Download citation
Download citation
link to html
The title compound, [Mn2(C16H12Br2N2O2)2O], is an unusual dinuclear manganese(III) complex. Each MnIII ion has a distorted square-pyramidal coordination geometry. In the basal plane, the Mn atom is coordinated by two N atoms and two O atoms of the Schiff base ligand. The apical position is occupied by a bridging O2− ion, which links to the other MnIII ion in the complex; this bridging O atom lies on a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051008/bx2108sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051008/bx2108Isup2.hkl
Contains datablock I

CCDC reference: 1168213

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.059
  • wR factor = 0.150
  • Data-to-parameter ratio = 14.9

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT707_ALERT_1_A D...A Calc 8.727(6), Rep 3.141(6), Dev.. 931.00 Sigma C7 -O2 1.555 8.555 PLAT726_ALERT_1_A H...A Calc 9.61000, Rep 2.23000 Dev... 7.38 Ang. H7 -O2 1.555 8.555 PLAT728_ALERT_1_A D-H..A Calc 18.00, Rep 165.00 Dev... 147.00 Deg. C7 -H7 -O2 1.555 1.555 8.555
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.79 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 41.00 A   3
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.793 Tmax scaled 0.301 Tmin scaled 0.161 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (3) 3.13
3 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The design of Schiff base complexes has attracted long-lasting research interest due to their important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii et al., 1993; Huang et al., 2002). Recently, the Schiff base ligands, especially the relative flexible symmetrical or unsymmetrical Schiff base ligands and their hydrogenerated derivatives have been widely employed to assembly alkoxo- or phenoxo-bridged manganese clusters and polymers with novel topological structures and interesting magnetic, catalysis and photochemical properties. (Chen et al., 2006; Karacan & Somer, 2004). We report here the structure of the title compound, (I).

As shown in Fig. 1, MnIII is chelated by Schiff base ligand of N,N'-bis(2-hydroxy-5-bromobenzyl)ethylenediamine with two N and two O atoms. The coordination geometry for MnIII ion can be described as square-pyramidal, whose square plane is determined by O(1), O(3), N(1), and N(2) from Schiff base ligand with an average Mn—O bond length of 1.926 (3) Å, Mn—N, 2.137 (4) Å. While Mn—O(1) (a cap atom) distance is much shorter (1.791 (2) Å), Table 1. Along the axial site, two MnIII is linked into dimer by oxygen atom. The Mn···Mn distance is 3.346 (3) Å.

Related literature top

For related literature, see: Garnovskii et al. (1993); Huang et al. (2002); Bhadbhade & Srinivas (1993); Bunce et al. (1998); Chen et al. (2006); Karacan & Somer (2004). [Bunce et al. and Bhadbhade & Srinivas are not cited in the Comment, so they should be removed from the Related literature and References list]

Experimental top

A mixture of manganese(III) acetate hydrate (1 mmol, 0.23 g) and N,N'-bis(2-hydroxy-5-bromobenzyl)ethylenediamine purchased from Shanghai Chemical Co. Ltd (1 mmol, 0.45 g) in 20 ml me thanol was refluxed for two h. The above cooled solution was filterated and the filtrate was evaporated at room temperature. Two day later, yellow blocks of (I) were obtained with a yield of 16%. Anal. Calc. for C32H24Br4Mn2N4O5: C 39.43, H 2.46, N 5.75%; Found: C 39.40, H 2.49, N 5.71%.

Refinement top

All H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å (aromatic and CHN), and 0.97 Å (CH2) and Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

The design of Schiff base complexes has attracted long-lasting research interest due to their important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis, optical materials and so on (Garnovskii et al., 1993; Huang et al., 2002). Recently, the Schiff base ligands, especially the relative flexible symmetrical or unsymmetrical Schiff base ligands and their hydrogenerated derivatives have been widely employed to assembly alkoxo- or phenoxo-bridged manganese clusters and polymers with novel topological structures and interesting magnetic, catalysis and photochemical properties. (Chen et al., 2006; Karacan & Somer, 2004). We report here the structure of the title compound, (I).

As shown in Fig. 1, MnIII is chelated by Schiff base ligand of N,N'-bis(2-hydroxy-5-bromobenzyl)ethylenediamine with two N and two O atoms. The coordination geometry for MnIII ion can be described as square-pyramidal, whose square plane is determined by O(1), O(3), N(1), and N(2) from Schiff base ligand with an average Mn—O bond length of 1.926 (3) Å, Mn—N, 2.137 (4) Å. While Mn—O(1) (a cap atom) distance is much shorter (1.791 (2) Å), Table 1. Along the axial site, two MnIII is linked into dimer by oxygen atom. The Mn···Mn distance is 3.346 (3) Å.

For related literature, see: Garnovskii et al. (1993); Huang et al. (2002); Bhadbhade & Srinivas (1993); Bunce et al. (1998); Chen et al. (2006); Karacan & Somer (2004). [Bunce et al. and Bhadbhade & Srinivas are not cited in the Comment, so they should be removed from the Related literature and References list]

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
µ-Oxido-bis({4,4'-dibromo-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}manganese(III)) top
Crystal data top
[Mn2(C16H12Br2N2O2)2O]F(000) = 1896
Mr = 974.07Dx = 1.889 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 3164 reflections
a = 20.720 (4) Åθ = 3.0–25.5°
b = 14.066 (3) ŵ = 5.45 mm1
c = 11.750 (2) ÅT = 293 K
V = 3424.5 (11) Å3Block, yellow
Z = 40.43 × 0.28 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3164 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2525
Tmin = 0.203, Tmax = 0.380k = 1717
11498 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
3164 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Mn2(C16H12Br2N2O2)2O]V = 3424.5 (11) Å3
Mr = 974.07Z = 4
Orthorhombic, PccaMo Kα radiation
a = 20.720 (4) ŵ = 5.45 mm1
b = 14.066 (3) ÅT = 293 K
c = 11.750 (2) Å0.43 × 0.28 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2262 reflections with I > 2σ(I)
Tmin = 0.203, Tmax = 0.380Rint = 0.049
11498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.150H-atom parameters not refined
S = 1.00Δρmax = 1.01 e Å3
3164 reflectionsΔρmin = 0.82 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.07194 (4)0.12985 (5)0.31467 (6)0.0309 (2)
Br10.28253 (3)0.28114 (5)0.48699 (6)0.0669 (3)
Br20.10796 (4)0.66035 (5)0.24479 (7)0.0771 (3)
C10.1643 (3)0.0342 (3)0.3170 (4)0.0363 (11)
C20.2039 (3)0.0951 (4)0.2518 (5)0.0414 (13)
H20.20720.08540.17370.050*
C30.2371 (3)0.1672 (4)0.3003 (5)0.0478 (14)
H30.26430.20480.25610.057*
C40.2308 (3)0.1853 (4)0.4172 (5)0.0469 (14)
C50.1904 (3)0.1313 (4)0.4829 (5)0.0440 (14)
H50.18570.14460.56000.053*
C60.1559 (3)0.0556 (4)0.4331 (4)0.0377 (12)
C70.1147 (3)0.0005 (4)0.5088 (4)0.0386 (13)
H70.11380.01820.58510.046*
C80.0460 (3)0.1214 (4)0.5719 (4)0.0438 (13)
H8A0.07720.15230.62100.053*
H8B0.02130.07680.61740.053*
C90.0008 (3)0.1956 (4)0.5199 (5)0.0445 (14)
H9A0.03900.16600.49520.053*
H9B0.00940.24430.57540.053*
C100.0404 (3)0.3281 (4)0.4136 (5)0.0414 (13)
H100.02220.36590.47010.050*
C110.0737 (3)0.3751 (4)0.3200 (5)0.0399 (13)
C120.0745 (3)0.4749 (4)0.3233 (5)0.0478 (14)
H120.05510.50690.38360.057*
C130.1039 (3)0.5256 (4)0.2369 (5)0.0523 (16)
C140.1315 (3)0.4779 (4)0.1448 (6)0.0565 (16)
H140.15050.51210.08600.068*
C150.1302 (3)0.3797 (4)0.1413 (5)0.0522 (15)
H150.14790.34850.07890.063*
C160.1030 (3)0.3260 (4)0.2296 (5)0.0417 (13)
N10.0797 (2)0.0703 (3)0.4793 (4)0.0377 (10)
N20.0345 (2)0.2371 (3)0.4229 (4)0.0364 (10)
O10.00000.0843 (4)0.25000.0387 (12)
O20.13711 (19)0.0410 (3)0.2687 (3)0.0419 (9)
O30.10571 (18)0.2322 (3)0.2223 (3)0.0438 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0386 (4)0.0261 (4)0.0280 (4)0.0004 (3)0.0005 (3)0.0001 (3)
Br10.0648 (5)0.0631 (5)0.0728 (5)0.0227 (3)0.0084 (4)0.0254 (4)
Br20.1059 (7)0.0323 (4)0.0931 (6)0.0025 (3)0.0271 (5)0.0093 (4)
C10.043 (3)0.029 (2)0.038 (3)0.001 (2)0.002 (2)0.000 (2)
C20.049 (3)0.036 (3)0.039 (3)0.003 (2)0.002 (2)0.001 (2)
C30.047 (3)0.041 (3)0.055 (4)0.004 (3)0.007 (3)0.003 (3)
C40.042 (3)0.045 (3)0.053 (3)0.006 (3)0.005 (3)0.016 (3)
C50.048 (3)0.042 (3)0.042 (3)0.001 (3)0.002 (3)0.009 (3)
C60.042 (3)0.033 (3)0.039 (3)0.002 (2)0.002 (2)0.003 (2)
C70.050 (3)0.032 (3)0.034 (3)0.003 (2)0.002 (2)0.002 (2)
C80.054 (3)0.041 (3)0.037 (3)0.000 (3)0.010 (3)0.002 (3)
C90.047 (3)0.044 (3)0.043 (3)0.001 (3)0.010 (3)0.004 (3)
C100.044 (3)0.042 (3)0.039 (3)0.002 (2)0.000 (3)0.007 (3)
C110.042 (3)0.034 (3)0.044 (3)0.000 (2)0.000 (3)0.003 (3)
C120.050 (4)0.036 (3)0.057 (4)0.000 (3)0.004 (3)0.003 (3)
C130.062 (4)0.031 (3)0.064 (4)0.002 (3)0.005 (3)0.014 (3)
C140.065 (4)0.042 (3)0.063 (4)0.004 (3)0.011 (3)0.007 (3)
C150.062 (4)0.045 (3)0.050 (3)0.002 (3)0.009 (3)0.010 (3)
C160.039 (3)0.040 (3)0.046 (3)0.003 (2)0.002 (3)0.002 (3)
N10.045 (3)0.034 (2)0.034 (2)0.000 (2)0.0032 (19)0.002 (2)
N20.042 (3)0.029 (2)0.038 (2)0.0043 (19)0.006 (2)0.0018 (19)
O10.043 (3)0.030 (3)0.042 (3)0.0000.008 (2)0.000
O20.054 (2)0.038 (2)0.0332 (18)0.0108 (17)0.0016 (17)0.0028 (16)
O30.054 (3)0.035 (2)0.043 (2)0.0017 (17)0.0100 (19)0.0020 (17)
Geometric parameters (Å, º) top
Mn1—O11.791 (2)C8—C91.530 (8)
Mn1—O21.918 (4)C8—H8A0.9700
Mn1—O31.934 (4)C8—H8B0.9700
Mn1—N12.114 (4)C9—N21.458 (7)
Mn1—N22.121 (4)C9—H9A0.9700
Br1—C41.907 (6)C9—H9B0.9700
Br2—C131.900 (6)C10—N21.289 (7)
C1—O21.327 (6)C10—C111.457 (7)
C1—C61.408 (7)C10—H100.9300
C1—C21.411 (7)C11—C121.405 (8)
C2—C31.352 (8)C11—C161.406 (8)
C2—H20.9300C12—C131.382 (8)
C3—C41.404 (8)C12—H120.9300
C3—H30.9300C13—C141.395 (9)
C4—C51.368 (8)C14—C151.382 (8)
C5—C61.410 (7)C14—H140.9300
C5—H50.9300C15—C161.402 (8)
C6—C71.457 (7)C15—H150.9300
C7—N11.279 (7)C16—O31.323 (7)
C7—H70.9300O1—Mn1i1.791 (2)
C8—N11.480 (7)
O1—Mn1—O2103.49 (17)N2—C9—C8107.1 (4)
O1—Mn1—O3109.23 (17)N2—C9—H9A110.3
O2—Mn1—O394.14 (16)C8—C9—H9A110.3
O1—Mn1—N1108.05 (16)N2—C9—H9B110.3
O2—Mn1—N186.89 (16)C8—C9—H9B110.3
O3—Mn1—N1141.33 (18)H9A—C9—H9B108.6
O1—Mn1—N2101.80 (16)N2—C10—C11124.0 (5)
O2—Mn1—N2152.92 (17)N2—C10—H10118.0
O3—Mn1—N286.50 (16)C11—C10—H10118.0
N1—Mn1—N276.19 (17)C12—C11—C16120.4 (5)
O2—C1—C6122.2 (5)C12—C11—C10116.0 (5)
O2—C1—C2119.9 (5)C16—C11—C10123.5 (5)
C6—C1—C2117.9 (5)C13—C12—C11120.0 (6)
C3—C2—C1121.5 (5)C13—C12—H12120.0
C3—C2—H2119.2C11—C12—H12120.0
C1—C2—H2119.2C12—C13—C14120.2 (6)
C2—C3—C4120.0 (6)C12—C13—Br2119.9 (5)
C2—C3—H3120.0C14—C13—Br2120.0 (4)
C4—C3—H3120.0C15—C14—C13119.7 (6)
C5—C4—C3120.6 (5)C15—C14—H14120.1
C5—C4—Br1119.6 (4)C13—C14—H14120.1
C3—C4—Br1119.7 (4)C14—C15—C16121.6 (6)
C4—C5—C6119.7 (5)C14—C15—H15119.2
C4—C5—H5120.1C16—C15—H15119.2
C6—C5—H5120.1O3—C16—C15118.2 (5)
C1—C6—C5120.0 (5)O3—C16—C11123.8 (5)
C1—C6—C7123.4 (5)C15—C16—C11118.0 (5)
C5—C6—C7116.5 (5)C7—N1—C8116.5 (4)
N1—C7—C6125.5 (5)C7—N1—Mn1126.9 (4)
N1—C7—H7117.3C8—N1—Mn1116.4 (3)
C6—C7—H7117.3C10—N2—C9120.6 (5)
N1—C8—C9109.0 (4)C10—N2—Mn1128.4 (4)
N1—C8—H8A109.9C9—N2—Mn1111.0 (3)
C9—C8—H8A109.9Mn1i—O1—Mn1138.1 (3)
N1—C8—H8B109.9C1—O2—Mn1134.3 (3)
C9—C8—H8B109.9C16—O3—Mn1133.7 (3)
H8A—C8—H8B108.3
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2ii0.932.233.141 (6)165
Symmetry code: (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Mn2(C16H12Br2N2O2)2O]
Mr974.07
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)293
a, b, c (Å)20.720 (4), 14.066 (3), 11.750 (2)
V3)3424.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)5.45
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.203, 0.380
No. of measured, independent and
observed [I > 2σ(I)] reflections
11498, 3164, 2262
Rint0.049
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.150, 1.00
No. of reflections3164
No. of parameters213
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.01, 0.82

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Selected bond lengths (Å) top
Mn1—O11.791 (2)Mn1—N12.114 (4)
Mn1—O21.918 (4)Mn1—N22.121 (4)
Mn1—O31.934 (4)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds