Download citation
Download citation
link to html
In the title compound, C18H18N4O, the dihedral angle between the quinazoline and benzyl­idene groups is 54.0 (4)°. In the crystal structure, the mol­ecules associate into centrosymmetric dimers via C—H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047393/hb2537sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047393/hb2537Isup2.hkl
Contains datablock I

CCDC reference: 667337

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.149
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT391_ALERT_3_C Deviating Methyl C17 H-C-H Bond Angle ...... 100.00 Deg.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Quinazolin related compounds exhibit multiple medicinal activities, such as analgesic (Alagarsamy et al., 2004), anti-inflammatory (Alagarsamy et al., 2003), and anticonvulsant (El-Meligie et al., 2001) properties. As part of our studies of these systems, we now present the synthesis and structure of the title compound, (I), (Fig. 1).

In the quinazolin ring, the single bond C—N distances [C8—N2 = 1.385 (2) Å; C7—N2 = 1.398 (2) Å and C3—N1 = 1.387 (2) Å] are almost equal and longer than C14—N4 [1.364 (2) Å]. The non-ring C—N bond distances such as C17—N4 and C18—N4 are significantly, longer than the above C—N distances. These differences are attributed to the different attached groups. As expected, the bridging bond C10—C11 [1.447 (2) Å] is much longer than the C—C distances of the rings in the molecule. The torsion angles N3—N2—C8—C9 and O1—C7—N2—N3 are -7.9 (2)° and 8.3 (2)° respectively. This small angle of bond twist indicate that the bonded atoms are cis oriented. In the molecule, the quinazolin ring and the benzylidene group are twisted with each other and the corresponding torsion angle is -178.2 (2)° confirms that the bonds are trans oriented. This wide-angle twist indicates that the the groups are significantly rotated and the dihedral angle between the planes is 54.0 (4)°. A small value of the dihedral angle [2.10 (4)°] between the aromatic and quinazolin rings show they are almost coplanar. The quinazolin ring is statistically planar with a maximum deviation of 0.02 (1) Å [C8].

The molecular packing is stabilized by C—H···O hydrogen bonding interactions which result in centrosymmetric dimers (Table 1, Fig. 2).

Related literature top

For related literature, see: Alagarsamy et al. (2003, 2004); El-Meligie et al. (2001).

Experimental top

A mixture of 2–methyl benzo(1,3) oxazin–4–one (0.01 mole; 1.61 g) and hydrazine hydrate (0.03 mole; 1.5 g) in ethanol was refluxed for two hours, then p-dimethyl amino benzaldehyde (2.24 g) was added. Then the solution was poured into ice cold water. The separated solid was filtered and recrystallized from ethanol and dried in an oven. Yield 73.1%; melting point 412–414 K. Yellow needles of (I) were recrystallized from ethyl acetate solution.

Refinement top

All the H atoms were positioned geometrically and their positions and Uiso values were freely refined.

Structure description top

Quinazolin related compounds exhibit multiple medicinal activities, such as analgesic (Alagarsamy et al., 2004), anti-inflammatory (Alagarsamy et al., 2003), and anticonvulsant (El-Meligie et al., 2001) properties. As part of our studies of these systems, we now present the synthesis and structure of the title compound, (I), (Fig. 1).

In the quinazolin ring, the single bond C—N distances [C8—N2 = 1.385 (2) Å; C7—N2 = 1.398 (2) Å and C3—N1 = 1.387 (2) Å] are almost equal and longer than C14—N4 [1.364 (2) Å]. The non-ring C—N bond distances such as C17—N4 and C18—N4 are significantly, longer than the above C—N distances. These differences are attributed to the different attached groups. As expected, the bridging bond C10—C11 [1.447 (2) Å] is much longer than the C—C distances of the rings in the molecule. The torsion angles N3—N2—C8—C9 and O1—C7—N2—N3 are -7.9 (2)° and 8.3 (2)° respectively. This small angle of bond twist indicate that the bonded atoms are cis oriented. In the molecule, the quinazolin ring and the benzylidene group are twisted with each other and the corresponding torsion angle is -178.2 (2)° confirms that the bonds are trans oriented. This wide-angle twist indicates that the the groups are significantly rotated and the dihedral angle between the planes is 54.0 (4)°. A small value of the dihedral angle [2.10 (4)°] between the aromatic and quinazolin rings show they are almost coplanar. The quinazolin ring is statistically planar with a maximum deviation of 0.02 (1) Å [C8].

The molecular packing is stabilized by C—H···O hydrogen bonding interactions which result in centrosymmetric dimers (Table 1, Fig. 2).

For related literature, see: Alagarsamy et al. (2003, 2004); El-Meligie et al. (2001).

Computing details top

Data collection: APEX2 not SMART (Bruker, ????); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I). The displacement ellipsoids are drawn at 50% probability level and H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A centrosymmetric dimer of (I), linked by C—H···O interactions. Atom marked with an asterisk (*) are at the symmetry position (-x, -y, 1 - z).
3-[4-(Dimethylamino)benzylideneamino]-2-methylquinazolin-4(3H)-one top
Crystal data top
C18H18N4OZ = 2
Mr = 306.36F(000) = 324
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5175 (10) ÅCell parameters from 50 reflections
b = 9.3631 (13) Åθ = 1.7–28.0°
c = 12.7886 (17) ŵ = 0.08 mm1
α = 98.198 (2)°T = 296 K
β = 103.259 (2)°Block, yellow
γ = 112.517 (2)°0.21 × 0.18 × 0.10 mm
V = 782.33 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.021
ω scansθmax = 28.0°, θmin = 1.7°
9011 measured reflectionsh = 99
3582 independent reflectionsk = 1212
2863 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.0881P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.16 e Å3
3582 reflectionsΔρmin = 0.18 e Å3
280 parameters
Crystal data top
C18H18N4Oγ = 112.517 (2)°
Mr = 306.36V = 782.33 (18) Å3
Triclinic, P1Z = 2
a = 7.5175 (10) ÅMo Kα radiation
b = 9.3631 (13) ŵ = 0.08 mm1
c = 12.7886 (17) ÅT = 296 K
α = 98.198 (2)°0.21 × 0.18 × 0.10 mm
β = 103.259 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2863 reflections with I > 2σ(I)
9011 measured reflectionsRint = 0.021
3582 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.150All H-atom parameters refined
S = 1.03Δρmax = 0.16 e Å3
3582 reflectionsΔρmin = 0.18 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0239 (3)0.7144 (2)0.16094 (15)0.0761 (5)
C20.1029 (2)0.63717 (16)0.16193 (11)0.0590 (4)
C30.2288 (3)0.66170 (16)0.09561 (11)0.0628 (4)
C40.2239 (4)0.7645 (2)0.02596 (14)0.0830 (5)
C50.0992 (4)0.8384 (2)0.02555 (17)0.0969 (7)
C60.0240 (4)0.8146 (2)0.09299 (16)0.0937 (7)
C70.0971 (2)0.52499 (16)0.23043 (11)0.0574 (3)
C80.3481 (2)0.48483 (17)0.15228 (11)0.0584 (3)
C90.4731 (3)0.3951 (3)0.14777 (16)0.0759 (5)
C100.25148 (19)0.35813 (15)0.37531 (11)0.0494 (3)
C110.25379 (18)0.23922 (15)0.43582 (10)0.0468 (3)
C120.2940 (2)0.27515 (16)0.55046 (11)0.0513 (3)
C130.3045 (2)0.16600 (17)0.61039 (11)0.0536 (3)
C140.27102 (18)0.01191 (15)0.55708 (10)0.0482 (3)
C150.2322 (2)0.02347 (16)0.44130 (11)0.0539 (3)
C160.2239 (2)0.08687 (16)0.38322 (11)0.0532 (3)
C170.3175 (4)0.0651 (3)0.73240 (15)0.0841 (6)
C180.2354 (3)0.25892 (19)0.55635 (16)0.0678 (4)
N10.3542 (2)0.58551 (16)0.09249 (10)0.0669 (4)
N20.22998 (18)0.45569 (13)0.22242 (9)0.0528 (3)
N30.22249 (19)0.32720 (13)0.27105 (9)0.0566 (3)
N40.27461 (19)0.10011 (14)0.61397 (10)0.0593 (3)
O10.01214 (18)0.49096 (15)0.28877 (10)0.0773 (4)
H10.117 (3)0.691 (3)0.2099 (18)0.104 (7)*
H40.315 (3)0.783 (2)0.0153 (17)0.085 (6)*
H50.097 (4)0.905 (3)0.023 (2)0.119 (7)*
H60.120 (4)0.861 (3)0.0914 (19)0.110 (7)*
H9A0.385 (4)0.279 (3)0.1317 (19)0.114 (7)*
H9B0.575 (3)0.424 (2)0.2179 (19)0.097 (6)*
H9C0.532 (3)0.415 (2)0.0904 (17)0.089 (6)*
H100.279 (2)0.4627 (18)0.4204 (12)0.057 (4)*
H120.313 (2)0.378 (2)0.5871 (13)0.063 (4)*
H130.333 (2)0.1965 (19)0.6874 (15)0.072 (5)*
H150.211 (2)0.125 (2)0.4051 (13)0.068 (4)*
H160.196 (2)0.0572 (19)0.3046 (14)0.070 (4)*
H17A0.243 (4)0.015 (3)0.757 (2)0.135 (10)*
H17B0.455 (4)0.021 (3)0.766 (2)0.126 (8)*
H17C0.314 (4)0.156 (3)0.757 (2)0.118 (7)*
H18A0.097 (3)0.314 (2)0.4942 (16)0.088 (5)*
H18B0.236 (4)0.319 (3)0.6088 (19)0.116 (7)*
H18C0.336 (3)0.255 (2)0.5189 (16)0.093 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0992 (12)0.0659 (9)0.0662 (9)0.0470 (9)0.0123 (9)0.0144 (7)
C20.0747 (9)0.0475 (7)0.0453 (7)0.0256 (6)0.0048 (6)0.0090 (5)
C30.0849 (10)0.0481 (7)0.0441 (7)0.0242 (7)0.0071 (6)0.0122 (5)
C40.1266 (16)0.0663 (10)0.0574 (9)0.0415 (11)0.0240 (10)0.0282 (8)
C50.158 (2)0.0683 (11)0.0683 (11)0.0602 (13)0.0138 (12)0.0297 (9)
C60.1408 (19)0.0795 (12)0.0722 (11)0.0703 (13)0.0122 (12)0.0210 (9)
C70.0660 (8)0.0531 (7)0.0513 (7)0.0270 (6)0.0121 (6)0.0145 (6)
C80.0695 (8)0.0597 (8)0.0453 (7)0.0268 (7)0.0162 (6)0.0168 (6)
C90.0916 (12)0.0981 (14)0.0661 (10)0.0562 (11)0.0376 (10)0.0384 (10)
C100.0482 (7)0.0472 (6)0.0506 (7)0.0196 (5)0.0122 (5)0.0143 (5)
C110.0436 (6)0.0477 (6)0.0490 (6)0.0191 (5)0.0128 (5)0.0156 (5)
C120.0546 (7)0.0479 (7)0.0504 (7)0.0222 (6)0.0152 (5)0.0111 (5)
C130.0584 (7)0.0575 (7)0.0439 (7)0.0243 (6)0.0145 (5)0.0143 (5)
C140.0422 (6)0.0523 (7)0.0537 (7)0.0211 (5)0.0160 (5)0.0202 (5)
C150.0621 (8)0.0482 (7)0.0547 (7)0.0262 (6)0.0193 (6)0.0139 (6)
C160.0614 (8)0.0533 (7)0.0451 (7)0.0248 (6)0.0158 (6)0.0140 (5)
C170.1134 (16)0.0731 (11)0.0595 (9)0.0356 (12)0.0155 (10)0.0306 (8)
C180.0755 (10)0.0576 (8)0.0822 (11)0.0337 (8)0.0294 (9)0.0308 (8)
N10.0867 (9)0.0676 (7)0.0515 (7)0.0335 (7)0.0240 (6)0.0259 (6)
N20.0647 (7)0.0482 (6)0.0464 (6)0.0245 (5)0.0152 (5)0.0176 (4)
N30.0719 (7)0.0502 (6)0.0534 (6)0.0290 (5)0.0197 (5)0.0218 (5)
N40.0667 (7)0.0593 (7)0.0600 (7)0.0306 (6)0.0209 (5)0.0269 (5)
O10.0864 (8)0.0928 (8)0.0825 (8)0.0533 (7)0.0408 (6)0.0441 (6)
Geometric parameters (Å, º) top
C1—C61.367 (3)C10—H100.982 (15)
C1—C21.399 (2)C11—C121.3900 (18)
C1—H11.03 (2)C11—C161.3963 (18)
C2—C31.387 (2)C12—C131.3768 (18)
C2—C71.4552 (19)C12—H120.950 (16)
C3—N11.387 (2)C13—C141.4044 (19)
C3—C41.406 (2)C13—H130.934 (17)
C4—C51.362 (3)C14—N41.3641 (16)
C4—H40.939 (19)C14—C151.4054 (19)
C5—C61.384 (3)C15—C161.3673 (18)
C5—H50.95 (2)C15—H150.931 (16)
C6—H60.97 (2)C16—H160.955 (17)
C7—O11.2171 (18)C17—N41.435 (2)
C7—N21.3976 (19)C17—H17A0.94 (3)
C8—N11.2899 (17)C17—H17B0.98 (3)
C8—N21.3848 (18)C17—H17C0.94 (3)
C8—C91.486 (2)C18—N41.447 (2)
C9—H9A1.00 (2)C18—H18A1.03 (2)
C9—H9B0.96 (2)C18—H18B0.94 (2)
C9—H9C0.95 (2)C18—H18C0.98 (2)
C10—N31.2718 (17)N2—N31.4194 (14)
C10—C111.4467 (17)
C6—C1—C2119.2 (2)C13—C12—C11121.83 (12)
C6—C1—H1122.1 (12)C13—C12—H12120.1 (9)
C2—C1—H1118.6 (12)C11—C12—H12118.0 (9)
C3—C2—C1120.97 (14)C12—C13—C14120.87 (12)
C3—C2—C7119.54 (13)C12—C13—H13118.4 (10)
C1—C2—C7119.46 (15)C14—C13—H13120.7 (10)
N1—C3—C2122.88 (12)N4—C14—C13122.11 (12)
N1—C3—C4118.69 (16)N4—C14—C15120.78 (12)
C2—C3—C4118.40 (16)C13—C14—C15117.12 (11)
C5—C4—C3120.0 (2)C16—C15—C14121.21 (12)
C5—C4—H4123.4 (12)C16—C15—H15120.8 (10)
C3—C4—H4116.5 (12)C14—C15—H15118.0 (10)
C4—C5—C6121.16 (17)C15—C16—C11121.76 (12)
C4—C5—H5118.5 (15)C15—C16—H16118.2 (10)
C6—C5—H5120.4 (15)C11—C16—H16120.1 (10)
C1—C6—C5120.2 (2)N4—C17—H17A112.6 (17)
C1—C6—H6116.6 (14)N4—C17—H17B107.8 (15)
C5—C6—H6123.0 (14)H17A—C17—H17B100 (2)
O1—C7—N2121.87 (12)N4—C17—H17C109.6 (15)
O1—C7—C2124.86 (14)H17A—C17—H17C117 (2)
N2—C7—C2113.27 (13)H17B—C17—H17C108 (2)
N1—C8—N2123.02 (13)N4—C18—H18A111.7 (10)
N1—C8—C9119.66 (14)N4—C18—H18B107.7 (14)
N2—C8—C9117.33 (13)H18A—C18—H18B109.7 (18)
C8—C9—H9A109.1 (14)N4—C18—H18C111.0 (12)
C8—C9—H9B111.3 (12)H18A—C18—H18C105.4 (16)
H9A—C9—H9B107.1 (18)H18B—C18—H18C111.3 (18)
C8—C9—H9C108.8 (12)C8—N1—C3117.79 (13)
H9A—C9—H9C109.7 (18)C8—N2—C7123.41 (11)
H9B—C9—H9C110.8 (18)C8—N2—N3115.22 (11)
N3—C10—C11120.72 (12)C7—N2—N3120.37 (11)
N3—C10—H10123.6 (8)C10—N3—N2115.05 (11)
C11—C10—H10115.6 (8)C14—N4—C17121.49 (13)
C12—C11—C16117.20 (11)C14—N4—C18120.79 (13)
C12—C11—C10120.75 (12)C17—N4—C18117.72 (14)
C16—C11—C10122.01 (11)
C6—C1—C2—C30.4 (2)C13—C14—C15—C161.1 (2)
C6—C1—C2—C7177.34 (15)C14—C15—C16—C110.1 (2)
C1—C2—C3—N1178.80 (13)C12—C11—C16—C150.5 (2)
C7—C2—C3—N11.1 (2)C10—C11—C16—C15178.05 (12)
C1—C2—C3—C40.9 (2)N2—C8—N1—C33.0 (2)
C7—C2—C3—C4176.80 (13)C9—C8—N1—C3177.34 (15)
N1—C3—C4—C5178.65 (16)C2—C3—N1—C81.7 (2)
C2—C3—C4—C50.7 (3)C4—C3—N1—C8176.17 (14)
C3—C4—C5—C60.1 (3)N1—C8—N2—C73.9 (2)
C2—C1—C6—C50.4 (3)C9—C8—N2—C7176.45 (15)
C4—C5—C6—C10.7 (3)N1—C8—N2—N3172.45 (12)
C3—C2—C7—O1177.59 (14)C9—C8—N2—N37.92 (19)
C1—C2—C7—O10.1 (2)O1—C7—N2—C8176.29 (13)
C3—C2—C7—N21.63 (18)C2—C7—N2—C82.96 (19)
C1—C2—C7—N2179.36 (13)O1—C7—N2—N38.3 (2)
N3—C10—C11—C12177.24 (12)C2—C7—N2—N3170.92 (11)
N3—C10—C11—C160.3 (2)C11—C10—N3—N2178.16 (10)
C16—C11—C12—C130.07 (19)C8—N2—N3—C10132.15 (13)
C10—C11—C12—C13177.54 (11)C7—N2—N3—C1058.94 (16)
C11—C12—C13—C141.2 (2)C13—C14—N4—C171.4 (2)
C12—C13—C14—N4178.04 (11)C15—C14—N4—C17178.90 (16)
C12—C13—C14—C151.67 (19)C13—C14—N4—C18178.72 (13)
N4—C14—C15—C16178.58 (12)C15—C14—N4—C181.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O1i0.94 (2)2.58 (3)3.379 (2)143.0 (19)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H18N4O
Mr306.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5175 (10), 9.3631 (13), 12.7886 (17)
α, β, γ (°)98.198 (2), 103.259 (2), 112.517 (2)
V3)782.33 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.18 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9011, 3582, 2863
Rint0.021
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.150, 1.03
No. of reflections3582
No. of parameters280
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: APEX2 not SMART (Bruker, ????), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O1i0.94 (2)2.58 (3)3.379 (2)143.0 (19)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds