Download citation
Download citation
link to html
The title compound, C22H28N2O6, prepared by a condensation reaction between 3,4,5-trimethoxy­benzaldehyde and ethyl­enediamine, acts as an important precursor for the synthesis of Schiff base complexes. The mol­ecule is located on a centre of inversion with one half-mol­ecule in the asymmetric unit. Both C=N double bonds are in a trans configuration.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050532/bt2540sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050532/bt2540Isup2.hkl
Contains datablock I

CCDC reference: 667410

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.121
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C22 H28 N2 O6
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases are used extensively as ligands in the field of coordination chemistry, because they are potentially capable of forming stable complexes with metal ions, such as Ag(I) and Cu(I) (Khalaji et al., 2006, and 2007). The crystal structures of some diamine Schiff bases have been reported (Li et al., 2006.; Yang et al., 2007.; Bomfim et al., 2005.; Glidewell et al., 2006.; Sun et al., 2004.; Xiao et al., 2006.; Bahron et al., 2007). Here we report the crystal structure of the diamine Schiff base, N,N'-Bis(3,4,5-trimethoxybenzylidene) ethylenediamine.

In N,N'-Bis(3,4,5-trimethoxybenzylidene)ethylenediamine (Fig. 1), two 3,4,5-trimethoxybenzylidene groups are bridged by the ethylenediamine fragment via two C=N double bonds. All the bond lengths and angles are within normal ranges. The N(1)=C(2) bond length of 1.257 (3) Å conforms to the value for a double bond, while the C(1)—N(1) bond length of 1.463 (2) Å conforms to the value for a single bond and are comparable to the corresponding values observed in N,N'-bis(3,4-dimethoxybenzylidene) ethylenediamine (Li et al., 2006) and N,N'-Bis(4-nitrobenzylidene) ethane-1,2-diamine (Sun et al., 2004).

Related literature top

For general background, see Khalaji et al. (2006, 2007). For related structures, see Li et al.(2006), Yang et al. (2007), Bomfim et al. (2005), Glidewell et al. (2006), Sun et al. (2004), Xiao et al. (2006) and Bahron et al. (2007).

Experimental top

Ethylenediamine (1 mmol, 60 mg) and 3,4,5-trimethoxybenzaldehyde (2 mmol, 392 mg) were dissolved in methanol (15 ml) at 328 K. The mixture was stirred for 15 min to give a clear and colorless solution. After the solution had been allowed to stand in air for 1 d, colorless crystals formed, in about 91% yield, on slow evaporation of the solvent.

Refinement top

All H atoms were positioned geometrically (C—H=0.93–0.97 Å), and refined as riding with Uiso(H)=1.2Ueq(carrier) or 1.5eq(methyl groups). The methyl groups were allowed to rotate but not to tip.

Structure description top

Schiff bases are used extensively as ligands in the field of coordination chemistry, because they are potentially capable of forming stable complexes with metal ions, such as Ag(I) and Cu(I) (Khalaji et al., 2006, and 2007). The crystal structures of some diamine Schiff bases have been reported (Li et al., 2006.; Yang et al., 2007.; Bomfim et al., 2005.; Glidewell et al., 2006.; Sun et al., 2004.; Xiao et al., 2006.; Bahron et al., 2007). Here we report the crystal structure of the diamine Schiff base, N,N'-Bis(3,4,5-trimethoxybenzylidene) ethylenediamine.

In N,N'-Bis(3,4,5-trimethoxybenzylidene)ethylenediamine (Fig. 1), two 3,4,5-trimethoxybenzylidene groups are bridged by the ethylenediamine fragment via two C=N double bonds. All the bond lengths and angles are within normal ranges. The N(1)=C(2) bond length of 1.257 (3) Å conforms to the value for a double bond, while the C(1)—N(1) bond length of 1.463 (2) Å conforms to the value for a single bond and are comparable to the corresponding values observed in N,N'-bis(3,4-dimethoxybenzylidene) ethylenediamine (Li et al., 2006) and N,N'-Bis(4-nitrobenzylidene) ethane-1,2-diamine (Sun et al., 2004).

For general background, see Khalaji et al. (2006, 2007). For related structures, see Li et al.(2006), Yang et al. (2007), Bomfim et al. (2005), Glidewell et al. (2006), Sun et al. (2004), Xiao et al. (2006) and Bahron et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
(E,E)—N,N'-Bis(3,4,5-trimethoxybenzylidene)ethylenediamine top
Crystal data top
C22H28N2O6F(000) = 888
Mr = 416.46Dx = 1.266 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 32.008 (8) ÅCell parameters from 1598 reflections
b = 4.9175 (12) Åθ = 2.9–23.8°
c = 13.945 (4) ŵ = 0.09 mm1
β = 95.326 (4)°T = 294 K
V = 2185.4 (9) Å3Block, colorless
Z = 40.24 × 0.22 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1933 independent reflections
Radiation source: fine-focus sealed tube1321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3837
Tmin = 0.978, Tmax = 0.984k = 53
5347 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.163P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1933 reflectionsΔρmax = 0.18 e Å3
140 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (10)
Crystal data top
C22H28N2O6V = 2185.4 (9) Å3
Mr = 416.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 32.008 (8) ŵ = 0.09 mm1
b = 4.9175 (12) ÅT = 294 K
c = 13.945 (4) Å0.24 × 0.22 × 0.18 mm
β = 95.326 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1933 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1321 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.030
5347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
1933 reflectionsΔρmin = 0.14 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13907 (4)0.4533 (3)0.20272 (9)0.0587 (4)
O20.20178 (3)0.1274 (2)0.15836 (8)0.0436 (4)
O30.19633 (3)0.1625 (3)0.00262 (8)0.0464 (4)
N10.04056 (5)0.0432 (4)0.14559 (12)0.0584 (5)
C10.00111 (6)0.0261 (6)0.19801 (15)0.0719 (7)
H1A0.01790.17930.18050.086*
H1B0.01480.13910.17950.086*
C20.04917 (5)0.1186 (5)0.07681 (14)0.0535 (6)
H20.02860.24220.06250.064*
C30.08967 (5)0.1253 (4)0.01738 (12)0.0418 (5)
C40.09424 (5)0.2955 (4)0.06202 (12)0.0447 (5)
H40.07220.40750.07580.054*
C50.13159 (5)0.2998 (4)0.12105 (12)0.0415 (5)
C60.16516 (5)0.1380 (4)0.09854 (11)0.0368 (4)
C70.16099 (5)0.0248 (3)0.01564 (12)0.0362 (4)
C80.12310 (5)0.0372 (4)0.04093 (12)0.0396 (5)
H80.11990.15240.09400.047*
C90.10634 (6)0.6251 (5)0.22895 (15)0.0632 (6)
H9A0.09800.74630.17670.095*
H9B0.11610.72900.28490.095*
H9C0.08280.51630.24300.095*
C100.22852 (6)0.3588 (4)0.15304 (15)0.0549 (6)
H10A0.23790.36990.08980.082*
H10B0.25230.34110.19990.082*
H10C0.21330.52080.16590.082*
C110.19456 (6)0.3240 (4)0.08760 (14)0.0551 (6)
H11A0.17440.46730.08340.083*
H11B0.22170.40130.09410.083*
H11C0.18630.21240.14260.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0538 (8)0.0740 (10)0.0457 (8)0.0172 (7)0.0087 (6)0.0196 (7)
O20.0399 (7)0.0451 (8)0.0420 (7)0.0001 (6)0.0160 (5)0.0015 (6)
O30.0390 (7)0.0554 (8)0.0426 (7)0.0107 (6)0.0082 (5)0.0079 (6)
N10.0357 (9)0.0874 (13)0.0490 (10)0.0026 (9)0.0134 (8)0.0026 (10)
C10.0338 (11)0.124 (2)0.0542 (12)0.0077 (12)0.0137 (10)0.0004 (13)
C20.0343 (10)0.0823 (16)0.0427 (11)0.0048 (10)0.0022 (8)0.0055 (11)
C30.0334 (9)0.0557 (12)0.0351 (10)0.0013 (9)0.0037 (7)0.0078 (9)
C40.0353 (9)0.0568 (13)0.0415 (10)0.0082 (9)0.0000 (8)0.0047 (9)
C50.0425 (10)0.0476 (11)0.0334 (9)0.0024 (9)0.0015 (7)0.0006 (8)
C60.0347 (9)0.0413 (10)0.0323 (9)0.0009 (8)0.0072 (7)0.0060 (8)
C70.0336 (9)0.0382 (10)0.0354 (9)0.0004 (8)0.0038 (7)0.0057 (8)
C80.0385 (10)0.0451 (11)0.0335 (9)0.0031 (8)0.0051 (8)0.0016 (8)
C90.0611 (13)0.0706 (15)0.0577 (13)0.0142 (11)0.0050 (10)0.0170 (11)
C100.0449 (11)0.0576 (13)0.0585 (13)0.0039 (10)0.0143 (9)0.0004 (10)
C110.0537 (12)0.0619 (14)0.0489 (12)0.0092 (11)0.0003 (9)0.0131 (10)
Geometric parameters (Å, º) top
O1—C51.369 (2)C4—C51.387 (2)
O1—C91.420 (2)C4—H40.9300
O2—C61.3751 (18)C5—C61.396 (2)
O2—C101.430 (2)C6—C71.402 (2)
O3—C71.363 (2)C7—C81.385 (2)
O3—C111.423 (2)C8—H80.9300
N1—C21.257 (3)C9—H9A0.9600
N1—C11.463 (2)C9—H9B0.9600
C1—C1i1.458 (4)C9—H9C0.9600
C1—H1A0.9700C10—H10A0.9600
C1—H1B0.9700C10—H10B0.9600
C2—C31.473 (2)C10—H10C0.9600
C2—H20.9300C11—H11A0.9600
C3—C41.385 (3)C11—H11B0.9600
C3—C81.399 (2)C11—H11C0.9600
C5—O1—C9117.79 (14)O3—C7—C8124.73 (16)
C6—O2—C10114.78 (13)O3—C7—C6114.87 (13)
C7—O3—C11117.60 (12)C8—C7—C6120.40 (16)
C2—N1—C1118.03 (19)C7—C8—C3119.30 (17)
C1i—C1—N1111.8 (2)C7—C8—H8120.3
C1i—C1—H1A109.3C3—C8—H8120.3
N1—C1—H1A109.3O1—C9—H9A109.5
C1i—C1—H1B109.3O1—C9—H9B109.5
N1—C1—H1B109.3H9A—C9—H9B109.5
H1A—C1—H1B107.9O1—C9—H9C109.5
N1—C2—C3124.22 (19)H9A—C9—H9C109.5
N1—C2—H2117.9H9B—C9—H9C109.5
C3—C2—H2117.9O2—C10—H10A109.5
C4—C3—C8120.44 (15)O2—C10—H10B109.5
C4—C3—C2119.04 (17)H10A—C10—H10B109.5
C8—C3—C2120.52 (17)O2—C10—H10C109.5
C3—C4—C5120.33 (17)H10A—C10—H10C109.5
C3—C4—H4119.8H10B—C10—H10C109.5
C5—C4—H4119.8O3—C11—H11A109.5
O1—C5—C4125.23 (16)O3—C11—H11B109.5
O1—C5—C6114.99 (15)H11A—C11—H11B109.5
C4—C5—C6119.78 (16)O3—C11—H11C109.5
O2—C6—C5121.03 (15)H11A—C11—H11C109.5
O2—C6—C7119.30 (14)H11B—C11—H11C109.5
C5—C6—C7119.62 (15)
C2—N1—C1—C1i132.79 (15)C4—C5—C6—O2176.60 (16)
C1—N1—C2—C3179.87 (18)O1—C5—C6—C7179.22 (15)
N1—C2—C3—C4174.11 (19)C4—C5—C6—C70.9 (3)
N1—C2—C3—C86.1 (3)C11—O3—C7—C82.1 (2)
C8—C3—C4—C52.2 (3)C11—O3—C7—C6177.88 (15)
C2—C3—C4—C5177.99 (17)O2—C6—C7—O36.1 (2)
C9—O1—C5—C40.9 (3)C5—C6—C7—O3176.40 (15)
C9—O1—C5—C6179.21 (16)O2—C6—C7—C8173.94 (15)
C3—C4—C5—O1177.88 (16)C5—C6—C7—C83.6 (2)
C3—C4—C5—C62.0 (3)O3—C7—C8—C3176.62 (15)
C10—O2—C6—C576.5 (2)C6—C7—C8—C33.4 (2)
C10—O2—C6—C7105.98 (18)C4—C3—C8—C70.5 (3)
O1—C5—C6—O23.3 (2)C2—C3—C8—C7179.31 (17)
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC22H28N2O6
Mr416.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)32.008 (8), 4.9175 (12), 13.945 (4)
β (°) 95.326 (4)
V3)2185.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5347, 1933, 1321
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.121, 1.03
No. of reflections1933
No. of parameters140
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds