Download citation
Download citation
link to html
In the title compound, C23H20Cl2N2O4·1.5H2O, the vanillin group makes dihedral angles of 0.52 (14) and 81.22 (7)° with the benzohydrazide residue and the dichloro­benzene ring, respectively. An intra­molecular N—H...O hydrogen bond helps to stabilize the mol­ecular conformation, while inter­molecular O—H...O and bifurcated O—H...(N,O) hydrogen bonds link the mol­ecules, forming an infinite network. One of the water mol­ecule sites is half-occupied.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051070/hb2588sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051070/hb2588Isup2.hkl
Contains datablock I

CCDC reference: 667415

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.049
  • wR factor = 0.130
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H1A .. H2B .. 2.05 Ang.
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 25.00 Perc.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

One of the aims of investigating the structural chemistry of Schiff bases is to develop protein and enzyme mimics (Santos et al., 2001). As part of an investigation of the coordination properties of Schiff bases functioning as ligands, we report the synthesis and structure of the title compound, (I).

In (I) (Fig. 1), the vanillin group (C21—C27/O21/O22) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0229 Å. This plane makes dihedral angles of 0.52 (14)° and 81.22 (7)° with the benzohydrazide residue (C11—C16) and the dichlorobenzene ring (C31—C36), respectively. The dihedral angle between the benzohydrazide residue and the dichlorobenzene ring is 81.74 (9)°. Otherwise, all bond lengths and angles are within normal ranges (Allen et al., 1987).

An intramolecular hydrogen bond links the NH group to O12, thereby influencing the molecular conformation (Table 1). A bifurcated O—H···(N,O) and an O—H···O hydrogen bond link the water molecules to the main molecule, resulting in dimeric associations of two main molecules and two water molecules. Then, further O—H···O hydrogen bonds link the molecules into an infinite network (Fig. 2).

Related literature top

For general background, Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-(2,4-dichlorobenzyloxy)-3-methoxybenzaldehyde (3.11 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 2-methoxybenzohydrazide (1.66 g, 10 mmol) and the mixture stirred at 350 K for 5 h under nitrogen, giving a white precipitate. The product was isolated, recrystallized from ethanol and then dried in a vacuum to give the pure compound in 81% yield. Colourless blocks of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Presumably the water of crystallization in (I) was absorbed from the atmosphere.

Refinement top

Due to a close O2···O2 contact, the O2 water molecule has a site occupancy of 0.5.

The H atoms of the water molecule and imine group were located in difference maps and then treated as riding atoms. All other H atoms were included in calculated positions and refined using a riding model approximation: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H; 0.85 Å and Uiso(H) = 1.2Ueq(O) for water O—H; 0.86 Å and Uiso(H) = 1.2Ueq(N) for imino N—H.

Structure description top

One of the aims of investigating the structural chemistry of Schiff bases is to develop protein and enzyme mimics (Santos et al., 2001). As part of an investigation of the coordination properties of Schiff bases functioning as ligands, we report the synthesis and structure of the title compound, (I).

In (I) (Fig. 1), the vanillin group (C21—C27/O21/O22) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0229 Å. This plane makes dihedral angles of 0.52 (14)° and 81.22 (7)° with the benzohydrazide residue (C11—C16) and the dichlorobenzene ring (C31—C36), respectively. The dihedral angle between the benzohydrazide residue and the dichlorobenzene ring is 81.74 (9)°. Otherwise, all bond lengths and angles are within normal ranges (Allen et al., 1987).

An intramolecular hydrogen bond links the NH group to O12, thereby influencing the molecular conformation (Table 1). A bifurcated O—H···(N,O) and an O—H···O hydrogen bond link the water molecules to the main molecule, resulting in dimeric associations of two main molecules and two water molecules. Then, further O—H···O hydrogen bonds link the molecules into an infinite network (Fig. 2).

For general background, Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), with H bonds drawn as dashed lines. For the sake of clarity, H atoms bonded to C atoms have been omitted.
(E)—N'-[4-(2,4-Dichlorobenzyloxy)-3-methoxybenzylidene]-2-methoxybenzohydrazide sesquihydrate top
Crystal data top
C23H20Cl2N2O4·1.5H2OZ = 2
Mr = 486.34F(000) = 506
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7689 (16) ÅCell parameters from 1784 reflections
b = 8.3390 (17) Åθ = 2.3–25.6°
c = 18.345 (4) ŵ = 0.33 mm1
α = 80.93 (3)°T = 294 K
β = 77.85 (3)°Block, colorless
γ = 86.50 (3)°0.24 × 0.20 × 0.18 mm
V = 1146.9 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4015 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 49
Tmin = 0.902, Tmax = 0.943k = 99
5880 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.5064P]
where P = (Fo2 + 2Fc2)/3
4015 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.45 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
C23H20Cl2N2O4·1.5H2Oγ = 86.50 (3)°
Mr = 486.34V = 1146.9 (4) Å3
Triclinic, P1Z = 2
a = 7.7689 (16) ÅMo Kα radiation
b = 8.3390 (17) ŵ = 0.33 mm1
c = 18.345 (4) ÅT = 294 K
α = 80.93 (3)°0.24 × 0.20 × 0.18 mm
β = 77.85 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4015 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2630 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.943Rint = 0.022
5880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0496 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
4015 reflectionsΔρmin = 0.33 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.13680 (11)0.79097 (10)0.38426 (5)0.0694 (3)
Cl20.39945 (15)0.19415 (15)0.47328 (6)0.1037 (4)
N270.5507 (3)0.2392 (3)0.01833 (11)0.0398 (5)
N170.5335 (3)0.1920 (3)0.04870 (11)0.0408 (5)
H170.44040.22090.06630.049*
O210.3807 (2)0.5372 (2)0.32719 (10)0.0482 (5)
O220.6607 (2)0.3832 (3)0.27045 (10)0.0555 (5)
O170.7940 (3)0.0557 (3)0.06310 (11)0.0590 (6)
O120.3475 (2)0.1888 (2)0.15247 (11)0.0555 (5)
C240.4146 (3)0.3881 (3)0.11807 (13)0.0367 (6)
C220.5358 (3)0.4077 (3)0.22718 (14)0.0385 (6)
C110.6317 (3)0.0618 (3)0.16009 (14)0.0368 (6)
C260.2499 (3)0.5272 (3)0.21774 (14)0.0401 (6)
H260.14910.58490.23750.048*
C250.2655 (3)0.4755 (3)0.14804 (14)0.0408 (6)
H250.17550.49960.12130.049*
C170.6597 (3)0.1018 (3)0.08664 (14)0.0391 (6)
C210.3828 (3)0.4934 (3)0.25773 (14)0.0385 (6)
C120.4826 (3)0.1046 (3)0.19211 (15)0.0406 (6)
C230.5507 (3)0.3560 (3)0.15837 (14)0.0384 (6)
H230.65190.29920.13840.046*
C270.4222 (3)0.3281 (3)0.04695 (14)0.0398 (6)
H270.33040.35550.02150.048*
C130.4770 (4)0.0628 (3)0.26198 (16)0.0495 (7)
H130.37900.09270.28320.059*
C310.0713 (4)0.5174 (3)0.39109 (14)0.0424 (7)
C160.7684 (3)0.0254 (3)0.20037 (15)0.0434 (7)
H160.86760.05640.18010.052*
C140.6156 (4)0.0228 (4)0.30015 (16)0.0532 (8)
H140.61030.05050.34680.064*
C370.2280 (4)0.6251 (3)0.36038 (15)0.0472 (7)
H37A0.19780.71160.32280.057*
H37B0.25470.67460.40100.057*
C150.7606 (4)0.0670 (3)0.26974 (16)0.0517 (8)
H150.85370.12480.29550.062*
C320.1006 (4)0.5803 (4)0.40135 (14)0.0469 (7)
C360.0922 (4)0.3508 (4)0.40978 (15)0.0525 (8)
H360.20540.30460.40450.063*
C330.2460 (4)0.4836 (4)0.42571 (16)0.0584 (8)
H330.35960.52880.43050.070*
C340.2185 (5)0.3197 (5)0.44249 (16)0.0617 (9)
C22A0.8218 (4)0.3038 (4)0.24026 (19)0.0682 (10)
H22A0.79930.19410.23600.102*
H22B0.90310.30320.27310.102*
H22C0.87130.36070.19130.102*
C350.0504 (5)0.2514 (4)0.43596 (16)0.0621 (9)
H350.03360.14000.44900.074*
C12A0.1899 (4)0.2271 (4)0.1805 (2)0.0722 (10)
H12A0.21600.29760.22780.108*
H12B0.10630.28050.14500.108*
H12C0.14110.12890.18740.108*
O10.9358 (4)0.1894 (3)0.05343 (18)0.1153 (11)
H1A0.87320.17750.02170.138*
H1B1.03020.13050.05130.138*
O20.0665 (6)0.4574 (6)0.9588 (3)0.0901 (15)*0.50
H2A0.04980.55670.96540.108*0.50
H2B0.00950.38820.99290.108*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0655 (6)0.0677 (6)0.0727 (6)0.0170 (4)0.0173 (4)0.0068 (4)
Cl20.0972 (8)0.1244 (9)0.0865 (7)0.0596 (7)0.0000 (6)0.0102 (6)
N270.0412 (13)0.0448 (13)0.0342 (12)0.0012 (11)0.0058 (10)0.0108 (10)
N170.0413 (13)0.0489 (14)0.0343 (12)0.0053 (11)0.0102 (10)0.0115 (10)
O210.0424 (11)0.0659 (13)0.0403 (11)0.0044 (9)0.0078 (8)0.0230 (9)
O220.0390 (11)0.0858 (15)0.0483 (12)0.0109 (10)0.0158 (9)0.0257 (11)
O170.0498 (12)0.0776 (15)0.0594 (13)0.0183 (11)0.0236 (10)0.0311 (11)
O120.0440 (11)0.0722 (14)0.0567 (12)0.0161 (10)0.0185 (10)0.0247 (11)
C240.0393 (15)0.0366 (15)0.0322 (14)0.0030 (12)0.0023 (11)0.0051 (11)
C220.0322 (14)0.0448 (16)0.0392 (15)0.0009 (12)0.0068 (12)0.0091 (12)
C110.0410 (15)0.0322 (14)0.0366 (14)0.0021 (12)0.0054 (12)0.0063 (11)
C260.0379 (15)0.0429 (16)0.0376 (15)0.0040 (12)0.0024 (12)0.0095 (12)
C250.0403 (15)0.0446 (16)0.0369 (15)0.0012 (13)0.0099 (12)0.0027 (12)
C170.0385 (15)0.0382 (15)0.0412 (15)0.0006 (12)0.0079 (12)0.0085 (12)
C210.0387 (15)0.0427 (16)0.0332 (14)0.0055 (12)0.0026 (12)0.0076 (12)
C120.0415 (16)0.0376 (15)0.0425 (16)0.0025 (12)0.0072 (13)0.0088 (12)
C230.0331 (14)0.0434 (16)0.0376 (15)0.0013 (12)0.0020 (11)0.0100 (12)
C270.0399 (15)0.0443 (16)0.0354 (15)0.0017 (13)0.0083 (12)0.0050 (12)
C130.0552 (18)0.0507 (18)0.0472 (17)0.0017 (14)0.0199 (14)0.0100 (14)
C310.0510 (17)0.0505 (18)0.0267 (13)0.0007 (14)0.0039 (12)0.0145 (12)
C160.0406 (16)0.0410 (16)0.0470 (17)0.0021 (13)0.0049 (13)0.0080 (13)
C140.069 (2)0.0534 (19)0.0392 (16)0.0015 (16)0.0099 (15)0.0146 (14)
C370.0477 (17)0.0549 (18)0.0417 (16)0.0031 (14)0.0049 (13)0.0228 (14)
C150.0593 (19)0.0484 (18)0.0462 (17)0.0067 (15)0.0029 (15)0.0173 (14)
C320.0510 (18)0.0581 (19)0.0327 (15)0.0012 (15)0.0084 (13)0.0111 (13)
C360.0581 (19)0.057 (2)0.0415 (16)0.0014 (16)0.0054 (14)0.0129 (14)
C330.0478 (18)0.085 (3)0.0421 (17)0.0043 (18)0.0072 (14)0.0106 (17)
C340.070 (2)0.076 (2)0.0386 (17)0.0263 (19)0.0016 (15)0.0110 (16)
C22A0.0397 (17)0.103 (3)0.070 (2)0.0175 (17)0.0213 (16)0.032 (2)
C350.088 (3)0.054 (2)0.0407 (17)0.0094 (19)0.0046 (17)0.0075 (15)
C12A0.052 (2)0.092 (3)0.083 (2)0.0193 (18)0.0267 (18)0.034 (2)
O10.105 (2)0.102 (2)0.177 (3)0.0502 (17)0.088 (2)0.080 (2)
Geometric parameters (Å, º) top
Cl1—C321.751 (3)C13—H130.9300
Cl2—C341.747 (3)C31—C361.386 (4)
N27—C271.279 (3)C31—C321.391 (4)
N27—N171.383 (3)C31—C371.513 (4)
N17—C171.341 (3)C16—C151.385 (4)
N17—H170.8600C16—H160.9300
O21—C211.377 (3)C14—C151.365 (4)
O21—C371.431 (3)C14—H140.9300
O22—C221.365 (3)C37—H37A0.9700
O22—C22A1.426 (3)C37—H37B0.9700
O17—C171.229 (3)C15—H150.9300
O12—C121.369 (3)C32—C331.383 (4)
O12—C12A1.425 (3)C36—C351.382 (4)
C24—C251.389 (3)C36—H360.9300
C24—C231.403 (3)C33—C341.367 (5)
C24—C271.458 (3)C33—H330.9300
C22—C231.377 (3)C34—C351.381 (5)
C22—C211.407 (3)C22A—H22A0.9600
C11—C161.396 (3)C22A—H22B0.9600
C11—C121.409 (4)C22A—H22C0.9600
C11—C171.499 (4)C35—H350.9300
C26—C211.379 (4)C12A—H12A0.9600
C26—C251.392 (4)C12A—H12B0.9600
C26—H260.9300C12A—H12C0.9600
C25—H250.9300O1—H1A0.8532
C12—C131.390 (4)O1—H1B0.8547
C23—H230.9300O2—H2A0.8539
C27—H270.9300O2—H2B0.8485
C13—C141.380 (4)
C27—N27—N17114.0 (2)C15—C16—H16119.1
C17—N17—N27121.1 (2)C11—C16—H16119.1
C17—N17—H17119.5C15—C14—C13120.3 (3)
N27—N17—H17119.5C15—C14—H14119.9
C21—O21—C37117.1 (2)C13—C14—H14119.9
C22—O22—C22A117.1 (2)O21—C37—C31112.3 (2)
C12—O12—C12A119.8 (2)O21—C37—H37A109.1
C25—C24—C23118.9 (2)C31—C37—H37A109.1
C25—C24—C27118.9 (2)O21—C37—H37B109.1
C23—C24—C27122.1 (2)C31—C37—H37B109.1
O22—C22—C23125.1 (2)H37A—C37—H37B107.9
O22—C22—C21115.0 (2)C14—C15—C16119.8 (3)
C23—C22—C21119.9 (2)C14—C15—H15120.1
C16—C11—C12117.5 (2)C16—C15—H15120.1
C16—C11—C17116.1 (2)C33—C32—C31122.8 (3)
C12—C11—C17126.4 (2)C33—C32—Cl1118.0 (2)
C21—C26—C25120.4 (2)C31—C32—Cl1119.2 (2)
C21—C26—H26119.8C35—C36—C31121.8 (3)
C25—C26—H26119.8C35—C36—H36119.1
C24—C25—C26120.5 (2)C31—C36—H36119.1
C24—C25—H25119.8C34—C33—C32118.2 (3)
C26—C25—H25119.8C34—C33—H33120.9
O17—C17—N17121.8 (2)C32—C33—H33120.9
O17—C17—C11121.2 (2)C33—C34—C35121.4 (3)
N17—C17—C11117.1 (2)C33—C34—Cl2119.3 (3)
O21—C21—C26125.3 (2)C35—C34—Cl2119.3 (3)
O21—C21—C22115.1 (2)O22—C22A—H22A109.5
C26—C21—C22119.5 (2)O22—C22A—H22B109.5
O12—C12—C13122.3 (2)H22A—C22A—H22B109.5
O12—C12—C11117.6 (2)O22—C22A—H22C109.5
C13—C12—C11120.0 (2)H22A—C22A—H22C109.5
C22—C23—C24120.7 (2)H22B—C22A—H22C109.5
C22—C23—H23119.7C34—C35—C36119.1 (3)
C24—C23—H23119.7C34—C35—H35120.5
N27—C27—C24122.2 (2)C36—C35—H35120.5
N27—C27—H27118.9O12—C12A—H12A109.5
C24—C27—H27118.9O12—C12A—H12B109.5
C14—C13—C12120.6 (3)H12A—C12A—H12B109.5
C14—C13—H13119.7O12—C12A—H12C109.5
C12—C13—H13119.7H12A—C12A—H12C109.5
C36—C31—C32116.7 (3)H12B—C12A—H12C109.5
C36—C31—C37121.6 (3)H1A—O1—H1B115.6
C32—C31—C37121.8 (3)H2A—O2—H2B116.3
C15—C16—C11121.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O17i0.852.022.852 (3)164
O2—H2A···O1ii0.852.102.918 (6)161
O2—H2B···O1iii0.851.892.711 (6)162
O1—H1A···O170.852.192.987 (3)155
O1—H1A···N270.852.543.180 (3)133
N17—H17···O120.861.932.625 (3)137
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC23H20Cl2N2O4·1.5H2O
Mr486.34
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.7689 (16), 8.3390 (17), 18.345 (4)
α, β, γ (°)80.93 (3), 77.85 (3), 86.50 (3)
V3)1146.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.902, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
5880, 4015, 2630
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.02
No. of reflections4015
No. of parameters295
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.33

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O17i0.852.022.852 (3)164
O2—H2A···O1ii0.852.102.918 (6)161
O2—H2B···O1iii0.851.892.711 (6)162
O1—H1A···O170.852.192.987 (3)155
O1—H1A···N270.852.543.180 (3)133
N17—H17···O120.861.932.625 (3)137
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds