Download citation
Download citation
link to html
A new crystal form of the title compound, [Cu(CHO3)(C29H47N7)]PF6, is closely similar in cation geometry to the previously reported acetone solvate [Petrovic, Bannenberg, Randoll, Jones & Tamm (2007). Dalton Trans. pp. 2812-2822]. The coordination at the Cu atom is square planar, although the O atom lies 0.224 (5) Å out of the N3 ligand plane. The cations are associated to form inversion-symmetric dimers via hydrogen bonding between bicarbonate units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051203/bt2543sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051203/bt2543Isup2.hkl
Contains datablock I

CCDC reference: 667189

Key indicators

  • Single-crystal X-ray study
  • T = 133 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.098
  • Data-to-parameter ratio = 19.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.27 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 F6 P
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu (2) 2.28
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As we have recently demonstrated (Petrovic et al., 2007), copper(I) complexes of the highly basic pincer ligand 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine, TLtBu, are extremely reactive and exhibit a pronounced tendency to form stable, square-planar copper(II) complexes. Exposure of an acetone solution of [(TLtBu)Cu]PF6 to the air readily leads to oxidation and trapping of atmospheric CO2 to form the square-planar complex [(TLtBu)Cu(HCO3-κO)]PF6 with the bicarbonate ligand adopting a rarely observed monodentate coordination mode. The compound was previously crystallized as an acetone solvate (Petrovic et al., 2007). Here we report the structure of the solvent-free material. All structural features of the cation [(TLtBu)Cu(HCO3-κO)]+ are very similar to those of the acetone solvate. The copper center displays a slightly distorted square-planar environment; the sum of the four cis angles is 359.38°. The copper atom lies 0.049 (2) Å out of the plane defined by the donor atoms N1, N2 and N3. The displacement of the metal-bound oxygen atom O1 of the bicarbonate ligand, 0.224 (5) Å in the opposite direction, is considerably greater, which is presumably a consequence of minimizing the steric interaction with the bulky di-tert-butylimidazolin-2-ylidene moieties. As a result, the N1—Cu—O1 angle of 170.38 (8)° deviates significantly from linearity. The Cu—O1 distance of 1.9205 (16) Å is very short in comparison to the other structurally characterized copper(II) bicarbonate complexes. The angles in the bicarbonate unit are close to 120°, and the C—O distances (Table 1), with a much longer C30—O3 bond, clearly indicate that the hydrogen atom of the HCO3 unit is bound to O3. This was in any case confirmed by free refinement of this hydrogen position. The packing involves inversion-symmetric cation dimers bridged via hydrogen bonding of the bicarbonate groups (analogous to the well known "carboxylic acid dimer" type; Table 2), as observed for the acetone solvate (with two crystallographically independent formula units, each associating over an inversion centre to a dimer) and in some other transition metal bicarbonate complexes (Hossain et al., 1981; Ito et al., 1994; Darensbourg et al., 1996; Jazzar et al., 2003; Kim et al., 2004).

Related literature top

For related literature, see: Darensbourg et al. (1996); Hossain et al. (1981); Ito et al. (1994); Jazzar et al. (2003); Kim et al. (2004); Petrovic et al. (2007); Steiner (2002).

Experimental top

The title compound was prepared according to the literature procedure (Petrovic et al., 2007). Crystals could be obtained selectively as clear yellow prisms by cooling the acetone solution. The compound exhibits dichroism (the previously reported acetone solvate, obtained by evaporation of an acetone solution, is deep green or red depending on the view direction), but we have not investigated this phenomenon further.

Refinement top

The bicarbonate hydrogen H1 was freely refined. Methyl H atoms were included on the basis of idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at 1.2Uiso(C) of the parent C atom.

Structure description top

As we have recently demonstrated (Petrovic et al., 2007), copper(I) complexes of the highly basic pincer ligand 2,6-bis[(1,3-di-tert-butylimidazolin-2-imino)methyl]pyridine, TLtBu, are extremely reactive and exhibit a pronounced tendency to form stable, square-planar copper(II) complexes. Exposure of an acetone solution of [(TLtBu)Cu]PF6 to the air readily leads to oxidation and trapping of atmospheric CO2 to form the square-planar complex [(TLtBu)Cu(HCO3-κO)]PF6 with the bicarbonate ligand adopting a rarely observed monodentate coordination mode. The compound was previously crystallized as an acetone solvate (Petrovic et al., 2007). Here we report the structure of the solvent-free material. All structural features of the cation [(TLtBu)Cu(HCO3-κO)]+ are very similar to those of the acetone solvate. The copper center displays a slightly distorted square-planar environment; the sum of the four cis angles is 359.38°. The copper atom lies 0.049 (2) Å out of the plane defined by the donor atoms N1, N2 and N3. The displacement of the metal-bound oxygen atom O1 of the bicarbonate ligand, 0.224 (5) Å in the opposite direction, is considerably greater, which is presumably a consequence of minimizing the steric interaction with the bulky di-tert-butylimidazolin-2-ylidene moieties. As a result, the N1—Cu—O1 angle of 170.38 (8)° deviates significantly from linearity. The Cu—O1 distance of 1.9205 (16) Å is very short in comparison to the other structurally characterized copper(II) bicarbonate complexes. The angles in the bicarbonate unit are close to 120°, and the C—O distances (Table 1), with a much longer C30—O3 bond, clearly indicate that the hydrogen atom of the HCO3 unit is bound to O3. This was in any case confirmed by free refinement of this hydrogen position. The packing involves inversion-symmetric cation dimers bridged via hydrogen bonding of the bicarbonate groups (analogous to the well known "carboxylic acid dimer" type; Table 2), as observed for the acetone solvate (with two crystallographically independent formula units, each associating over an inversion centre to a dimer) and in some other transition metal bicarbonate complexes (Hossain et al., 1981; Ito et al., 1994; Darensbourg et al., 1996; Jazzar et al., 2003; Kim et al., 2004).

For related literature, see: Darensbourg et al. (1996); Hossain et al. (1981); Ito et al. (1994); Jazzar et al. (2003); Kim et al. (2004); Petrovic et al. (2007); Steiner (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The formula unit of the title compound in the crystal. Ellipsoids represent 30% probability levels. Hydrogen atoms and butyl atom labels have been omitted for clarity.
{2,6-bis[(1,3-di-tert-butylimidazolin-2-ylideneamino)methyl]pyridine}(hydrogen carbonato)copper(II) hexafluoridophosphate top
Crystal data top
[Cu(CHO3)(C29H47N7)]PF6Z = 2
Mr = 763.26F(000) = 798
Triclinic, P1Dx = 1.423 Mg m3
a = 9.0309 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.824 (2) ÅCell parameters from 8159 reflections
c = 15.654 (2) Åθ = 2–28°
α = 109.619 (3)°µ = 0.73 mm1
β = 101.729 (4)°T = 133 K
γ = 94.164 (3)°Prism, yellow
V = 1781.2 (4) Å30.20 × 0.11 × 0.08 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
8789 independent reflections
Radiation source: fine-focus sealed tube6166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 8.192 pixels mm-1θmax = 28.3°, θmin = 1.4°
ω and φ scansh = 1112
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1818
Tmin = 0.868, Tmax = 0.944l = 2020
33075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0337P)2 + 1.4465P]
where P = (Fo2 + 2Fc2)3
8789 reflections(Δ/σ)max < 0.001
449 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(CHO3)(C29H47N7)]PF6γ = 94.164 (3)°
Mr = 763.26V = 1781.2 (4) Å3
Triclinic, P1Z = 2
a = 9.0309 (12) ÅMo Kα radiation
b = 13.824 (2) ŵ = 0.73 mm1
c = 15.654 (2) ÅT = 133 K
α = 109.619 (3)°0.20 × 0.11 × 0.08 mm
β = 101.729 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
8789 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
6166 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.944Rint = 0.053
33075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.46 e Å3
8789 reflectionsΔρmin = 0.41 e Å3
449 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.3861 (0.0088) x + 7.5326 (0.0093) y + 6.7527 (0.0131) z = 1.9001 (0.0040)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) N2 * 0.0000 (0.0000) N3 0.0486 (0.0017) Cu -0.2240 (0.0045) O1

Rms deviation of fitted atoms = 0.0000

3.0050 (0.0115) x + 11.4156 (0.0098) y - 11.5236 (0.0125) z = 1.4495 (0.0078)

Angle to previous plane (with approximate e.s.d.) = 89.00 (0.08)

* 0.0000 (0.0000) O1 * 0.0000 (0.0000) O2 * 0.0000 (0.0000) O3 0.0052 (0.0026) C30

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.23080 (3)0.25694 (2)0.220239 (18)0.01536 (8)
P0.18744 (8)0.18997 (5)0.23416 (4)0.02368 (15)
O10.43029 (19)0.31751 (13)0.30096 (11)0.0248 (4)
O20.3586 (2)0.44446 (16)0.40803 (13)0.0399 (5)
O30.5977 (2)0.40524 (17)0.43152 (14)0.0368 (5)
H10.607 (4)0.458 (3)0.484 (3)0.066 (12)*
N10.0481 (2)0.18007 (14)0.12599 (12)0.0153 (4)
N20.2354 (2)0.33105 (14)0.13469 (12)0.0163 (4)
N30.1781 (2)0.15538 (15)0.27650 (13)0.0203 (4)
N40.3319 (2)0.51640 (14)0.19051 (13)0.0195 (4)
N50.4858 (2)0.40802 (16)0.13604 (14)0.0221 (4)
N60.1977 (2)0.23238 (15)0.44538 (13)0.0235 (5)
N70.3711 (2)0.13706 (15)0.39765 (13)0.0224 (4)
F10.2607 (2)0.28868 (12)0.14117 (11)0.0438 (4)
F20.1146 (2)0.09254 (13)0.32614 (12)0.0504 (5)
F30.34247 (18)0.19827 (12)0.26827 (12)0.0408 (4)
F40.2523 (2)0.11459 (14)0.18277 (13)0.0522 (5)
F50.03368 (19)0.18281 (13)0.19943 (12)0.0427 (4)
F60.1247 (2)0.26685 (15)0.28479 (13)0.0512 (5)
C10.0126 (3)0.20213 (17)0.04791 (15)0.0161 (4)
C20.1082 (3)0.14157 (18)0.02528 (16)0.0196 (5)
H20.13320.15540.08150.024*
C30.1921 (3)0.05982 (18)0.01428 (17)0.0234 (5)
H30.27620.01790.06340.028*
C40.1544 (3)0.03885 (18)0.06722 (16)0.0218 (5)
H40.21210.01670.07470.026*
C50.0304 (2)0.10082 (17)0.13787 (15)0.0166 (5)
C60.1133 (3)0.29510 (18)0.04916 (15)0.0192 (5)
H6A0.15750.27550.00610.023*
H6B0.05220.35120.04710.023*
C70.0292 (3)0.08814 (18)0.22988 (16)0.0214 (5)
H7A0.04400.10770.26980.026*
H7B0.04120.01470.21940.026*
C80.3419 (3)0.41321 (17)0.15052 (15)0.0172 (5)
C90.4700 (3)0.5742 (2)0.19914 (19)0.0297 (6)
H90.49360.64790.22360.036*
C100.5630 (3)0.5087 (2)0.16724 (19)0.0305 (6)
H100.66560.52750.16590.037*
C110.2396 (3)0.17239 (17)0.36715 (16)0.0189 (5)
C120.3025 (3)0.2319 (2)0.52342 (17)0.0315 (6)
H120.29920.26600.58660.038*
C130.4083 (3)0.1757 (2)0.49465 (17)0.0303 (6)
H130.49470.16400.53390.036*
C140.1976 (3)0.56795 (18)0.21563 (16)0.0225 (5)
C150.0870 (3)0.5000 (2)0.2413 (2)0.0322 (6)
H15A0.03860.43850.18610.039*
H15B0.00820.53960.26390.039*
H15C0.14320.47830.29050.039*
C160.1178 (4)0.5944 (2)0.1323 (2)0.0388 (7)
H16A0.18860.64310.12080.047*
H16B0.02770.62640.14580.047*
H16C0.08580.53070.07680.047*
C170.2579 (4)0.6672 (2)0.3017 (2)0.0426 (7)
H17A0.32110.65010.35190.051*
H17B0.17150.69830.32270.051*
H17C0.31980.71660.28550.051*
C180.5652 (3)0.3173 (2)0.09667 (18)0.0261 (6)
C190.6273 (4)0.3355 (3)0.0180 (2)0.0405 (7)
H19A0.54280.34310.02860.049*
H19B0.67570.27610.01190.049*
H19C0.70290.39890.04420.049*
C200.6955 (3)0.3160 (2)0.1756 (2)0.0344 (6)
H20A0.76600.38180.19980.041*
H20B0.75080.25830.15160.041*
H20C0.65340.30730.22600.041*
C210.4611 (3)0.2128 (2)0.0560 (2)0.0334 (6)
H21A0.42310.19880.10570.040*
H21B0.51870.15790.02850.040*
H21C0.37440.21440.00760.040*
C220.0600 (3)0.2867 (2)0.45535 (17)0.0274 (6)
C230.0643 (3)0.2122 (2)0.4646 (2)0.0367 (7)
H23A0.09250.14970.40790.044*
H23B0.15440.24640.47290.044*
H23C0.02550.19290.51880.044*
C240.0022 (3)0.3225 (2)0.37383 (18)0.0309 (6)
H24A0.08610.36620.36690.037*
H24B0.08130.36260.38610.037*
H24C0.03520.26180.31620.037*
C250.1057 (4)0.3842 (2)0.54454 (18)0.0353 (7)
H25A0.13360.36370.59910.042*
H25B0.01930.42300.54980.042*
H25C0.19330.42810.54160.042*
C260.4527 (3)0.05894 (19)0.33900 (18)0.0271 (6)
C270.5864 (3)0.0373 (2)0.4033 (2)0.0367 (7)
H27A0.65440.10250.44200.044*
H27B0.64320.01070.36560.044*
H27C0.54750.00600.44360.044*
C280.5182 (4)0.1009 (2)0.2734 (2)0.0413 (7)
H28A0.43420.11070.22790.050*
H28B0.57800.05120.24030.050*
H28C0.58430.16760.30980.050*
C290.3417 (4)0.0418 (2)0.2847 (3)0.0529 (9)
H29A0.30100.06640.32850.063*
H29B0.39540.09450.24950.063*
H29C0.25730.02930.24130.063*
C300.4539 (3)0.39054 (19)0.37901 (17)0.0235 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01664 (14)0.01417 (14)0.01280 (13)0.00348 (11)0.00252 (10)0.00351 (10)
P0.0280 (3)0.0187 (3)0.0246 (3)0.0005 (3)0.0085 (3)0.0079 (3)
O10.0226 (9)0.0255 (9)0.0184 (8)0.0075 (8)0.0006 (7)0.0033 (7)
O20.0253 (10)0.0459 (12)0.0284 (10)0.0048 (9)0.0034 (8)0.0062 (9)
O30.0237 (10)0.0412 (12)0.0266 (10)0.0006 (9)0.0050 (8)0.0042 (9)
N10.0147 (9)0.0141 (9)0.0154 (9)0.0002 (8)0.0049 (7)0.0026 (7)
N20.0164 (9)0.0152 (9)0.0160 (9)0.0029 (8)0.0020 (8)0.0061 (8)
N30.0241 (10)0.0185 (10)0.0158 (9)0.0056 (9)0.0024 (8)0.0063 (8)
N40.0203 (10)0.0148 (9)0.0224 (10)0.0011 (8)0.0052 (8)0.0062 (8)
N50.0171 (10)0.0221 (10)0.0297 (11)0.0017 (9)0.0076 (8)0.0120 (9)
N60.0318 (12)0.0220 (11)0.0184 (10)0.0032 (9)0.0075 (9)0.0090 (8)
N70.0283 (11)0.0188 (10)0.0194 (10)0.0002 (9)0.0040 (9)0.0077 (8)
F10.0565 (11)0.0339 (9)0.0293 (8)0.0152 (8)0.0116 (8)0.0004 (7)
F20.0455 (10)0.0424 (10)0.0413 (10)0.0112 (9)0.0121 (8)0.0101 (8)
F30.0379 (9)0.0306 (9)0.0543 (10)0.0012 (7)0.0242 (8)0.0096 (8)
F40.0572 (12)0.0454 (11)0.0690 (13)0.0096 (9)0.0119 (10)0.0413 (10)
F50.0389 (9)0.0346 (9)0.0542 (11)0.0020 (8)0.0263 (8)0.0083 (8)
F60.0643 (12)0.0567 (12)0.0515 (11)0.0241 (10)0.0203 (10)0.0370 (10)
C10.0168 (11)0.0146 (11)0.0159 (11)0.0049 (9)0.0067 (9)0.0021 (9)
C20.0181 (11)0.0196 (12)0.0170 (11)0.0038 (10)0.0022 (9)0.0023 (9)
C30.0171 (11)0.0202 (12)0.0235 (12)0.0017 (10)0.0011 (10)0.0004 (10)
C40.0186 (12)0.0155 (11)0.0274 (13)0.0008 (10)0.0064 (10)0.0030 (10)
C50.0149 (11)0.0147 (11)0.0194 (11)0.0025 (9)0.0074 (9)0.0031 (9)
C60.0203 (11)0.0190 (11)0.0175 (11)0.0018 (10)0.0030 (9)0.0076 (9)
C70.0210 (12)0.0194 (12)0.0218 (12)0.0050 (10)0.0032 (10)0.0078 (10)
C80.0193 (11)0.0171 (11)0.0165 (11)0.0011 (9)0.0043 (9)0.0080 (9)
C90.0272 (13)0.0205 (13)0.0383 (15)0.0078 (11)0.0033 (12)0.0116 (11)
C100.0193 (12)0.0277 (14)0.0461 (16)0.0062 (11)0.0080 (12)0.0171 (13)
C110.0231 (12)0.0136 (11)0.0194 (11)0.0044 (10)0.0051 (10)0.0068 (9)
C120.0472 (17)0.0291 (14)0.0159 (12)0.0080 (13)0.0027 (12)0.0075 (11)
C130.0400 (16)0.0268 (14)0.0206 (13)0.0052 (12)0.0020 (11)0.0095 (11)
C140.0270 (13)0.0180 (12)0.0226 (12)0.0056 (10)0.0076 (10)0.0063 (10)
C150.0300 (14)0.0318 (15)0.0403 (16)0.0102 (12)0.0203 (12)0.0120 (13)
C160.0461 (18)0.0456 (18)0.0350 (16)0.0259 (15)0.0150 (14)0.0207 (14)
C170.0467 (18)0.0300 (15)0.0390 (17)0.0025 (14)0.0121 (14)0.0032 (13)
C180.0234 (12)0.0337 (14)0.0296 (13)0.0111 (11)0.0135 (11)0.0166 (12)
C190.0439 (17)0.0520 (19)0.0454 (17)0.0229 (15)0.0285 (15)0.0289 (16)
C200.0236 (13)0.0438 (17)0.0433 (16)0.0109 (13)0.0106 (12)0.0226 (14)
C210.0311 (15)0.0272 (14)0.0388 (16)0.0127 (12)0.0119 (12)0.0044 (12)
C220.0360 (15)0.0257 (13)0.0226 (13)0.0042 (12)0.0132 (11)0.0077 (11)
C230.0405 (16)0.0358 (16)0.0383 (16)0.0017 (13)0.0216 (13)0.0126 (13)
C240.0352 (15)0.0304 (14)0.0317 (14)0.0107 (12)0.0117 (12)0.0138 (12)
C250.0501 (18)0.0285 (15)0.0279 (14)0.0092 (14)0.0170 (13)0.0060 (12)
C260.0323 (14)0.0202 (12)0.0277 (13)0.0062 (11)0.0071 (11)0.0069 (11)
C270.0353 (15)0.0422 (17)0.0435 (17)0.0148 (14)0.0155 (13)0.0237 (14)
C280.0520 (19)0.0480 (19)0.0382 (16)0.0233 (16)0.0230 (15)0.0232 (15)
C290.0393 (18)0.0242 (15)0.073 (2)0.0037 (14)0.0066 (17)0.0056 (15)
C300.0229 (12)0.0238 (13)0.0218 (12)0.0032 (11)0.0040 (10)0.0079 (10)
Geometric parameters (Å, º) top
Cu—O11.9205 (16)C13—H130.9500
Cu—N11.9318 (17)C14—C151.523 (3)
Cu—N21.9449 (17)C14—C161.527 (3)
Cu—N31.9689 (18)C14—C171.531 (4)
P—F21.5824 (17)C15—H15A0.9800
P—F41.5925 (17)C15—H15B0.9800
P—F61.5967 (17)C15—H15C0.9800
P—F51.5989 (17)C16—H16A0.9800
P—F11.6007 (16)C16—H16B0.9800
P—F31.6063 (17)C16—H16C0.9800
O1—C301.262 (3)C17—H17A0.9800
O2—C301.236 (3)C17—H17B0.9800
O3—C301.349 (3)C17—H17C0.9800
O3—H10.88 (4)C18—C211.522 (4)
N1—C11.340 (3)C18—C201.530 (3)
N1—C51.347 (3)C18—C191.538 (3)
N2—C81.353 (3)C19—H19A0.9800
N2—C61.459 (3)C19—H19B0.9800
N3—C111.347 (3)C19—H19C0.9800
N3—C71.473 (3)C20—H20A0.9800
N4—C81.370 (3)C20—H20B0.9800
N4—C91.388 (3)C20—H20C0.9800
N4—C141.505 (3)C21—H21A0.9800
N5—C81.367 (3)C21—H21B0.9800
N5—C101.388 (3)C21—H21C0.9800
N5—C181.503 (3)C22—C241.529 (3)
N6—C111.372 (3)C22—C231.529 (3)
N6—C121.387 (3)C22—C251.535 (4)
N6—C221.507 (3)C23—H23A0.9800
N7—C111.373 (3)C23—H23B0.9800
N7—C131.388 (3)C23—H23C0.9800
N7—C261.509 (3)C24—H24A0.9800
C1—C21.385 (3)C24—H24B0.9800
C1—C61.512 (3)C24—H24C0.9800
C2—C31.393 (3)C25—H25A0.9800
C2—H20.9500C25—H25B0.9800
C3—C41.383 (3)C25—H25C0.9800
C3—H30.9500C26—C271.524 (4)
C4—C51.390 (3)C26—C291.524 (4)
C4—H40.9500C26—C281.529 (4)
C5—C71.504 (3)C27—H27A0.9800
C6—H6A0.9900C27—H27B0.9800
C6—H6B0.9900C27—H27C0.9800
C7—H7A0.9900C28—H28A0.9800
C7—H7B0.9900C28—H28B0.9800
C9—C101.324 (4)C28—H28C0.9800
C9—H90.9500C29—H29A0.9800
C10—H100.9500C29—H29B0.9800
C12—C131.329 (4)C29—H29C0.9800
C12—H120.9500
O1—Cu—N1170.38 (8)C16—C14—C17110.4 (2)
O1—Cu—N297.30 (7)C14—C15—H15A109.5
N1—Cu—N281.77 (7)C14—C15—H15B109.5
O1—Cu—N398.51 (7)H15A—C15—H15B109.5
N1—Cu—N381.77 (8)C14—C15—H15C109.5
N2—Cu—N3163.36 (7)H15A—C15—H15C109.5
F2—P—F489.86 (11)H15B—C15—H15C109.5
F2—P—F690.87 (11)C14—C16—H16A109.5
F4—P—F6179.11 (11)C14—C16—H16B109.5
F2—P—F590.27 (9)H16A—C16—H16B109.5
F4—P—F589.88 (10)C14—C16—H16C109.5
F6—P—F590.62 (10)H16A—C16—H16C109.5
F2—P—F1179.82 (13)H16B—C16—H16C109.5
F4—P—F190.27 (10)C14—C17—H17A109.5
F6—P—F189.00 (10)C14—C17—H17B109.5
F5—P—F189.62 (9)H17A—C17—H17B109.5
F2—P—F390.28 (9)C14—C17—H17C109.5
F4—P—F390.25 (10)H17A—C17—H17C109.5
F6—P—F389.25 (10)H17B—C17—H17C109.5
F5—P—F3179.44 (10)N5—C18—C21113.9 (2)
F1—P—F389.83 (9)N5—C18—C20107.6 (2)
C30—O1—Cu123.98 (17)C21—C18—C20109.1 (2)
C30—O3—H1108 (2)N5—C18—C19106.8 (2)
C1—N1—C5122.78 (18)C21—C18—C19108.3 (2)
C1—N1—Cu118.34 (14)C20—C18—C19111.1 (2)
C5—N1—Cu118.62 (15)C18—C19—H19A109.5
C8—N2—C6119.15 (17)C18—C19—H19B109.5
C8—N2—Cu124.25 (14)H19A—C19—H19B109.5
C6—N2—Cu116.59 (13)C18—C19—H19C109.5
C11—N3—C7119.26 (18)H19A—C19—H19C109.5
C11—N3—Cu120.79 (14)H19B—C19—H19C109.5
C7—N3—Cu115.19 (14)C18—C20—H20A109.5
C8—N4—C9108.4 (2)C18—C20—H20B109.5
C8—N4—C14130.01 (18)H20A—C20—H20B109.5
C9—N4—C14121.4 (2)C18—C20—H20C109.5
C8—N5—C10108.1 (2)H20A—C20—H20C109.5
C8—N5—C18131.80 (19)H20B—C20—H20C109.5
C10—N5—C18120.1 (2)C18—C21—H21A109.5
C11—N6—C12108.3 (2)C18—C21—H21B109.5
C11—N6—C22130.7 (2)H21A—C21—H21B109.5
C12—N6—C22120.9 (2)C18—C21—H21C109.5
C11—N7—C13108.1 (2)H21A—C21—H21C109.5
C11—N7—C26127.30 (19)H21B—C21—H21C109.5
C13—N7—C26124.1 (2)N6—C22—C24112.6 (2)
N1—C1—C2120.0 (2)N6—C22—C23107.7 (2)
N1—C1—C6114.48 (18)C24—C22—C23111.3 (2)
C2—C1—C6125.5 (2)N6—C22—C25108.5 (2)
C1—C2—C3118.3 (2)C24—C22—C25107.2 (2)
C1—C2—H2120.8C23—C22—C25109.5 (2)
C3—C2—H2120.8C22—C23—H23A109.5
C4—C3—C2120.8 (2)C22—C23—H23B109.5
C4—C3—H3119.6H23A—C23—H23B109.5
C2—C3—H3119.6C22—C23—H23C109.5
C3—C4—C5118.6 (2)H23A—C23—H23C109.5
C3—C4—H4120.7H23B—C23—H23C109.5
C5—C4—H4120.7C22—C24—H24A109.5
N1—C5—C4119.5 (2)C22—C24—H24B109.5
N1—C5—C7114.50 (18)H24A—C24—H24B109.5
C4—C5—C7126.0 (2)C22—C24—H24C109.5
N2—C6—C1108.48 (17)H24A—C24—H24C109.5
N2—C6—H6A110.0H24B—C24—H24C109.5
C1—C6—H6A110.0C22—C25—H25A109.5
N2—C6—H6B110.0C22—C25—H25B109.5
C1—C6—H6B110.0H25A—C25—H25B109.5
H6A—C6—H6B108.4C22—C25—H25C109.5
N3—C7—C5108.76 (17)H25A—C25—H25C109.5
N3—C7—H7A109.9H25B—C25—H25C109.5
C5—C7—H7A109.9N7—C26—C27109.0 (2)
N3—C7—H7B109.9N7—C26—C29108.9 (2)
C5—C7—H7B109.9C27—C26—C29108.8 (2)
H7A—C7—H7B108.3N7—C26—C28111.3 (2)
N2—C8—N5125.8 (2)C27—C26—C28107.5 (2)
N2—C8—N4127.2 (2)C29—C26—C28111.3 (2)
N5—C8—N4106.83 (18)C26—C27—H27A109.5
C10—C9—N4108.0 (2)C26—C27—H27B109.5
C10—C9—H9126.0H27A—C27—H27B109.5
N4—C9—H9126.0C26—C27—H27C109.5
C9—C10—N5108.7 (2)H27A—C27—H27C109.5
C9—C10—H10125.7H27B—C27—H27C109.5
N5—C10—H10125.7C26—C28—H28A109.5
N3—C11—N6129.5 (2)C26—C28—H28B109.5
N3—C11—N7123.5 (2)H28A—C28—H28B109.5
N6—C11—N7106.83 (19)C26—C28—H28C109.5
C13—C12—N6108.3 (2)H28A—C28—H28C109.5
C13—C12—H12125.8H28B—C28—H28C109.5
N6—C12—H12125.8C26—C29—H29A109.5
C12—C13—N7108.4 (2)C26—C29—H29B109.5
C12—C13—H13125.8H29A—C29—H29B109.5
N7—C13—H13125.8C26—C29—H29C109.5
N4—C14—C15112.5 (2)H29A—C29—H29C109.5
N4—C14—C16107.5 (2)H29B—C29—H29C109.5
C15—C14—C16111.1 (2)O2—C30—O1125.7 (2)
N4—C14—C17108.3 (2)O2—C30—O3121.2 (2)
C15—C14—C17107.1 (2)O1—C30—O3113.1 (2)
N2—Cu—O1—C30100.16 (19)C9—N4—C8—N50.8 (2)
N3—Cu—O1—C3085.02 (19)C14—N4—C8—N5175.5 (2)
N2—Cu—N1—C14.54 (17)C8—N4—C9—C101.2 (3)
N3—Cu—N1—C1173.00 (18)C14—N4—C9—C10176.4 (2)
N2—Cu—N1—C5178.79 (18)N4—C9—C10—N51.1 (3)
N3—Cu—N1—C51.25 (17)C8—N5—C10—C90.6 (3)
O1—Cu—N2—C811.7 (2)C18—N5—C10—C9179.5 (2)
N1—Cu—N2—C8177.9 (2)C7—N3—C11—N673.3 (3)
N3—Cu—N2—C8173.5 (3)Cu—N3—C11—N681.1 (3)
O1—Cu—N2—C6169.28 (16)C7—N3—C11—N7113.1 (3)
N1—Cu—N2—C61.06 (16)Cu—N3—C11—N792.5 (2)
N3—Cu—N2—C67.5 (4)C12—N6—C11—N3175.5 (2)
O1—Cu—N3—C1126.8 (2)C22—N6—C11—N38.9 (4)
N1—Cu—N3—C11162.9 (2)C12—N6—C11—N71.0 (2)
N2—Cu—N3—C11171.4 (3)C22—N6—C11—N7176.6 (2)
O1—Cu—N3—C7177.78 (16)C13—N7—C11—N3175.0 (2)
N1—Cu—N3—C77.50 (17)C26—N7—C11—N312.3 (3)
N2—Cu—N3—C716.0 (4)C13—N7—C11—N60.1 (2)
C5—N1—C1—C20.7 (3)C26—N7—C11—N6172.8 (2)
Cu—N1—C1—C2173.27 (17)C11—N6—C12—C131.6 (3)
C5—N1—C1—C6179.1 (2)C22—N6—C12—C13177.7 (2)
Cu—N1—C1—C66.9 (3)N6—C12—C13—N71.5 (3)
N1—C1—C2—C31.3 (3)C11—N7—C13—C120.8 (3)
C6—C1—C2—C3178.5 (2)C26—N7—C13—C12172.1 (2)
C1—C2—C3—C40.8 (4)C8—N4—C14—C1530.4 (3)
C2—C3—C4—C50.3 (4)C9—N4—C14—C15155.5 (2)
C1—N1—C5—C40.5 (3)C8—N4—C14—C1692.2 (3)
Cu—N1—C5—C4174.45 (17)C9—N4—C14—C1681.9 (3)
C1—N1—C5—C7179.1 (2)C8—N4—C14—C17148.5 (2)
Cu—N1—C5—C75.1 (3)C9—N4—C14—C1737.3 (3)
C3—C4—C5—N11.0 (3)C8—N5—C18—C217.6 (4)
C3—C4—C5—C7178.5 (2)C10—N5—C18—C21173.8 (2)
C8—N2—C6—C1179.0 (2)C8—N5—C18—C20113.5 (3)
Cu—N2—C6—C12.0 (2)C10—N5—C18—C2065.0 (3)
N1—C1—C6—N25.5 (3)C8—N5—C18—C19127.2 (3)
C2—C1—C6—N2174.7 (2)C10—N5—C18—C1954.3 (3)
C11—N3—C7—C5167.3 (2)C11—N6—C22—C2431.5 (3)
Cu—N3—C7—C511.6 (2)C12—N6—C22—C24153.4 (2)
N1—C5—C7—N310.5 (3)C11—N6—C22—C2391.6 (3)
C4—C5—C7—N3169.0 (2)C12—N6—C22—C2383.5 (3)
C6—N2—C8—N5100.3 (3)C11—N6—C22—C25149.9 (2)
Cu—N2—C8—N580.8 (3)C12—N6—C22—C2535.0 (3)
C6—N2—C8—N485.3 (3)C11—N7—C26—C27175.7 (2)
Cu—N2—C8—N493.7 (3)C13—N7—C26—C274.1 (3)
C10—N5—C8—N2175.5 (2)C11—N7—C26—C2957.1 (3)
C18—N5—C8—N23.2 (4)C13—N7—C26—C29114.4 (3)
C10—N5—C8—N40.2 (2)C11—N7—C26—C2866.0 (3)
C18—N5—C8—N4178.5 (2)C13—N7—C26—C28122.5 (3)
C9—N4—C8—N2176.1 (2)Cu—O1—C30—O212.5 (3)
C14—N4—C8—N29.2 (4)Cu—O1—C30—O3166.73 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.88 (4)1.73 (4)2.599 (3)173 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(CHO3)(C29H47N7)]PF6
Mr763.26
Crystal system, space groupTriclinic, P1
Temperature (K)133
a, b, c (Å)9.0309 (12), 13.824 (2), 15.654 (2)
α, β, γ (°)109.619 (3), 101.729 (4), 94.164 (3)
V3)1781.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.20 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.868, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
33075, 8789, 6166
Rint0.053
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 1.02
No. of reflections8789
No. of parameters449
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.41

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994).

Selected geometric parameters (Å, º) top
Cu—O11.9205 (16)O1—C301.262 (3)
Cu—N11.9318 (17)O2—C301.236 (3)
Cu—N21.9449 (17)O3—C301.349 (3)
Cu—N31.9689 (18)
O1—Cu—N1170.38 (8)N2—Cu—N3163.36 (7)
O1—Cu—N297.30 (7)C30—O1—Cu123.98 (17)
N1—Cu—N281.77 (7)O2—C30—O1125.7 (2)
O1—Cu—N398.51 (7)O2—C30—O3121.2 (2)
N1—Cu—N381.77 (8)O1—C30—O3113.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.88 (4)1.73 (4)2.599 (3)173 (4)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds