Download citation
Download citation
link to html
In the title compound, C10H11N3O5, the dihedral angle between the fused pyridine and imidazolidine ring planes is 4.88 (12)°. The crystal structure is stabilized by weak C—H...O inter­molecular inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051379/hb2590sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051379/hb2590Isup2.hkl
Contains datablock I

CCDC reference: 667434

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.040
  • wR factor = 0.126
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Kentene aminals with an imidazolidine ring can act as nucleophiles and they are useful synthons, especially for the synthesis of fused heterocycles (Huang & Tzai, 1986). The title compound, (I), (Fig. 1), is an important representative of such reagents.

As shown in Fig. 1, the pyridine ring and the imidazolidine ring are nearly in the same plane [dihedral angle = 4.88 (12)°]. The crystal structure is stabilized by weak C—H···O intermolecular interactions (Table 1).

Related literature top

For the synthesis, see: Huang & Tzai (1986).

Experimental top

The title compound was prepared according to the method of Huang & Tzai (1986). Colourless prism of (I) were obtained by recrystallization from ethyl acetate.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Kentene aminals with an imidazolidine ring can act as nucleophiles and they are useful synthons, especially for the synthesis of fused heterocycles (Huang & Tzai, 1986). The title compound, (I), (Fig. 1), is an important representative of such reagents.

As shown in Fig. 1, the pyridine ring and the imidazolidine ring are nearly in the same plane [dihedral angle = 4.88 (12)°]. The crystal structure is stabilized by weak C—H···O intermolecular interactions (Table 1).

For the synthesis, see: Huang & Tzai (1986).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Methyl 1-methyl-8-nitro-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylate top
Crystal data top
C10H11N3O5F(000) = 528
Mr = 253.22Dx = 1.479 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2092 reflections
a = 9.848 (5) Åθ = 2.7–25.7°
b = 10.738 (5) ŵ = 0.12 mm1
c = 11.318 (6) ÅT = 294 K
β = 108.165 (8)°Prism, colorless
V = 1137.2 (10) Å30.22 × 0.20 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2008 independent reflections
Radiation source: fine-focus sealed tube1428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.974, Tmax = 0.983k = 1012
5593 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3776P]
where P = (Fo2 + 2Fc2)/3
2008 reflections(Δ/σ)max = 0.008
165 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H11N3O5V = 1137.2 (10) Å3
Mr = 253.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.848 (5) ŵ = 0.12 mm1
b = 10.738 (5) ÅT = 294 K
c = 11.318 (6) Å0.22 × 0.20 × 0.14 mm
β = 108.165 (8)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1428 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.030
5593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
2008 reflectionsΔρmin = 0.23 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4168 (2)0.36676 (18)0.40827 (18)0.0638 (6)
O20.5293 (2)0.2252 (2)0.33881 (18)0.0691 (6)
O30.30450 (17)0.10139 (14)0.15771 (13)0.0430 (4)
O40.4560 (2)0.0553 (2)0.23765 (17)0.0732 (7)
O50.12662 (17)0.10383 (14)0.53454 (15)0.0464 (5)
N10.34353 (19)0.26613 (16)0.62403 (16)0.0347 (4)
N20.23172 (18)0.08686 (16)0.55925 (15)0.0322 (4)
N30.4424 (2)0.2564 (2)0.39231 (17)0.0432 (5)
C10.4703 (3)0.3461 (2)0.6653 (2)0.0476 (6)
H1A0.54920.30560.64830.071*
H1B0.49370.36100.75300.071*
H1C0.45100.42390.62150.071*
C20.2644 (3)0.2399 (2)0.7117 (2)0.0550 (7)
H2A0.19340.30390.70710.066*
H2B0.32890.23610.79620.066*
C30.1939 (3)0.1156 (2)0.6725 (2)0.0439 (6)
H3A0.23130.05310.73620.053*
H3B0.09120.12130.65460.053*
C40.3190 (2)0.17757 (19)0.53658 (18)0.0282 (5)
C50.3675 (2)0.16054 (19)0.43311 (19)0.0317 (5)
C60.3348 (2)0.0470 (2)0.36515 (19)0.0343 (5)
C70.2556 (3)0.0434 (2)0.3964 (2)0.0389 (6)
H70.23750.11710.35100.047*
C80.1991 (2)0.0271 (2)0.49896 (19)0.0348 (5)
C90.3759 (2)0.0253 (2)0.2483 (2)0.0398 (6)
C100.3298 (3)0.0872 (3)0.0386 (2)0.0587 (8)
H10A0.42560.11260.04640.088*
H10B0.26340.13800.02250.088*
H10C0.31710.00150.01330.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0873 (14)0.0420 (11)0.0701 (13)0.0070 (10)0.0361 (11)0.0132 (10)
O20.0657 (12)0.0934 (15)0.0666 (12)0.0229 (11)0.0473 (11)0.0131 (11)
O30.0539 (10)0.0478 (10)0.0311 (8)0.0149 (8)0.0187 (8)0.0060 (7)
O40.0920 (15)0.0826 (14)0.0534 (12)0.0525 (12)0.0349 (11)0.0129 (10)
O50.0532 (10)0.0394 (9)0.0463 (10)0.0144 (8)0.0150 (8)0.0045 (7)
N10.0362 (10)0.0341 (10)0.0381 (10)0.0070 (8)0.0176 (8)0.0048 (8)
N20.0365 (10)0.0342 (10)0.0290 (9)0.0074 (8)0.0147 (8)0.0019 (8)
N30.0441 (12)0.0528 (14)0.0368 (10)0.0067 (10)0.0186 (9)0.0060 (10)
C10.0478 (15)0.0433 (15)0.0534 (15)0.0141 (11)0.0183 (12)0.0086 (12)
C20.0684 (17)0.0590 (17)0.0527 (15)0.0210 (14)0.0408 (14)0.0200 (13)
C30.0510 (14)0.0535 (15)0.0349 (12)0.0144 (12)0.0247 (11)0.0079 (11)
C40.0271 (11)0.0282 (11)0.0291 (10)0.0016 (8)0.0086 (9)0.0032 (9)
C50.0320 (12)0.0349 (12)0.0306 (11)0.0006 (9)0.0132 (9)0.0056 (10)
C60.0351 (12)0.0390 (13)0.0289 (11)0.0107 (10)0.0103 (10)0.0046 (10)
C70.0518 (14)0.0315 (12)0.0322 (12)0.0015 (10)0.0113 (10)0.0030 (10)
C80.0373 (12)0.0331 (12)0.0309 (11)0.0019 (10)0.0058 (10)0.0030 (10)
C90.0448 (13)0.0429 (14)0.0342 (12)0.0125 (11)0.0159 (11)0.0024 (11)
C100.080 (2)0.0701 (19)0.0337 (13)0.0084 (15)0.0291 (14)0.0059 (13)
Geometric parameters (Å, º) top
O1—N31.237 (3)C1—H1C0.9600
O2—N31.239 (2)C2—C31.506 (3)
O3—C91.328 (3)C2—H2A0.9700
O3—C101.453 (3)C2—H2B0.9700
O4—C91.203 (3)C3—H3A0.9700
O5—C81.236 (2)C3—H3B0.9700
N1—C41.339 (3)C4—C51.408 (3)
N1—C11.466 (3)C5—C61.424 (3)
N1—C21.467 (3)C6—C71.359 (3)
N2—C41.375 (3)C6—C91.516 (3)
N2—C81.390 (3)C7—C81.446 (3)
N2—C31.474 (3)C7—H70.9300
N3—C51.424 (3)C10—H10A0.9600
C1—H1A0.9600C10—H10B0.9600
C1—H1B0.9600C10—H10C0.9600
C9—O3—C10116.69 (18)C2—C3—H3B111.2
C4—N1—C1126.18 (18)H3A—C3—H3B109.1
C4—N1—C2110.63 (17)N1—C4—N2110.13 (17)
C1—N1—C2118.42 (18)N1—C4—C5132.64 (19)
C4—N2—C8126.48 (17)N2—C4—C5117.20 (19)
C4—N2—C3110.84 (17)C4—C5—C6118.85 (19)
C8—N2—C3121.94 (17)C4—C5—N3121.3 (2)
O1—N3—O2122.2 (2)C6—C5—N3119.75 (18)
O1—N3—C5119.69 (19)C7—C6—C5121.50 (19)
O2—N3—C5118.0 (2)C7—C6—C9116.6 (2)
N1—C1—H1A109.5C5—C6—C9121.67 (19)
N1—C1—H1B109.5C6—C7—C8121.2 (2)
H1A—C1—H1B109.5C6—C7—H7119.4
N1—C1—H1C109.5C8—C7—H7119.4
H1A—C1—H1C109.5O5—C8—N2119.68 (19)
H1B—C1—H1C109.5O5—C8—C7125.9 (2)
N1—C2—C3105.29 (17)N2—C8—C7114.39 (18)
N1—C2—H2A110.7O4—C9—O3124.8 (2)
C3—C2—H2A110.7O4—C9—C6124.0 (2)
N1—C2—H2B110.7O3—C9—C6111.00 (18)
C3—C2—H2B110.7O3—C10—H10A109.5
H2A—C2—H2B108.8O3—C10—H10B109.5
N2—C3—C2102.93 (17)H10A—C10—H10B109.5
N2—C3—H3A111.2O3—C10—H10C109.5
C2—C3—H3A111.2H10A—C10—H10C109.5
N2—C3—H3B111.2H10B—C10—H10C109.5
C4—N1—C2—C34.1 (3)O2—N3—C5—C631.4 (3)
C1—N1—C2—C3153.0 (2)C4—C5—C6—C71.5 (3)
C4—N2—C3—C22.8 (3)N3—C5—C6—C7175.7 (2)
C8—N2—C3—C2173.6 (2)C4—C5—C6—C9176.32 (19)
N1—C2—C3—N24.0 (3)N3—C5—C6—C90.9 (3)
C1—N1—C4—N2152.4 (2)C5—C6—C7—C81.0 (3)
C2—N1—C4—N22.4 (2)C9—C6—C7—C8174.04 (19)
C1—N1—C4—C525.7 (4)C4—N2—C8—O5175.04 (19)
C2—N1—C4—C5179.4 (2)C3—N2—C8—O55.8 (3)
C8—N2—C4—N1170.60 (19)C4—N2—C8—C75.3 (3)
C3—N2—C4—N10.3 (2)C3—N2—C8—C7174.6 (2)
C8—N2—C4—C57.9 (3)C6—C7—C8—O5179.8 (2)
C3—N2—C4—C5178.12 (19)C6—C7—C8—N20.6 (3)
N1—C4—C5—C6172.5 (2)C10—O3—C9—O42.0 (4)
N2—C4—C5—C65.5 (3)C10—O3—C9—C6177.7 (2)
N1—C4—C5—N310.3 (4)C7—C6—C9—O466.8 (3)
N2—C4—C5—N3171.63 (18)C5—C6—C9—O4118.1 (3)
O1—N3—C5—C430.2 (3)C7—C6—C9—O3108.9 (2)
O2—N3—C5—C4151.5 (2)C5—C6—C9—O366.1 (3)
O1—N3—C5—C6146.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.972.543.106 (4)118
C2—H2B···O5ii0.972.513.209 (3)129
C3—H3B···O5iii0.972.523.295 (4)137
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H11N3O5
Mr253.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)9.848 (5), 10.738 (5), 11.318 (6)
β (°) 108.165 (8)
V3)1137.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
5593, 2008, 1428
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.126, 1.04
No. of reflections2008
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.972.543.106 (4)118
C2—H2B···O5ii0.972.513.209 (3)129
C3—H3B···O5iii0.972.523.295 (4)137
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds