Download citation
Download citation
link to html
The structure of the title compound, C23H27N2O4+·C8H3Cl2O4, a 1:1 proton-transfer compound of brucine with 4,5-dichloro­phthalic acid, has been determined at 130 K. The brucinium cations and the hydrogen phthalate anions associate through single N—H...Ocarboxyl­ate hydrogen bonds [2.639 (3) Å], giving dimers which are extended via weak head-to-tail C—H...Ometh­oxy associations into chains forming down the 21 screw axis of the unit cell. The carboxyl proton of the anion gives a short intra­molecular O—H...Ocarbox­ylate hydrogen bond [2.441 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047952/fl2168sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047952/fl2168Isup2.hkl
Contains datablock I

CCDC reference: 669134

Key indicators

  • Single-crystal X-ray study
  • T = 130 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.087
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O24 - C12 .. 7.43 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O2 - C25 .. 5.39 su PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C2A - C21A ... 1.53 Ang. PLAT431_ALERT_2_C Short Inter HL..A Contact Cl4A .. O11A .. 3.13 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C23 H27 N2 O4
Alert level G REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 27.51 From the CIF: _reflns_number_total 4923 Count of symmetry unique reflns 3319 Completeness (_total/calc) 148.33% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1604 Fraction of Friedel pairs measured 0.483 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of N19 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C12 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C16 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 9 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Brucine (2,3-dimethoxystrychnidin-10-one) has shown a hit-or-miss ability to form crystalline salts with both chiral and achiral aromatic carboxylic acids. However, Oshikawa et al. (2002) observed the selectivity of brucine for meta-substituted benzoic acids and reported the structure of brucinium 3-nitrobenzoate. Since then, the brucinium salts of a number of other meta-substituted benzoic acids have been characterized, including 3,5-dinitrobenzoic acid (three solvent pseudopolymorphs) (Bialońska & Ciunik, 2006), 3-nitrophthalic acid (Smith et al., 2005), 5-nitrosalicylic, 3,5-dinitrosalicylic and 5-sulfosalicylic acids (Smith, et al., 2006a), and isophthalic acid (Smith, et al., 2006b). We also obtained good crystals of the title compound from the 1:1 stoichiometric reaction of 4,5-dichlorophthalic acid with brucine in methanol and its structure is reported here.

In (I), protonation occurs as expected at N19 of the brucine cage (Fig. 1), the invoked Peerdeman (1956) absolute configuration giving the overall Cahn-Ingold-Prelog stereochemistry of the cation molecule as C7(S), C8(S), C12(S), C13(R), C14(R), C16(S), N19(S). The cations and anions give a single NH···Ocarboxylate hydrogen-bonding association resulting in dimers which are extended via weak head-to-tail CH···Omethoxy associations (Table 1) into chains which form down the 21 screw axis of the unit cell (Fig. 2). The brucinium cations give a variant of the previously described undulating sheet host substructure which is present in a significant number of brucine compounds (Gould & Walkinshaw, 1984; Bialońska & Ciunik, 2004a, 2004b; Smith, et al., 2006a).

The hydrogen 4,5-dichlorophthalate anion is essentially planar [torsion angles C2A–C1A–C11A–O11A, -177.8 (2) °: C1A–C2A–C21A–O22A, -163.9 (2) °], having a strong intramolecular hydrogen bond [2.441 (3) Å] between the carboxylic acid and the ortho-related carboxylate group. This is similar to that found in other acid salts of 4,5-dichlorophthalic acid (Mallinson et al., 2003; Bozkurt et al., 2006).

Related literature top

Absolute configuration: (Peerdeman, 1956; Flack, 1983). Similar structures: (Oshikawa et al., 2002; Smith et al., 2005, 2006a,b; Bialońska & Ciunik, 2004a,b, 2006; Gould & Walkinshaw, 1984; Mallinson et al., 2003; Bozkurt et al., 2006).

For related literature, see: Białońska & Ciunik (2004a, 2006).

Experimental top

The title compound (I) was synthesized by heating 1 mmol quantities of brucine tetrahydrate and 4,5-dichlorophthalic acid in 50 ml of methanol for 10 min under reflux. After concentration to ca. 30 ml, partial room-temperature evaporation of the hot-filtered solution gave colourless prisms (m.p. 541–543 K).

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C—H(aromatic) = 0.93 Å; C—H(aliphatic), 0.96–0.98 Å] and treated as riding models with Uiso(H) = 1.2Ueq (C). The absolute configuration determined for the parent strychnidin-10-one molecule (Peerdeman, 1956) was invoked and it agreed with that indicated byt the Flack parameter (Flack, 1983).

Structure description top

Brucine (2,3-dimethoxystrychnidin-10-one) has shown a hit-or-miss ability to form crystalline salts with both chiral and achiral aromatic carboxylic acids. However, Oshikawa et al. (2002) observed the selectivity of brucine for meta-substituted benzoic acids and reported the structure of brucinium 3-nitrobenzoate. Since then, the brucinium salts of a number of other meta-substituted benzoic acids have been characterized, including 3,5-dinitrobenzoic acid (three solvent pseudopolymorphs) (Bialońska & Ciunik, 2006), 3-nitrophthalic acid (Smith et al., 2005), 5-nitrosalicylic, 3,5-dinitrosalicylic and 5-sulfosalicylic acids (Smith, et al., 2006a), and isophthalic acid (Smith, et al., 2006b). We also obtained good crystals of the title compound from the 1:1 stoichiometric reaction of 4,5-dichlorophthalic acid with brucine in methanol and its structure is reported here.

In (I), protonation occurs as expected at N19 of the brucine cage (Fig. 1), the invoked Peerdeman (1956) absolute configuration giving the overall Cahn-Ingold-Prelog stereochemistry of the cation molecule as C7(S), C8(S), C12(S), C13(R), C14(R), C16(S), N19(S). The cations and anions give a single NH···Ocarboxylate hydrogen-bonding association resulting in dimers which are extended via weak head-to-tail CH···Omethoxy associations (Table 1) into chains which form down the 21 screw axis of the unit cell (Fig. 2). The brucinium cations give a variant of the previously described undulating sheet host substructure which is present in a significant number of brucine compounds (Gould & Walkinshaw, 1984; Bialońska & Ciunik, 2004a, 2004b; Smith, et al., 2006a).

The hydrogen 4,5-dichlorophthalate anion is essentially planar [torsion angles C2A–C1A–C11A–O11A, -177.8 (2) °: C1A–C2A–C21A–O22A, -163.9 (2) °], having a strong intramolecular hydrogen bond [2.441 (3) Å] between the carboxylic acid and the ortho-related carboxylate group. This is similar to that found in other acid salts of 4,5-dichlorophthalic acid (Mallinson et al., 2003; Bozkurt et al., 2006).

Absolute configuration: (Peerdeman, 1956; Flack, 1983). Similar structures: (Oshikawa et al., 2002; Smith et al., 2005, 2006a,b; Bialońska & Ciunik, 2004a,b, 2006; Gould & Walkinshaw, 1984; Mallinson et al., 2003; Bozkurt et al., 2006).

For related literature, see: Białońska & Ciunik (2004a, 2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the brucinium cation and the hydrogen 4,5-dichlorophthalate anion in (I). Non-H atoms are shown as 50% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing of the dimer units in (I) in the unit cell viewed perpendicular to the b axial direction. Non-interactive H atoms are omitted.
2,3-Dimethoxy-10-oxostrychnidinium 2-carboxy-4,5-dichlorobenzoate top
Crystal data top
C23H27N2O4+·C8H3Cl2O4F(000) = 656
Mr = 629.47Dx = 1.505 Mg m3
Monoclinic, P21Melting point = 541–543 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.5085 (10) ÅCell parameters from 3573 reflections
b = 12.9946 (13) Åθ = 2.4–27.5°
c = 11.5893 (12) ŵ = 0.29 mm1
β = 104.110 (2)°T = 130 K
V = 1388.8 (2) Å3Prism, colourless
Z = 20.45 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4923 independent reflections
Radiation source: sealed tube4747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
π and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1112
Tmin = 0.86, Tmax = 0.96k = 1316
8761 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1824P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4923 reflectionsΔρmax = 0.28 e Å3
396 parametersΔρmin = 0.27 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (5)
Crystal data top
C23H27N2O4+·C8H3Cl2O4V = 1388.8 (2) Å3
Mr = 629.47Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.5085 (10) ŵ = 0.29 mm1
b = 12.9946 (13) ÅT = 130 K
c = 11.5893 (12) Å0.45 × 0.20 × 0.15 mm
β = 104.110 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4923 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4747 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.96Rint = 0.024
8761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Δρmax = 0.28 e Å3
S = 1.04Δρmin = 0.27 e Å3
4923 reflectionsAbsolute structure: Flack (1983)
396 parametersAbsolute structure parameter: 0.07 (5)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.54757 (16)0.49720 (12)0.37798 (14)0.0206 (5)
O31.79347 (15)0.59526 (13)0.45159 (14)0.0207 (5)
O241.32796 (17)1.17615 (14)0.26352 (15)0.0245 (5)
O251.75444 (16)0.97830 (15)0.38024 (15)0.0270 (5)
N91.52499 (19)0.92448 (15)0.37457 (16)0.0169 (5)
N191.03164 (19)0.86493 (16)0.25567 (17)0.0185 (6)
C11.4104 (2)0.65792 (19)0.34534 (19)0.0173 (6)
C21.5393 (2)0.60267 (19)0.37881 (18)0.0168 (6)
C31.6727 (2)0.65612 (18)0.41809 (18)0.0163 (6)
C41.6775 (2)0.76311 (19)0.41932 (19)0.0177 (7)
C51.5471 (2)0.81670 (18)0.38124 (19)0.0169 (6)
C61.4158 (2)0.76555 (18)0.34721 (18)0.0155 (6)
C71.2924 (2)0.84016 (19)0.33033 (18)0.0160 (6)
C81.3679 (2)0.94622 (17)0.32578 (19)0.0151 (6)
C101.6246 (2)0.99634 (18)0.3600 (2)0.0196 (7)
C111.5609 (2)1.10200 (19)0.3217 (2)0.0211 (7)
C121.4182 (2)1.10386 (19)0.2230 (2)0.0194 (7)
C131.3554 (2)0.99410 (17)0.20308 (19)0.0169 (6)
C141.2047 (2)0.9798 (2)0.11891 (19)0.0197 (7)
C151.1814 (2)0.86306 (19)0.1049 (2)0.0207 (7)
C161.1650 (2)0.81878 (18)0.2216 (2)0.0177 (6)
C171.2167 (2)0.83530 (19)0.43341 (19)0.0176 (6)
C181.0774 (2)0.89449 (19)0.38545 (19)0.0187 (6)
C200.9651 (2)0.95409 (19)0.1787 (2)0.0223 (7)
C211.0808 (2)1.0274 (2)0.1633 (2)0.0205 (7)
C221.0756 (3)1.1263 (2)0.1875 (2)0.0236 (7)
C231.1939 (3)1.2006 (2)0.1784 (2)0.0282 (8)
C251.4138 (2)0.4424 (2)0.3378 (2)0.0218 (7)
C261.9270 (2)0.6490 (2)0.5014 (2)0.0236 (7)
Cl4A0.37189 (6)0.34813 (5)0.00859 (6)0.0289 (2)
Cl5A0.34137 (6)0.59206 (5)0.00357 (5)0.0273 (2)
O11A0.84305 (18)0.71344 (14)0.19623 (16)0.0284 (6)
O12A1.00497 (17)0.58983 (16)0.25332 (17)0.0318 (6)
O21A1.0085 (2)0.40751 (18)0.3045 (2)0.0428 (7)
O22A0.8526 (2)0.28055 (15)0.28601 (18)0.0345 (6)
C1A0.7527 (2)0.54385 (19)0.17814 (19)0.0185 (6)
C2A0.7584 (2)0.43600 (19)0.1910 (2)0.0191 (7)
C3A0.6375 (2)0.37818 (18)0.1349 (2)0.0192 (7)
C4A0.5121 (2)0.42411 (19)0.0697 (2)0.0189 (7)
C5A0.5011 (2)0.5306 (2)0.0667 (2)0.0179 (6)
C6A0.6206 (2)0.58916 (19)0.12083 (19)0.0177 (6)
C11A0.8761 (2)0.6212 (2)0.2133 (2)0.0222 (7)
C21A0.8802 (3)0.3690 (2)0.2654 (2)0.0261 (8)
H11.322000.623800.322100.0210*
H41.765000.798000.444800.0210*
H81.334500.995500.377300.0180*
H11A1.632901.141700.294500.0250*
H11B1.543801.136600.391200.0250*
H121.438301.129100.149000.0230*
H131.422400.955200.167400.0200*
H141.204901.009600.041300.0240*
H15A1.095100.848900.042500.0250*
H15B1.263600.831600.082800.0250*
H161.151700.744200.212600.0210*
H17A1.196800.764700.451600.0210*
H17B1.275200.867700.504400.0210*
H18A1.004100.875000.426600.0220*
H18B1.094100.968000.394300.0220*
H190.966 (3)0.814 (2)0.244 (2)0.015 (6)*
H20A0.912200.928900.101500.0270*
H20B0.897200.989500.215200.0270*
H220.995401.151200.211200.0280*
H23A1.209101.198000.098700.0340*
H23B1.164401.269900.192600.0340*
H25A1.432600.369800.341200.0330*
H25B1.368900.461900.257400.0330*
H25C1.350200.458900.388000.0330*
H26A2.005100.600400.522100.0350*
H26B1.918700.685700.571300.0350*
H26C1.946200.696800.443900.0350*
H3A0.641300.306900.141600.0230*
H6A0.612800.660500.119100.0210*
H21A1.015 (4)0.469 (4)0.283 (3)0.063 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0162 (7)0.0148 (9)0.0297 (9)0.0011 (6)0.0036 (6)0.0004 (7)
O30.0136 (7)0.0170 (9)0.0295 (8)0.0008 (7)0.0017 (6)0.0017 (7)
O240.0223 (8)0.0174 (9)0.0337 (9)0.0020 (7)0.0069 (7)0.0016 (7)
O250.0138 (8)0.0241 (10)0.0428 (9)0.0025 (7)0.0063 (6)0.0014 (9)
N90.0147 (9)0.0170 (10)0.0195 (9)0.0005 (7)0.0049 (7)0.0006 (8)
N190.0119 (9)0.0186 (11)0.0236 (10)0.0010 (8)0.0017 (7)0.0007 (8)
C10.0135 (10)0.0191 (12)0.0188 (11)0.0038 (8)0.0031 (8)0.0019 (9)
C20.0187 (10)0.0168 (12)0.0155 (10)0.0003 (9)0.0055 (8)0.0013 (9)
C30.0163 (10)0.0172 (12)0.0153 (10)0.0009 (8)0.0037 (8)0.0021 (9)
C40.0123 (10)0.0211 (13)0.0196 (11)0.0025 (9)0.0037 (8)0.0016 (10)
C50.0177 (10)0.0172 (12)0.0171 (11)0.0015 (8)0.0070 (8)0.0006 (9)
C60.0133 (10)0.0180 (12)0.0146 (10)0.0004 (8)0.0020 (8)0.0005 (9)
C70.0152 (10)0.0144 (11)0.0177 (10)0.0019 (9)0.0029 (8)0.0007 (9)
C80.0117 (10)0.0150 (12)0.0184 (10)0.0004 (8)0.0031 (7)0.0007 (8)
C100.0211 (11)0.0187 (13)0.0204 (11)0.0023 (9)0.0078 (8)0.0031 (9)
C110.0201 (11)0.0167 (13)0.0274 (12)0.0069 (9)0.0073 (9)0.0012 (10)
C120.0209 (11)0.0178 (12)0.0214 (11)0.0010 (9)0.0086 (8)0.0030 (10)
C130.0162 (10)0.0140 (12)0.0212 (11)0.0004 (8)0.0060 (8)0.0009 (9)
C140.0204 (11)0.0224 (13)0.0158 (10)0.0030 (10)0.0032 (8)0.0022 (10)
C150.0199 (11)0.0221 (13)0.0180 (10)0.0010 (9)0.0007 (8)0.0038 (10)
C160.0145 (10)0.0144 (12)0.0232 (11)0.0011 (8)0.0028 (8)0.0036 (9)
C170.0159 (10)0.0170 (12)0.0209 (11)0.0010 (9)0.0064 (8)0.0019 (9)
C180.0156 (10)0.0179 (12)0.0234 (11)0.0019 (9)0.0063 (8)0.0009 (9)
C200.0177 (11)0.0214 (14)0.0255 (11)0.0028 (9)0.0008 (8)0.0012 (10)
C210.0178 (11)0.0224 (13)0.0191 (11)0.0024 (9)0.0002 (8)0.0034 (9)
C220.0201 (11)0.0260 (13)0.0242 (12)0.0040 (10)0.0045 (9)0.0041 (10)
C230.0252 (12)0.0208 (14)0.0380 (14)0.0037 (10)0.0063 (10)0.0037 (12)
C250.0212 (11)0.0188 (13)0.0253 (12)0.0050 (9)0.0054 (9)0.0006 (9)
C260.0157 (11)0.0228 (13)0.0300 (13)0.0009 (9)0.0011 (9)0.0029 (11)
Cl4A0.0224 (3)0.0194 (3)0.0403 (4)0.0056 (2)0.0011 (2)0.0055 (3)
Cl5A0.0187 (3)0.0217 (3)0.0365 (3)0.0013 (2)0.0030 (2)0.0022 (3)
O11A0.0234 (9)0.0205 (10)0.0379 (10)0.0064 (7)0.0010 (7)0.0012 (8)
O12A0.0167 (8)0.0300 (11)0.0460 (11)0.0033 (8)0.0022 (7)0.0011 (10)
O21A0.0235 (10)0.0288 (13)0.0670 (15)0.0038 (9)0.0066 (9)0.0050 (11)
O22A0.0332 (10)0.0233 (11)0.0454 (11)0.0070 (8)0.0064 (8)0.0099 (9)
C1A0.0196 (11)0.0202 (12)0.0164 (10)0.0012 (9)0.0059 (8)0.0025 (9)
C2A0.0179 (11)0.0213 (13)0.0189 (11)0.0020 (9)0.0063 (8)0.0011 (9)
C3A0.0241 (11)0.0119 (12)0.0230 (11)0.0020 (9)0.0085 (9)0.0013 (9)
C4A0.0175 (11)0.0159 (12)0.0227 (11)0.0053 (9)0.0040 (8)0.0037 (9)
C5A0.0164 (10)0.0173 (12)0.0192 (11)0.0012 (9)0.0029 (8)0.0015 (9)
C6A0.0185 (10)0.0142 (11)0.0201 (10)0.0008 (9)0.0043 (8)0.0008 (9)
C11A0.0184 (11)0.0252 (14)0.0231 (12)0.0039 (9)0.0053 (9)0.0021 (10)
C21A0.0226 (12)0.0265 (15)0.0282 (13)0.0069 (10)0.0043 (9)0.0006 (11)
Geometric parameters (Å, º) top
Cl4A—C4A1.728 (2)C20—C211.499 (3)
Cl5A—C5A1.733 (2)C21—C221.319 (4)
O2—C21.373 (3)C22—C231.506 (4)
O2—C251.433 (3)C1—H10.9300
O3—C31.370 (3)C4—H40.9300
O3—C261.441 (3)C8—H80.9800
O24—C231.444 (3)C11—H11A0.9700
O24—C121.427 (3)C11—H11B0.9700
O25—C101.222 (3)C12—H120.9800
O11A—C11A1.243 (3)C13—H130.9800
O12A—C11A1.267 (3)C14—H140.9800
O21A—C21A1.294 (3)C15—H15A0.9700
O22A—C21A1.216 (3)C15—H15B0.9700
O21A—H21A0.84 (5)C16—H160.9800
N9—C81.490 (3)C17—H17B0.9700
N9—C101.370 (3)C17—H17A0.9700
N9—C51.416 (3)C18—H18A0.9700
N19—C181.510 (3)C18—H18B0.9700
N19—C201.504 (3)C20—H20B0.9700
N19—C161.539 (3)C20—H20A0.9700
N19—H190.90 (3)C22—H220.9300
C1—C61.400 (3)C23—H23A0.9700
C1—C21.392 (3)C23—H23B0.9700
C2—C31.420 (3)C25—H25A0.9600
C3—C41.391 (3)C25—H25B0.9600
C4—C51.397 (3)C25—H25C0.9600
C5—C61.384 (3)C26—H26A0.9600
C6—C71.498 (3)C26—H26B0.9600
C7—C81.561 (3)C26—H26C0.9600
C7—C171.539 (3)C1A—C2A1.409 (3)
C7—C161.545 (3)C1A—C11A1.523 (3)
C8—C131.530 (3)C1A—C6A1.400 (3)
C10—C111.523 (3)C2A—C3A1.394 (3)
C11—C121.547 (3)C2A—C21A1.535 (3)
C12—C131.542 (3)C3A—C4A1.382 (3)
C13—C141.536 (3)C4A—C5A1.388 (4)
C14—C151.536 (4)C5A—C6A1.384 (3)
C14—C211.527 (3)C3A—H3A0.9300
C15—C161.512 (3)C6A—H6A0.9300
C17—C181.515 (3)
C2—O2—C25116.78 (17)C13—C12—H12109.00
C3—O3—C26115.44 (18)C11—C12—H12109.00
C12—O24—C23114.93 (18)C8—C13—H13106.00
C21A—O21A—H21A113 (3)C12—C13—H13106.00
C5—N9—C10125.69 (18)C14—C13—H13106.00
C8—N9—C10118.92 (18)C13—C14—H14109.00
C5—N9—C8109.28 (17)C15—C14—H14109.00
C16—N19—C20113.69 (17)C21—C14—H14109.00
C18—N19—C20111.85 (18)C14—C15—H15B110.00
C16—N19—C18107.42 (16)C16—C15—H15A110.00
C20—N19—H19107.6 (16)C16—C15—H15B110.00
C16—N19—H19105.1 (18)H15A—C15—H15B108.00
C18—N19—H19111.0 (15)C14—C15—H15A110.00
C2—C1—C6119.0 (2)N19—C16—H16109.00
C1—C2—C3119.6 (2)C15—C16—H16109.00
O2—C2—C1124.14 (19)C7—C16—H16109.00
O2—C2—C3116.25 (18)C7—C17—H17A111.00
C2—C3—C4121.10 (19)C18—C17—H17A111.00
O3—C3—C4123.42 (18)C18—C17—H17B111.00
O3—C3—C2115.5 (2)H17A—C17—H17B109.00
C3—C4—C5118.09 (19)C7—C17—H17B111.00
N9—C5—C6110.36 (18)N19—C18—H18B111.00
C4—C5—C6121.4 (2)C17—C18—H18A111.00
N9—C5—C4128.3 (2)N19—C18—H18A111.00
C5—C6—C7110.5 (2)H18A—C18—H18B109.00
C1—C6—C7128.34 (19)C17—C18—H18B111.00
C1—C6—C5120.76 (19)N19—C20—H20B110.00
C6—C7—C8102.94 (16)C21—C20—H20A110.00
C6—C7—C16115.06 (19)N19—C20—H20A110.00
C16—C7—C17101.75 (16)H20A—C20—H20B108.00
C8—C7—C17111.62 (18)C21—C20—H20B110.00
C6—C7—C17111.83 (18)C21—C22—H22119.00
C8—C7—C16114.00 (18)C23—C22—H22119.00
N9—C8—C13105.87 (16)O24—C23—H23B109.00
C7—C8—C13117.28 (17)C22—C23—H23A109.00
N9—C8—C7104.28 (17)O24—C23—H23A109.00
O25—C10—N9122.8 (2)H23A—C23—H23B108.00
O25—C10—C11122.7 (2)C22—C23—H23B109.00
N9—C10—C11114.39 (17)O2—C25—H25A109.00
C10—C11—C12116.39 (19)O2—C25—H25C109.00
C11—C12—C13109.52 (19)H25A—C25—H25B110.00
O24—C12—C13114.60 (17)H25A—C25—H25C109.00
O24—C12—C11104.85 (18)H25B—C25—H25C109.00
C8—C13—C12107.31 (17)O2—C25—H25B110.00
C12—C13—C14118.33 (19)O3—C26—H26A110.00
C8—C13—C14112.97 (17)O3—C26—H26C109.00
C15—C14—C21109.42 (18)H26A—C26—H26B110.00
C13—C14—C15105.96 (18)O3—C26—H26B109.00
C13—C14—C21114.47 (18)H26B—C26—H26C109.00
C14—C15—C16108.96 (18)H26A—C26—H26C109.00
N19—C16—C15110.63 (18)C2A—C1A—C6A118.4 (2)
C7—C16—C15115.44 (17)C2A—C1A—C11A128.38 (19)
N19—C16—C7104.59 (17)C6A—C1A—C11A113.1 (2)
C7—C17—C18103.11 (17)C1A—C2A—C3A118.7 (2)
N19—C18—C17104.48 (17)C1A—C2A—C21A128.9 (2)
N19—C20—C21110.21 (17)C3A—C2A—C21A112.3 (2)
C14—C21—C22122.6 (2)C2A—C3A—C4A121.7 (2)
C20—C21—C22121.8 (2)Cl4A—C4A—C5A120.86 (16)
C14—C21—C20115.6 (2)C3A—C4A—C5A119.6 (2)
C21—C22—C23122.9 (2)Cl4A—C4A—C3A119.52 (19)
O24—C23—C22111.2 (2)Cl5A—C5A—C6A119.21 (19)
C2—C1—H1120.00C4A—C5A—C6A119.2 (2)
C6—C1—H1121.00Cl5A—C5A—C4A121.56 (17)
C5—C4—H4121.00C1A—C6A—C5A121.8 (2)
C3—C4—H4121.00O11A—C11A—C1A116.46 (19)
N9—C8—H8110.00O12A—C11A—C1A119.9 (2)
C13—C8—H8110.00O11A—C11A—O12A123.6 (2)
C7—C8—H8110.00O21A—C21A—C2A119.7 (2)
C10—C11—H11B108.00O22A—C21A—C2A118.5 (2)
C12—C11—H11A108.00O21A—C21A—O22A121.8 (3)
C10—C11—H11A108.00C2A—C3A—H3A119.00
H11A—C11—H11B107.00C4A—C3A—H3A119.00
C12—C11—H11B108.00C1A—C6A—H6A119.00
O24—C12—H12109.00C5A—C6A—H6A119.00
C25—O2—C2—C11.1 (3)C6—C7—C8—C13100.84 (19)
C25—O2—C2—C3179.61 (18)C6—C7—C8—N915.8 (2)
C26—O3—C3—C2174.67 (17)C17—C7—C16—N1931.8 (2)
C26—O3—C3—C46.6 (3)C17—C7—C16—C15153.6 (2)
C23—O24—C12—C1367.2 (2)C8—C7—C16—C1533.3 (3)
C23—O24—C12—C11172.68 (19)C7—C8—C13—C1439.7 (3)
C12—O24—C23—C2287.8 (2)N9—C8—C13—C14155.46 (18)
C5—N9—C10—C11163.85 (19)C7—C8—C13—C12171.88 (17)
C5—N9—C10—O2518.7 (3)N9—C8—C13—C1272.3 (2)
C10—N9—C5—C6155.4 (2)N9—C10—C11—C1243.7 (3)
C8—N9—C5—C63.5 (2)O25—C10—C11—C12138.9 (2)
C10—N9—C5—C426.7 (3)C10—C11—C12—C1311.6 (2)
C8—N9—C10—O25168.2 (2)C10—C11—C12—O24135.00 (19)
C8—N9—C5—C4178.6 (2)C11—C12—C13—C14173.12 (17)
C5—N9—C8—C712.4 (2)C11—C12—C13—C843.9 (2)
C10—N9—C8—C1342.1 (2)O24—C12—C13—C873.6 (2)
C8—N9—C10—C1114.4 (3)O24—C12—C13—C1455.6 (3)
C5—N9—C8—C13111.97 (19)C8—C13—C14—C2160.0 (3)
C10—N9—C8—C7166.43 (18)C12—C13—C14—C15172.82 (17)
C16—N19—C18—C1717.7 (2)C8—C13—C14—C1560.6 (2)
C20—N19—C16—C159.8 (3)C12—C13—C14—C2166.5 (3)
C18—N19—C16—C15134.06 (19)C13—C14—C21—C20120.9 (2)
C18—N19—C20—C2175.8 (2)C13—C14—C21—C2258.7 (3)
C20—N19—C16—C7115.2 (2)C15—C14—C21—C22177.4 (2)
C16—N19—C20—C2146.1 (2)C13—C14—C15—C1668.9 (2)
C18—N19—C16—C79.2 (2)C21—C14—C15—C1655.0 (2)
C20—N19—C18—C17143.14 (18)C15—C14—C21—C202.1 (3)
C2—C1—C6—C7171.5 (2)C14—C15—C16—N1961.7 (2)
C6—C1—C2—C32.2 (3)C14—C15—C16—C756.8 (2)
C2—C1—C6—C50.3 (3)C7—C17—C18—N1937.9 (2)
C6—C1—C2—O2178.52 (19)N19—C20—C21—C1453.0 (2)
O2—C2—C3—C4178.15 (18)N19—C20—C21—C22126.5 (2)
O2—C2—C3—O30.7 (3)C20—C21—C22—C23177.0 (2)
C1—C2—C3—C42.6 (3)C14—C21—C22—C232.5 (4)
C1—C2—C3—O3178.65 (18)C21—C22—C23—O2464.5 (3)
C2—C3—C4—C50.3 (3)C6A—C1A—C2A—C3A7.0 (3)
O3—C3—C4—C5178.97 (19)C6A—C1A—C2A—C21A169.7 (2)
C3—C4—C5—C62.3 (3)C11A—C1A—C2A—C3A169.4 (2)
C3—C4—C5—N9180.0 (2)C11A—C1A—C2A—C21A13.9 (4)
N9—C5—C6—C1179.27 (19)C2A—C1A—C6A—C5A6.6 (3)
C4—C5—C6—C12.6 (3)C11A—C1A—C6A—C5A170.4 (2)
C4—C5—C6—C7170.48 (19)C2A—C1A—C11A—O11A177.8 (2)
N9—C5—C6—C77.6 (2)C2A—C1A—C11A—O12A4.8 (4)
C1—C6—C7—C8172.8 (2)C6A—C1A—C11A—O11A5.6 (3)
C5—C6—C7—C814.7 (2)C6A—C1A—C11A—O12A171.8 (2)
C5—C6—C7—C17105.2 (2)C1A—C2A—C3A—C4A1.5 (3)
C1—C6—C7—C1648.2 (3)C21A—C2A—C3A—C4A175.8 (2)
C5—C6—C7—C16139.34 (19)C1A—C2A—C21A—O21A16.0 (4)
C1—C6—C7—C1767.2 (3)C1A—C2A—C21A—O22A163.9 (2)
C6—C7—C16—C1585.3 (2)C3A—C2A—C21A—O21A167.1 (2)
C8—C7—C17—C1878.8 (2)C3A—C2A—C21A—O22A13.0 (3)
C16—C7—C17—C1843.2 (2)C2A—C3A—C4A—Cl4A174.28 (17)
C16—C7—C8—C1324.5 (3)C2A—C3A—C4A—C5A4.9 (3)
C17—C7—C8—C13139.07 (18)Cl4A—C4A—C5A—Cl5A6.1 (3)
C6—C7—C16—N19152.91 (18)Cl4A—C4A—C5A—C6A173.72 (17)
C16—C7—C8—N9141.13 (17)C3A—C4A—C5A—Cl5A174.72 (17)
C8—C7—C16—N1988.5 (2)C3A—C4A—C5A—C6A5.5 (3)
C6—C7—C17—C18166.49 (18)Cl5A—C5A—C6A—C1A179.53 (17)
C17—C7—C8—N9104.28 (19)C4A—C5A—C6A—C1A0.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19···O11A0.90 (3)1.75 (3)2.639 (3)170 (2)
O21A—H21A···O12A0.84 (5)1.61 (5)2.441 (3)170 (4)
C3A—H3A···O22A0.932.312.667 (3)103
C4—H4···O250.932.452.953 (3)114
C6A—H6A···O11A0.932.262.635 (3)103
C16—H16···O12A0.982.553.402 (3)145
C17—H17B···O2i0.972.533.441 (3)156
C18—H18B···O3i0.972.483.279 (3)140
C22—H22···O22Aii0.932.453.316 (3)155
Symmetry codes: (i) x+3, y+1/2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H27N2O4+·C8H3Cl2O4
Mr629.47
Crystal system, space groupMonoclinic, P21
Temperature (K)130
a, b, c (Å)9.5085 (10), 12.9946 (13), 11.5893 (12)
β (°) 104.110 (2)
V3)1388.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.45 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.86, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
8761, 4923, 4747
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.04
No. of reflections4923
No. of parameters396
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.27
Absolute structureFlack (1983)
Absolute structure parameter0.07 (5)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19···O11A0.90 (3)1.75 (3)2.639 (3)170 (2)
O21A—H21A···O12A0.84 (5)1.61 (5)2.441 (3)170 (4)
C3A—H3A···O22A0.932.312.667 (3)103
C4—H4···O250.932.452.953 (3)114
C6A—H6A···O11A0.932.262.635 (3)103
C16—H16···O12A0.982.553.402 (3)145
C17—H17B···O2i0.972.533.441 (3)156
C18—H18B···O3i0.972.483.279 (3)140
C22—H22···O22Aii0.932.453.316 (3)155
Symmetry codes: (i) x+3, y+1/2, z+1; (ii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds