S1486.98 (8)Pb7v—S20—Sb1093.01 (10)
S12vii—Pb9—S12vi99.48 (10)Pb7v—S20—Sb10xi104.34 (13)
S12vii—Pb9—S1486.98 (8)Sb10—S20—Sb10xi16.27 (4)
Sb3—S9—Pb8iv97.66 (9)Sb10xi—S20—Sb1016.27 (4)
Sb3—S9—Pb8v97.66 (9)S16—Hg1—S21i174.07 (12)
Sb3—S9—Sb8iv97.66 (9)S17—Sb7—S19iv85.25 (10)
Sb3—S9—Sb8v97.66 (9)S17—Sb7—S19v85.25 (10)
Pb8iv—S9—Pb8v89.03 (11)S17—Sb7—S23iv90.20 (10)
Pb8iv—S9—Sb8v89.03 (11)S17—Sb7—S23v90.20 (10)
Pb8v—S9—Pb8iv89.03 (11)S19iv—Sb7—S19v89.11 (7)
Pb8v—S9—Sb8iv89.03 (11)S19iv—Sb7—S23iv85.50 (7)
Sb8iv—S9—Sb8v89.03 (11)S19iv—Sb7—S23v173.21 (8)
Sb8v—S9—Sb8iv89.03 (11)S19v—Sb7—S19iv89.11 (7)
Sb4vi—S10—Sb4vii102.04 (10)S19v—Sb7—S23iv173.21 (8)
Sb4vii—S10—Sb4vi102.04 (10)S19v—Sb7—S23v85.50 (7)
S11—Sb5—S15vi91.67 (12)S23iv—Sb7—S23v99.57 (8)
S11—Sb5—S15vii91.67 (12)S23v—Sb7—S23iv99.57 (8)
S15vi—Sb5—S15vii101.58 (9)Hg1i—S21—Sb10ix103.66 (8)
S15vii—Sb5—S15vi101.58 (9)Hg1i—S21—Sb10x103.66 (8)
Pb2vi—S11—Pb2vii89.38 (9)Sb10ix—S21—Sb10x80.75 (11)
Pb2vi—S11—Sb599.90 (7)Sb10x—S21—Sb10ix80.75 (11)
Pb2vii—S11—Pb2vi89.38 (9)Pb7i—S22—Sb10ix93.75 (11)
Pb2vii—S11—Sb599.90 (7)Pb7i—S22—Sb10x93.75 (11)
Sb9iv—S12—Sb9v99.48 (14)Sb10ix—S22—Sb10x85.99 (12)
Sb9iv—S12—Pb9v99.48 (14)Sb10x—S22—Sb10ix85.99 (12)
Sb9iv—S12—Pb5130.26 (7)Pb6—S23—Sb7vi93.92 (8)
Sb9v—S12—Sb9iv99.48 (14)Pb6—S23—Sb7vii93.92 (8)
Sb9v—S12—Pb9iv99.48 (14)Sb7vi—S23—Sb7vii99.57 (11)
Sb9v—S12—Pb5130.26 (7)Sb7vii—S23—Sb7vi99.57 (11)
Pb9iv—S12—Pb9v99.48 (14)S18—Hg2—S18i180
Pb9iv—S12—Pb5130.26 (7)S18i—Hg2—S18180
Pb9v—S12—Pb9iv99.48 (14)S20—Sb10—S21ix89.78 (10)
Pb9v—S12—Pb5130.26 (7)S20—Sb10—S22ix95.80 (10)
S7—Pb8—S9vi81.18 (8)S20—Sb10—Sb10xi81.87 (13)
S7—Pb8—S9vii81.18 (8)S21ix—Sb10—S22ix96.39 (8)
S7—Pb8—S14vi82.88 (8)S21ix—Sb10—Sb10xi130.38 (18)
S7—Pb8—S14vii82.88 (8)S22ix—Sb10—Sb10xi133.00 (17)
S9vi—Pb8—S9vii89.03 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z; (vi) x1/2, y1/2, z; (vii) x1/2, y+1/2, z; (viii) x+1, y, z; (ix) x+3/2, y+1/2, z+1; (x) x+3/2, y1/2, z+1; (xi) x, y, z.

Experimental details

Crystal data
Chemical formulaHg3Pb16S46Sb18
Mr7583.1
Crystal system, space groupMonoclinic, C2/m
Temperature (K)292
a, b, c (Å)48.124 (11), 4.1083 (2), 23.990 (5)
β (°) 118.76 (2)
V3)4158.2 (15)
Z2
Radiation typeMo Kα
µ (mm1)44.67
Crystal size (mm)0.04 × 0.02 × 0.00230
Data collection
DiffractometerOxford Diffraction XCalibur CCD
Absorption correctionAnalytical
Clark & Reid (1995)
Tmin, Tmax0.198, 0.805
No. of measured, independent and
observed [I > 3σ(I)] reflections
26009, 4942, 3000
Rint0.052
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.045, 0.85
No. of reflections4942
No. of parameters256
No. of restraints?
Δρmax, Δρmin (e Å3)1.20, 1.09

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2004), CrysAlis RED, SIR2002 (Burla et al., 2003), Jana2000 (Petricek et al., 2000), DIAMOND 3 (Brandenburg and Putz, 2005), Jana2000.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds