Download citation
Download citation
link to html
In the centrosymmetric dinuclear title complex, [Ru2Cl46-C6H5CH3)2], accessible from RuCl3·nH2O and 1-methyl­cyclo­hexa-1,4-diene, the toluene ligand is planar with a ruthenium–centroid distance of 1.646 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050544/dn2246sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050544/dn2246Isup2.hkl
Contains datablock I

CCDC reference: 669124

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.039
  • wR factor = 0.082
  • Data-to-parameter ratio = 16.8

checkCIF/PLATON results

No syntax errors found



Alert level B RINTA01_ALERT_3_B The value of Rint is greater than 0.15 Rint given 0.165 PLAT020_ALERT_3_B The value of Rint is greater than 0.10 ......... 0.17
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ru - Cl2_a .. 5.56 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ru
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, which is known for more then 30 years (Bennett & Smith, 1974), and regularly used as building block in organometallic chemistry, has never been characterized by X-ray structure analysis. The two halves of the dinuclear complex are related by a crystallographic inversion centre. The bond distances and angles are similar to other [RuCl2(η6-arene)]2 complexes; arene = hexamethylbenzene (McCormick & Gleason, 1988), arene = trindane (Gupta et al., 1997), arene = ethylbenzoate (Therrien et al., 1998), arene = 1,2,3,4-tetrahydronaphthalene (Bown & Bennett, 1999), arene = 1,2-C6H4(Me)COOMe (Braga et al., 2001), arene = hexaethylbenzene (Baldwin et al., 2002), arene = indane (Vieille-Petit et al., 2002), arene = para-cymene (Allardyce et al., 2003; Dinçer et al., 2006), arene = benzene (Canivet et al., 2005).

The aromatic ring of the toluene is planar and the Ru-toluene (centroid) distance is 1.648 Å. The metal possesses two bridging and one terminal chlorines, the Ru—Cl (bridged) distances are 2.4426 (10) and 2.4378 (10) Å, when the Ru—Cl (terminal) distance is 2.4037 (10) Å, see Fig. 1. No meaningful interactions between the dinuclear ruthenium complexes are observed in the crystal packing.

Related literature top

For similar dinuclear chloro-bridged arene ruthenium complexes, see: McCormick & Gleason (1988); Gupta et al. (1997); Therrien et al. (1998); Bown & Bennett (1999); Braga et al. (2001); Baldwin et al. (2002); Vieille-Petit et al. (2002); Allardyce et al. (2003); Canivet et al. (2005); Dinçer et al. (2006). For the synthesis of [RuCl2(η6-toluene)]2, see: Bennett & Smith (1974).

Experimental top

[RuCl2(η6-toluene)]2 is disolved in hot chloroform, and crystals suitable for X-ray diffraction analysis are obtained, after weeks, by slow evaporation of the diluted chloroform solution.

Refinement top

The high Rint value is not a consequence of weak high-angle diffraction, but more probably a consequence of a high ratio of collected reflections to unique reflections. The H atoms were included in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

The title compound, which is known for more then 30 years (Bennett & Smith, 1974), and regularly used as building block in organometallic chemistry, has never been characterized by X-ray structure analysis. The two halves of the dinuclear complex are related by a crystallographic inversion centre. The bond distances and angles are similar to other [RuCl2(η6-arene)]2 complexes; arene = hexamethylbenzene (McCormick & Gleason, 1988), arene = trindane (Gupta et al., 1997), arene = ethylbenzoate (Therrien et al., 1998), arene = 1,2,3,4-tetrahydronaphthalene (Bown & Bennett, 1999), arene = 1,2-C6H4(Me)COOMe (Braga et al., 2001), arene = hexaethylbenzene (Baldwin et al., 2002), arene = indane (Vieille-Petit et al., 2002), arene = para-cymene (Allardyce et al., 2003; Dinçer et al., 2006), arene = benzene (Canivet et al., 2005).

The aromatic ring of the toluene is planar and the Ru-toluene (centroid) distance is 1.648 Å. The metal possesses two bridging and one terminal chlorines, the Ru—Cl (bridged) distances are 2.4426 (10) and 2.4378 (10) Å, when the Ru—Cl (terminal) distance is 2.4037 (10) Å, see Fig. 1. No meaningful interactions between the dinuclear ruthenium complexes are observed in the crystal packing.

For similar dinuclear chloro-bridged arene ruthenium complexes, see: McCormick & Gleason (1988); Gupta et al. (1997); Therrien et al. (1998); Bown & Bennett (1999); Braga et al. (2001); Baldwin et al. (2002); Vieille-Petit et al. (2002); Allardyce et al. (2003); Canivet et al. (2005); Dinçer et al. (2006). For the synthesis of [RuCl2(η6-toluene)]2, see: Bennett & Smith (1974).

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of [RuCl2(η6-toluene)]2 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.[Symmetry code:(i) 2 - x, -y, 2 - z]
Di-µ-chlorido-bis[chlorido(η6-toluene)ruthenium(II)] top
Crystal data top
[Ru2Cl4(C7H8)2]F(000) = 512
Mr = 528.21Dx = 2.192 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5559 reflections
a = 7.5144 (10) Åθ = 2.2–26.1°
b = 9.135 (1) ŵ = 2.54 mm1
c = 11.6595 (13) ÅT = 173 K
β = 90.691 (15)°Block, orange
V = 800.30 (16) Å30.22 × 0.19 × 0.18 mm
Z = 2
Data collection top
Stoe IPDS
diffractometer
1332 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.165
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
Detector resolution: 0.81Å pixels mm-1h = 99
φ oscillation scansk = 1111
6143 measured reflectionsl = 1414
1567 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0382P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1567 reflectionsΔρmax = 0.91 e Å3
93 parametersΔρmin = 0.86 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (14)
Crystal data top
[Ru2Cl4(C7H8)2]V = 800.30 (16) Å3
Mr = 528.21Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5144 (10) ŵ = 2.54 mm1
b = 9.135 (1) ÅT = 173 K
c = 11.6595 (13) Å0.22 × 0.19 × 0.18 mm
β = 90.691 (15)°
Data collection top
Stoe IPDS
diffractometer
1332 reflections with I > 2σ(I)
6143 measured reflectionsRint = 0.165
1567 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 0.91 e Å3
1567 reflectionsΔρmin = 0.86 e Å3
93 parameters
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, φ oscillation scans 0 - 200°, step Δφ = 1.5°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7146 (6)0.2107 (4)0.8576 (4)0.0344 (9)
C20.5746 (5)0.1062 (4)0.8626 (4)0.0337 (9)
H20.48090.12150.91260.040*
C30.5750 (6)0.0186 (5)0.7941 (4)0.0375 (10)
H30.48180.08530.79870.045*
C40.7162 (6)0.0448 (6)0.7172 (4)0.0441 (11)
H40.71710.12790.67120.053*
C50.8533 (6)0.0569 (6)0.7126 (4)0.0460 (12)
H50.94640.04120.66230.055*
C60.8551 (6)0.1834 (5)0.7822 (4)0.0416 (10)
H60.94960.24880.77810.050*
C70.7188 (8)0.3395 (5)0.9370 (5)0.0579 (13)
H7A0.62570.33010.99220.087*
H7B0.83190.34330.97600.087*
H7C0.70140.42780.89360.087*
Cl10.78551 (15)0.26134 (10)0.94473 (10)0.0429 (3)
Cl21.14333 (12)0.04611 (11)0.90842 (8)0.0299 (2)
Ru0.82237 (4)0.01024 (3)0.88814 (2)0.02185 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.0254 (16)0.038 (2)0.0065 (16)0.0093 (17)0.0074 (17)
C20.028 (2)0.042 (2)0.031 (2)0.0087 (16)0.0015 (16)0.0012 (18)
C30.028 (2)0.044 (2)0.040 (3)0.0026 (16)0.0095 (19)0.0028 (19)
C40.051 (3)0.054 (2)0.028 (2)0.013 (2)0.0102 (19)0.010 (2)
C50.046 (3)0.071 (3)0.021 (2)0.016 (2)0.0109 (19)0.018 (2)
C60.041 (2)0.040 (2)0.044 (2)0.0051 (18)0.0007 (19)0.028 (2)
C70.077 (3)0.027 (2)0.069 (3)0.006 (2)0.021 (3)0.009 (2)
Cl10.0576 (7)0.0247 (5)0.0467 (6)0.0059 (4)0.0130 (5)0.0036 (4)
Cl20.0270 (5)0.0408 (5)0.0218 (5)0.0052 (4)0.0017 (3)0.0048 (4)
Ru0.0244 (2)0.0235 (2)0.0176 (2)0.00096 (10)0.00095 (13)0.00096 (10)
Geometric parameters (Å, º) top
C1—C61.404 (6)C5—C61.412 (7)
C1—C21.422 (5)C5—Ru2.152 (4)
C1—C71.497 (6)C5—H50.9300
C1—Ru2.202 (4)C6—Ru2.173 (4)
C2—C31.392 (6)C6—H60.9300
C2—Ru2.162 (4)C7—H7A0.9600
C2—H20.9300C7—H7B0.9600
C3—C41.418 (6)C7—H7C0.9600
C3—Ru2.149 (5)Cl1—Ru2.4037 (10)
C3—H30.9300Cl2—Rui2.4378 (10)
C4—C51.388 (7)Cl2—Ru2.4426 (10)
C4—Ru2.161 (5)Ru—Cl2i2.4378 (10)
C4—H40.9300
C6—C1—C2117.9 (4)H7A—C7—H7C109.5
C6—C1—C7121.1 (4)H7B—C7—H7C109.5
C2—C1—C7120.9 (4)Rui—Cl2—Ru99.12 (3)
C6—C1—Ru70.1 (2)C3—Ru—C568.10 (19)
C2—C1—Ru69.5 (2)C3—Ru—C438.42 (17)
C7—C1—Ru128.0 (3)C5—Ru—C437.5 (2)
C3—C2—C1121.3 (4)C3—Ru—C237.67 (16)
C3—C2—Ru70.7 (2)C5—Ru—C280.28 (17)
C1—C2—Ru72.5 (2)C4—Ru—C268.71 (17)
C3—C2—H2119.3C3—Ru—C680.89 (18)
C1—C2—H2119.3C5—Ru—C638.12 (19)
Ru—C2—H2130.1C4—Ru—C668.8 (2)
C2—C3—C4120.5 (4)C2—Ru—C667.93 (16)
C2—C3—Ru71.7 (3)C3—Ru—C168.63 (16)
C4—C3—Ru71.2 (3)C5—Ru—C168.22 (18)
C2—C3—H3119.8C4—Ru—C181.60 (18)
C4—C3—H3119.8C2—Ru—C138.02 (15)
Ru—C3—H3129.8C6—Ru—C137.44 (16)
C5—C4—C3118.2 (4)C3—Ru—Cl190.25 (12)
C5—C4—Ru70.9 (3)C5—Ru—Cl1123.16 (15)
C3—C4—Ru70.3 (3)C4—Ru—Cl194.09 (15)
C5—C4—H4120.9C2—Ru—Cl1113.92 (11)
C3—C4—H4120.9C6—Ru—Cl1161.26 (14)
Ru—C4—H4130.3C1—Ru—Cl1151.11 (12)
C4—C5—C6121.8 (4)C3—Ru—Cl2i125.80 (13)
C4—C5—Ru71.6 (2)C5—Ru—Cl2i148.65 (16)
C6—C5—Ru71.7 (2)C4—Ru—Cl2i164.10 (13)
C4—C5—H5119.1C2—Ru—Cl2i96.38 (11)
C6—C5—H5119.1C6—Ru—Cl2i111.70 (14)
Ru—C5—H5130.3C1—Ru—Cl2i89.89 (12)
C1—C6—C5120.2 (4)Cl1—Ru—Cl2i86.88 (4)
C1—C6—Ru72.4 (2)C3—Ru—Cl2153.12 (13)
C5—C6—Ru70.1 (2)C5—Ru—Cl290.72 (13)
C1—C6—H6119.9C4—Ru—Cl2115.01 (13)
C5—C6—H6119.9C2—Ru—Cl2157.99 (11)
Ru—C6—H6130.1C6—Ru—Cl292.63 (12)
C1—C7—H7A109.5C1—Ru—Cl2119.97 (11)
C1—C7—H7B109.5Cl1—Ru—Cl287.84 (4)
H7A—C7—H7B109.5Cl2i—Ru—Cl280.88 (4)
C1—C7—H7C109.5
C6—C1—C2—C30.8 (6)C3—C4—Ru—Cl2i7.8 (7)
C7—C1—C2—C3176.1 (4)C5—C4—Ru—Cl254.3 (3)
Ru—C1—C2—C353.3 (4)C3—C4—Ru—Cl2174.8 (2)
C6—C1—C2—Ru52.5 (3)C1—C2—Ru—C3133.5 (4)
C7—C1—C2—Ru122.8 (4)C3—C2—Ru—C566.6 (3)
C1—C2—C3—C40.1 (7)C1—C2—Ru—C566.9 (3)
Ru—C2—C3—C454.0 (4)C3—C2—Ru—C429.4 (3)
C1—C2—C3—Ru54.1 (4)C1—C2—Ru—C4104.1 (3)
C2—C3—C4—C50.1 (7)C3—C2—Ru—C6104.2 (3)
Ru—C3—C4—C554.1 (4)C1—C2—Ru—C629.3 (3)
C2—C3—C4—Ru54.2 (4)C3—C2—Ru—C1133.5 (4)
C3—C4—C5—C60.3 (7)C3—C2—Ru—Cl155.5 (3)
Ru—C4—C5—C653.5 (4)C1—C2—Ru—Cl1171.0 (2)
C3—C4—C5—Ru53.8 (4)C3—C2—Ru—Cl2i144.9 (3)
C2—C1—C6—C51.2 (6)C1—C2—Ru—Cl2i81.6 (2)
C7—C1—C6—C5176.5 (4)C3—C2—Ru—Cl2133.7 (3)
Ru—C1—C6—C553.4 (4)C1—C2—Ru—Cl20.2 (5)
C2—C1—C6—Ru52.2 (3)C1—C6—Ru—C366.6 (3)
C7—C1—C6—Ru123.1 (4)C5—C6—Ru—C365.9 (3)
C4—C5—C6—C11.0 (7)C1—C6—Ru—C5132.5 (4)
Ru—C5—C6—C154.4 (4)C1—C6—Ru—C4104.5 (3)
C4—C5—C6—Ru53.4 (4)C5—C6—Ru—C428.0 (3)
C2—C3—Ru—C5102.9 (3)C1—C6—Ru—C229.7 (2)
C4—C3—Ru—C529.7 (3)C5—C6—Ru—C2102.8 (3)
C2—C3—Ru—C4132.6 (4)C5—C6—Ru—C1132.5 (4)
C4—C3—Ru—C2132.6 (4)C1—C6—Ru—Cl1129.3 (4)
C2—C3—Ru—C665.5 (3)C5—C6—Ru—Cl13.2 (6)
C4—C3—Ru—C667.1 (3)C1—C6—Ru—Cl2i58.4 (3)
C2—C3—Ru—C128.7 (2)C5—C6—Ru—Cl2i169.0 (2)
C4—C3—Ru—C1103.9 (3)C1—C6—Ru—Cl2139.7 (2)
C2—C3—Ru—Cl1131.1 (2)C5—C6—Ru—Cl287.8 (3)
C4—C3—Ru—Cl196.3 (3)C6—C1—Ru—C3103.4 (3)
C2—C3—Ru—Cl2i44.8 (3)C2—C1—Ru—C328.4 (3)
C4—C3—Ru—Cl2i177.4 (2)C7—C1—Ru—C3142.1 (5)
C2—C3—Ru—Cl2143.2 (2)C6—C1—Ru—C529.3 (3)
C4—C3—Ru—Cl210.5 (4)C2—C1—Ru—C5102.5 (3)
C4—C5—Ru—C330.4 (3)C7—C1—Ru—C5143.8 (5)
C6—C5—Ru—C3103.6 (3)C6—C1—Ru—C465.8 (3)
C6—C5—Ru—C4134.0 (4)C2—C1—Ru—C466.0 (3)
C4—C5—Ru—C267.6 (3)C7—C1—Ru—C4179.7 (5)
C6—C5—Ru—C266.5 (3)C6—C1—Ru—C2131.8 (4)
C4—C5—Ru—C6134.0 (4)C7—C1—Ru—C2113.7 (5)
C4—C5—Ru—C1105.2 (3)C2—C1—Ru—C6131.8 (4)
C6—C5—Ru—C128.9 (3)C7—C1—Ru—C6114.5 (5)
C4—C5—Ru—Cl144.7 (3)C6—C1—Ru—Cl1149.0 (3)
C6—C5—Ru—Cl1178.8 (2)C2—C1—Ru—Cl117.2 (4)
C4—C5—Ru—Cl2i153.9 (2)C7—C1—Ru—Cl196.5 (5)
C6—C5—Ru—Cl2i19.9 (4)C6—C1—Ru—Cl2i127.7 (3)
C4—C5—Ru—Cl2132.6 (3)C2—C1—Ru—Cl2i100.5 (2)
C6—C5—Ru—Cl293.3 (3)C7—C1—Ru—Cl2i13.2 (4)
C5—C4—Ru—C3131.0 (4)C6—C1—Ru—Cl248.3 (3)
C3—C4—Ru—C5131.0 (4)C2—C1—Ru—Cl2179.9 (2)
C5—C4—Ru—C2102.1 (3)C7—C1—Ru—Cl266.2 (5)
C3—C4—Ru—C228.9 (3)Rui—Cl2—Ru—C3173.5 (3)
C5—C4—Ru—C628.4 (3)Rui—Cl2—Ru—C5149.65 (15)
C3—C4—Ru—C6102.5 (3)Rui—Cl2—Ru—C4179.30 (16)
C5—C4—Ru—C165.0 (3)Rui—Cl2—Ru—C284.4 (3)
C3—C4—Ru—C166.0 (3)Rui—Cl2—Ru—C6111.56 (14)
C5—C4—Ru—Cl1143.8 (3)Rui—Cl2—Ru—C184.55 (14)
C3—C4—Ru—Cl185.2 (3)Rui—Cl2—Ru—Cl187.19 (4)
C5—C4—Ru—Cl2i123.2 (5)Rui—Cl2—Ru—Cl2i0.0
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Ru2Cl4(C7H8)2]
Mr528.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.5144 (10), 9.135 (1), 11.6595 (13)
β (°) 90.691 (15)
V3)800.30 (16)
Z2
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.22 × 0.19 × 0.18
Data collection
DiffractometerStoe IPDS
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6143, 1567, 1332
Rint0.165
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.082, 1.07
No. of reflections1567
No. of parameters93
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.86

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 2000), CELL in IPDS Software (Stoe & Cie, 2000), INTEGRATE in IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds