Download citation
Download citation
link to html
In the title compound, [Ni(C8H4O4)(C10H9N3)3]n, an NiII atom with octa­hedral coordination is bound by one chelating terephthalate (tp) dianion, two monodentate di-4-pyridylamine (dpa) ligands, and two bridging dpa ligands. These link the Ni atoms into one-dimensional [Ni(tp)(dpa)3]n coordination polymer chains that propagate along the b-axis direction. Inter­weaving pairs of chains stack in three dimensions via N—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051112/hg2318sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051112/hg2318Isup2.hkl
Contains datablock I

CCDC reference: 667196

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.068
  • wR factor = 0.168
  • Data-to-parameter ratio = 16.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.58 Ratio PLAT220_ALERT_2_B Large Non-Solvent N Ueq(max)/Ueq(min) ... 4.04 Ratio
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.118 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.12 PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.28 Ratio PLAT320_ALERT_2_C Check Hybridisation of C35 in Main Residue . ? PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C34 - C35 ... 1.38 Ang. PLAT410_ALERT_2_C Short Intra H...H Contact H32 .. H37 .. 1.91 Ang.
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In comparison to the large number of coordination polymers constructed from the rigid rod tethering ligand 4,4'-bipyridine, metal-organic materials based on 4,4'-dipyridylamine (dpa) are much rarer (Montney et al., 2007). Prepared during continued attempts to develop this chemistry, the title compound possesses an asymmetric unit (Fig. 1) consisting of one nickel atom, one terephthalate (tp) dianion, and three crystallographically distinct dpa moieties. The nickel atom displays a [NiN4O2] octahedral coordination sphere, with the cis O donor atoms belonging to a chelating carboxylate terminus of the tp ligand. Two of the N atom donors, disposed in a cis fashion, belong to different bridging dpa ligands. The other two N donors belong to crystallographically independent monodentate dpa lignds.

Extension of the structure along the b crystal direction reveals an 1-D chain coordination polymer of formulation [Ni(tp)(dpa)3]n, constructed by the linkage of adjacent Ni atoms through exobidentate dpa ligands (Fig. 2). Within the 1-D chain motif, the Ni–Ni through-ligand distance is 11.048 (2) Å, marking the b lattice parameter.

Each [Ni(tp)(dpa)3]n chain is interwoven by another identical chain, related by the crystallographic 21 screw axis along b (Fig. 3). The double chain motifs are stabilized through N—H···O hydrogen bonding promoted by the central amine groups of the bridging dpa ligands. These one-dimensional subunits further aggregate into three dimensions via additional N—H···O hydrogen bonding patterns mediated by the pendant dpa ligands (Fig. 4).

Related literature top

For related literature, see: Montney et al. (2007); Zapf et al. (1998).

Experimental top

Nickel chloride hexahydrate and terephthalic acid were obtained commercially. Di-4-pyridylamine (dpa) was prepared via a published procedure (Zapf et al., 1998). Nickel chloride hexahydrate (88 mg, 0.37 mmol), terephthalic acid (62 mg, 0.37 mmol) and dpa (127 mg, 0.74 mmol) were added to 10 ml H2O in a 23 ml a Teflon-lined Parr acid digestion bomb. The pH was adjusted with 0.75 ml of 0.1 M NaOH and the bomb was sealed. The mixture was then heated under autogenous pressure at 393 K for 48 h., whereupon it was cooled slowly to 293 K. Small dark blue plates (76 mg, 42% yield based on dpa) of the title compound were produced.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.93 (2) Å and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to N within the dpa ligands were found via Fourier difference map and refined with Uiso =1.2Ueq(N). The largest difference peak of 1.117 e-3 was located 0.77 Å from H17.

Structure description top

In comparison to the large number of coordination polymers constructed from the rigid rod tethering ligand 4,4'-bipyridine, metal-organic materials based on 4,4'-dipyridylamine (dpa) are much rarer (Montney et al., 2007). Prepared during continued attempts to develop this chemistry, the title compound possesses an asymmetric unit (Fig. 1) consisting of one nickel atom, one terephthalate (tp) dianion, and three crystallographically distinct dpa moieties. The nickel atom displays a [NiN4O2] octahedral coordination sphere, with the cis O donor atoms belonging to a chelating carboxylate terminus of the tp ligand. Two of the N atom donors, disposed in a cis fashion, belong to different bridging dpa ligands. The other two N donors belong to crystallographically independent monodentate dpa lignds.

Extension of the structure along the b crystal direction reveals an 1-D chain coordination polymer of formulation [Ni(tp)(dpa)3]n, constructed by the linkage of adjacent Ni atoms through exobidentate dpa ligands (Fig. 2). Within the 1-D chain motif, the Ni–Ni through-ligand distance is 11.048 (2) Å, marking the b lattice parameter.

Each [Ni(tp)(dpa)3]n chain is interwoven by another identical chain, related by the crystallographic 21 screw axis along b (Fig. 3). The double chain motifs are stabilized through N—H···O hydrogen bonding promoted by the central amine groups of the bridging dpa ligands. These one-dimensional subunits further aggregate into three dimensions via additional N—H···O hydrogen bonding patterns mediated by the pendant dpa ligands (Fig. 4).

For related literature, see: Montney et al. (2007); Zapf et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalMaker (CrystalMaker Software, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing 50% probability ellipsoids and partial atom numbering scheme. Color codes: light-blue N, yellow S, black C, pink H, green Ni.
[Figure 2] Fig. 2. A single [Ni(tp)(dpa)3]n coordination polymer chain.
[Figure 3] Fig. 3. Two interwoven [Ni(tp)(dpa)3]n chains. Hydrogen bonding is shown as dashed lines.
[Figure 4] Fig. 4. Interaction of [Ni(tp)(dpa)3]n double chain motifs through N—H···O hydrogen bonding, shown as gray lines.
catena-poly-[[(terephthalato-κ2O:O)bis(di-4- pyridylamine-κN)nickel(II)]-µ-di-4-pyridylamine-κ2N:N'] top
Crystal data top
[Ni(C8H4O4)(C10H9N3)3]F(000) = 1524
Mr = 735.42Dx = 1.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 39515 reflections
a = 17.025 (3) Åθ = 1.4–28.5°
b = 11.048 (2) ŵ = 0.65 mm1
c = 18.736 (4) ÅT = 173 K
β = 110.281 (3)°Plate, blue
V = 3305.7 (11) Å30.38 × 0.14 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
8097 independent reflections
Radiation source: fine-focus sealed tube4711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
ω scansθmax = 28.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.834, Tmax = 0.950k = 1414
39515 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0719P)2 + 3.6742P]
where P = (Fo2 + 2Fc2)/3
8097 reflections(Δ/σ)max < 0.001
481 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Ni(C8H4O4)(C10H9N3)3]V = 3305.7 (11) Å3
Mr = 735.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.025 (3) ŵ = 0.65 mm1
b = 11.048 (2) ÅT = 173 K
c = 18.736 (4) Å0.38 × 0.14 × 0.08 mm
β = 110.281 (3)°
Data collection top
Bruker SMART 1K
diffractometer
8097 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4711 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.950Rint = 0.118
39515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.12 e Å3
8097 reflectionsΔρmin = 0.84 e Å3
481 parameters
Special details top

Experimental. The small crystal width resulted in relatively weak diffraction and an Rint value in excess of 0.10 despite collection of 30 second frames. Nevertheless, refinement was satisfactory.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.89296 (3)0.64879 (4)0.19611 (3)0.01181 (14)
O10.90765 (17)0.5489 (2)0.29935 (15)0.0182 (6)
O20.90374 (17)0.7477 (2)0.29665 (15)0.0187 (6)
O30.78211 (18)0.6437 (3)0.61865 (15)0.0265 (7)
O40.91737 (18)0.6727 (3)0.68384 (15)0.0232 (7)
N10.7629 (2)0.6457 (3)0.17926 (18)0.0170 (7)
N20.5155 (2)0.6293 (3)0.17493 (19)0.0187 (8)
H2N0.490 (3)0.704 (5)0.186 (3)0.044 (15)*
N30.3284 (2)0.3713 (4)0.0703 (2)0.0387 (11)
N41.0226 (2)0.6513 (3)0.21577 (18)0.0153 (7)
N51.2732 (2)0.7399 (4)0.2528 (2)0.0234 (8)
H5N1.278 (3)0.781 (4)0.210 (3)0.033 (13)*
N61.4651 (3)0.7791 (6)0.4648 (2)0.0549 (15)
N70.8835 (2)0.4967 (3)0.12859 (18)0.0142 (7)
N80.8390 (2)0.1492 (3)0.03052 (19)0.0169 (7)
H8N0.801 (3)0.148 (4)0.017 (3)0.026 (12)*
N90.8784 (2)0.1977 (3)0.12899 (18)0.0136 (7)
C10.7255 (2)0.5395 (4)0.1831 (2)0.0176 (9)
H10.75640.46900.18640.021*
C20.6448 (2)0.5283 (3)0.1824 (2)0.0166 (9)
H20.62270.45260.18620.020*
C30.5969 (2)0.6323 (3)0.1759 (2)0.0150 (8)
C40.6360 (2)0.7443 (4)0.1748 (2)0.0166 (9)
H40.60700.81630.17250.020*
C50.7172 (2)0.7456 (3)0.1770 (2)0.0178 (9)
H50.74220.82040.17690.021*
C60.3238 (3)0.4470 (5)0.1237 (3)0.0344 (12)
H60.27600.44400.13700.041*
C70.3849 (3)0.5299 (4)0.1610 (3)0.0247 (10)
H70.37790.58040.19800.030*
C80.4569 (3)0.5369 (4)0.1424 (2)0.0205 (9)
C90.4629 (3)0.4571 (4)0.0871 (2)0.0284 (11)
H90.51010.45710.07290.034*
C100.3983 (3)0.3783 (4)0.0536 (3)0.0345 (12)
H100.40360.32610.01660.041*
C111.0816 (2)0.6437 (4)0.2848 (2)0.0202 (9)
H111.06460.62160.32510.024*
C121.1652 (3)0.6660 (4)0.3008 (2)0.0223 (10)
H121.20310.65640.35000.027*
C131.1925 (2)0.7032 (4)0.2422 (2)0.0170 (9)
C141.1316 (3)0.7071 (4)0.1691 (2)0.0196 (9)
H141.14660.72770.12750.024*
C151.0502 (3)0.6805 (3)0.1592 (2)0.0160 (9)
H151.01140.68280.10990.019*
C161.4283 (3)0.6742 (6)0.4430 (3)0.0472 (16)
H161.44620.60900.47610.057*
C171.3634 (3)0.6534 (5)0.3728 (3)0.0376 (12)
H171.33890.57740.36030.045*
C181.3377 (3)0.7499 (4)0.3236 (2)0.0238 (10)
C191.3794 (3)0.8621 (5)0.3451 (3)0.0342 (12)
H191.36540.92860.31280.041*
C201.4403 (3)0.8694 (6)0.4146 (3)0.0489 (16)
H201.46710.94360.42850.059*
C210.8941 (2)0.6499 (4)0.4072 (2)0.0157 (8)
C220.8732 (3)0.7556 (4)0.4357 (2)0.0218 (9)
H220.86640.82680.40770.026*
C230.8625 (3)0.7565 (4)0.5055 (2)0.0217 (9)
H230.84750.82820.52350.026*
C240.8736 (2)0.6528 (4)0.5489 (2)0.0164 (8)
C250.8957 (3)0.5464 (4)0.5212 (2)0.0233 (10)
H250.90480.47610.55020.028*
C260.9042 (3)0.5447 (4)0.4500 (2)0.0207 (9)
H260.91690.47240.43090.025*
C270.9029 (2)0.6480 (4)0.3309 (2)0.0138 (8)
C280.8570 (2)0.6560 (4)0.6235 (2)0.0162 (8)
C310.9124 (3)0.3975 (4)0.1706 (2)0.0192 (9)
H310.94330.40730.22200.023*
C320.8987 (3)0.2815 (4)0.1417 (2)0.0200 (9)
H320.91750.21590.17430.024*
C330.8576 (2)0.2617 (3)0.0654 (2)0.0154 (8)
C340.8301 (2)0.3659 (3)0.0207 (2)0.0171 (9)
H340.80320.35840.03160.020*
C350.8425 (3)0.4797 (3)0.0536 (2)0.0157 (9)
C360.9312 (2)0.1059 (3)0.1603 (2)0.0163 (8)
H360.97550.12100.20520.020*
C370.9237 (2)0.0090 (3)0.1299 (2)0.0178 (9)
H370.96340.06790.15310.021*
C380.8561 (2)0.0363 (3)0.0640 (2)0.0148 (8)
C390.8039 (2)0.0605 (4)0.0296 (2)0.0156 (8)
H390.76000.04870.01610.019*
C400.8171 (2)0.1734 (3)0.0629 (2)0.0151 (8)
H400.78160.23620.03830.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0145 (3)0.0100 (2)0.0120 (2)0.0003 (2)0.00601 (19)0.0002 (2)
O10.0243 (16)0.0161 (15)0.0179 (15)0.0015 (12)0.0118 (13)0.0024 (12)
O20.0253 (16)0.0154 (15)0.0184 (15)0.0014 (12)0.0115 (13)0.0008 (12)
O30.0186 (16)0.0465 (19)0.0155 (15)0.0040 (15)0.0072 (12)0.0053 (14)
O40.0215 (16)0.0316 (18)0.0144 (15)0.0036 (13)0.0036 (13)0.0033 (12)
N10.0184 (18)0.0145 (16)0.0196 (18)0.0000 (15)0.0086 (15)0.0005 (14)
N20.0139 (17)0.021 (2)0.0227 (19)0.0001 (14)0.0087 (15)0.0023 (15)
N30.026 (2)0.034 (3)0.045 (3)0.0097 (19)0.002 (2)0.007 (2)
N40.0202 (18)0.0108 (15)0.0146 (16)0.0015 (14)0.0057 (14)0.0004 (14)
N50.0161 (19)0.041 (2)0.0141 (18)0.0029 (16)0.0062 (16)0.0051 (17)
N60.026 (3)0.117 (5)0.022 (2)0.021 (3)0.010 (2)0.005 (3)
N70.0145 (17)0.0139 (17)0.0146 (17)0.0015 (13)0.0058 (14)0.0001 (13)
N80.0219 (18)0.0119 (16)0.0141 (17)0.0014 (15)0.0029 (15)0.0012 (15)
N90.0160 (18)0.0104 (16)0.0146 (17)0.0006 (13)0.0056 (14)0.0013 (13)
C10.016 (2)0.014 (2)0.023 (2)0.0036 (16)0.0073 (18)0.0012 (17)
C20.017 (2)0.012 (2)0.022 (2)0.0012 (16)0.0085 (18)0.0025 (16)
C30.015 (2)0.019 (2)0.0123 (19)0.0008 (17)0.0055 (16)0.0020 (16)
C40.017 (2)0.015 (2)0.019 (2)0.0069 (17)0.0077 (18)0.0011 (16)
C50.020 (2)0.012 (2)0.025 (2)0.0002 (16)0.0114 (19)0.0003 (17)
C60.019 (2)0.040 (3)0.041 (3)0.006 (2)0.006 (2)0.016 (3)
C70.014 (2)0.030 (3)0.030 (2)0.0020 (18)0.0075 (19)0.009 (2)
C80.017 (2)0.021 (2)0.020 (2)0.0024 (17)0.0013 (18)0.0026 (17)
C90.022 (2)0.034 (3)0.025 (2)0.002 (2)0.003 (2)0.001 (2)
C100.035 (3)0.034 (3)0.025 (3)0.002 (2)0.002 (2)0.001 (2)
C110.017 (2)0.026 (2)0.016 (2)0.0007 (19)0.0054 (17)0.0091 (18)
C120.017 (2)0.034 (3)0.015 (2)0.0015 (19)0.0050 (18)0.0043 (18)
C130.014 (2)0.021 (2)0.017 (2)0.0014 (17)0.0059 (17)0.0039 (17)
C140.021 (2)0.026 (2)0.014 (2)0.0011 (18)0.0096 (18)0.0007 (17)
C150.020 (2)0.018 (2)0.0088 (19)0.0036 (16)0.0032 (17)0.0012 (15)
C160.028 (3)0.084 (5)0.035 (3)0.014 (3)0.017 (3)0.027 (3)
C170.025 (3)0.059 (3)0.032 (3)0.006 (3)0.014 (2)0.020 (3)
C180.012 (2)0.046 (3)0.016 (2)0.000 (2)0.0077 (18)0.002 (2)
C190.022 (2)0.059 (3)0.025 (2)0.002 (2)0.013 (2)0.004 (2)
C200.035 (3)0.086 (5)0.027 (3)0.024 (3)0.012 (2)0.015 (3)
C210.016 (2)0.021 (2)0.0129 (19)0.0013 (18)0.0088 (16)0.0002 (17)
C220.029 (2)0.018 (2)0.020 (2)0.0030 (19)0.0115 (19)0.0008 (17)
C230.031 (3)0.016 (2)0.025 (2)0.0008 (18)0.017 (2)0.0022 (17)
C240.0128 (19)0.026 (2)0.0113 (19)0.0012 (18)0.0048 (16)0.0006 (17)
C250.033 (3)0.022 (2)0.016 (2)0.0079 (19)0.0102 (19)0.0033 (18)
C260.030 (2)0.020 (2)0.016 (2)0.0067 (19)0.0119 (19)0.0014 (17)
C270.0129 (19)0.0157 (19)0.0136 (19)0.0024 (17)0.0059 (15)0.0004 (17)
C280.018 (2)0.0130 (19)0.017 (2)0.0000 (17)0.0054 (17)0.0000 (17)
C310.027 (2)0.019 (2)0.011 (2)0.0086 (18)0.0068 (18)0.0002 (17)
C320.032 (3)0.0091 (19)0.016 (2)0.0035 (17)0.0051 (19)0.0006 (16)
C330.017 (2)0.013 (2)0.017 (2)0.0007 (16)0.0071 (18)0.0017 (16)
C340.023 (2)0.015 (2)0.0122 (19)0.0026 (17)0.0044 (17)0.0016 (16)
C350.022 (2)0.015 (2)0.011 (2)0.0010 (17)0.0067 (17)0.0003 (15)
C360.014 (2)0.0149 (19)0.017 (2)0.0009 (16)0.0016 (17)0.0009 (16)
C370.014 (2)0.014 (2)0.023 (2)0.0025 (16)0.0030 (18)0.0040 (17)
C380.020 (2)0.012 (2)0.015 (2)0.0018 (16)0.0091 (17)0.0012 (16)
C390.014 (2)0.020 (2)0.0107 (19)0.0014 (17)0.0019 (16)0.0012 (16)
C400.014 (2)0.012 (2)0.019 (2)0.0020 (15)0.0057 (17)0.0051 (15)
Geometric parameters (Å, º) top
Ni1—N9i2.075 (3)C9—C101.372 (6)
Ni1—N72.075 (3)C9—H90.9300
Ni1—N42.108 (3)C10—H100.9300
Ni1—N12.125 (3)C11—C121.372 (6)
Ni1—O22.130 (3)C11—H110.9300
Ni1—O12.165 (3)C12—C131.395 (5)
Ni1—C272.472 (4)C12—H120.9300
O1—C271.261 (4)C13—C141.403 (5)
O2—C271.277 (4)C14—C151.365 (5)
O3—C281.253 (5)C14—H140.9300
O4—C281.250 (5)C15—H150.9300
N1—C51.343 (5)C16—C171.412 (7)
N1—C11.349 (5)C16—H160.9300
N2—C31.379 (5)C17—C181.378 (6)
N2—C81.410 (5)C17—H170.9300
N2—H2N0.99 (5)C18—C191.416 (7)
N3—C61.327 (6)C19—C201.357 (7)
N3—C101.334 (6)C19—H190.9300
N4—C111.337 (5)C20—H200.9300
N4—C151.340 (5)C21—C221.382 (6)
N5—C131.379 (5)C21—C261.389 (5)
N5—C181.403 (5)C21—C271.487 (5)
N5—H5N0.94 (5)C22—C231.383 (6)
N6—C161.314 (8)C22—H220.9300
N6—C201.334 (7)C23—C241.379 (6)
N7—C311.341 (5)C23—H230.9300
N7—C351.348 (5)C24—C251.389 (6)
N8—C381.381 (5)C24—C281.520 (5)
N8—C331.389 (5)C25—C261.391 (5)
N8—H8N0.91 (4)C25—H250.9300
N9—C401.340 (5)C26—H260.9300
N9—C361.348 (5)C31—C321.379 (5)
N9—Ni1ii2.075 (3)C31—H310.9300
C1—C21.375 (5)C32—C331.374 (5)
C1—H10.9300C32—H320.9300
C2—C31.390 (5)C33—C341.406 (5)
C2—H20.9300C34—C351.384 (5)
C3—C41.409 (5)C34—H340.9300
C4—C51.368 (5)C36—C371.378 (5)
C4—H40.9300C36—H360.9300
C5—H50.9300C37—C381.399 (5)
C6—C71.380 (6)C37—H370.9300
C6—H60.9300C38—C391.397 (5)
C7—C81.388 (6)C39—C401.379 (5)
C7—H70.9300C39—H390.9300
C8—C91.391 (6)C40—H400.9300
N9i—Ni1—N7108.93 (12)C13—C12—H12120.5
N9i—Ni1—N489.61 (13)N5—C13—C12124.1 (4)
N7—Ni1—N488.43 (12)N5—C13—C14119.6 (4)
N9i—Ni1—N191.35 (13)C12—C13—C14116.3 (4)
N7—Ni1—N192.26 (13)C15—C14—C13119.9 (4)
N4—Ni1—N1178.57 (13)C15—C14—H14120.1
N9i—Ni1—O294.13 (11)C13—C14—H14120.1
N7—Ni1—O2156.80 (11)N4—C15—C14124.2 (4)
N4—Ni1—O294.28 (11)N4—C15—H15117.9
N1—Ni1—O284.59 (12)C14—C15—H15117.9
N9i—Ni1—O1155.65 (11)N6—C16—C17124.6 (5)
N7—Ni1—O195.30 (11)N6—C16—H16117.7
N4—Ni1—O193.49 (11)C17—C16—H16117.7
N1—Ni1—O185.20 (11)C18—C17—C16117.5 (5)
O2—Ni1—O161.56 (10)C18—C17—H17121.3
N9i—Ni1—C27125.00 (13)C16—C17—H17121.3
N7—Ni1—C27125.69 (13)C17—C18—N5122.3 (4)
N4—Ni1—C2797.17 (12)C17—C18—C19118.4 (4)
N1—Ni1—C2781.41 (12)N5—C18—C19119.3 (4)
O2—Ni1—C2731.11 (11)C20—C19—C18117.8 (5)
O1—Ni1—C2730.65 (11)C20—C19—H19121.1
C27—O1—Ni188.2 (2)C18—C19—H19121.1
C27—O2—Ni189.4 (2)N6—C20—C19125.6 (6)
C5—N1—C1115.9 (3)N6—C20—H20117.2
C5—N1—Ni1123.7 (3)C19—C20—H20117.2
C1—N1—Ni1119.5 (3)C22—C21—C26118.8 (3)
C3—N2—C8125.5 (3)C22—C21—C27120.5 (4)
C3—N2—H2N119 (3)C26—C21—C27120.7 (4)
C8—N2—H2N114 (3)C21—C22—C23120.6 (4)
C6—N3—C10115.6 (4)C21—C22—H22119.7
C11—N4—C15115.4 (3)C23—C22—H22119.7
C11—N4—Ni1123.9 (3)C24—C23—C22121.0 (4)
C15—N4—Ni1119.9 (3)C24—C23—H23119.5
C13—N5—C18125.0 (3)C22—C23—H23119.5
C13—N5—H5N113 (3)C23—C24—C25118.9 (4)
C18—N5—H5N120 (3)C23—C24—C28119.4 (4)
C16—N6—C20116.1 (5)C25—C24—C28121.6 (4)
C31—N7—C35116.8 (3)C24—C25—C26120.1 (4)
C31—N7—Ni1111.7 (2)C24—C25—H25119.9
C35—N7—Ni1130.6 (3)C26—C25—H25119.9
C38—N8—C33128.0 (3)C21—C26—C25120.6 (4)
C38—N8—H8N114 (3)C21—C26—H26119.7
C33—N8—H8N116 (3)C25—C26—H26119.7
C40—N9—C36116.1 (3)O1—C27—O2120.0 (3)
C40—N9—Ni1ii127.9 (3)O1—C27—C21120.4 (3)
C36—N9—Ni1ii115.5 (3)O2—C27—C21119.6 (3)
N1—C1—C2124.5 (4)O1—C27—Ni161.11 (19)
N1—C1—H1117.8O2—C27—Ni159.51 (18)
C2—C1—H1117.8C21—C27—Ni1170.9 (3)
C1—C2—C3118.8 (4)O4—C28—O3125.4 (4)
C1—C2—H2120.6O4—C28—C24118.5 (3)
C3—C2—H2120.6O3—C28—C24116.1 (3)
N2—C3—C2122.6 (4)N7—C31—C32123.5 (4)
N2—C3—C4119.9 (3)N7—C31—H31118.3
C2—C3—C4117.4 (3)C32—C31—H31118.3
C5—C4—C3119.1 (4)C33—C32—C31120.8 (4)
C5—C4—H4120.4C33—C32—H32119.6
C3—C4—H4120.4C31—C32—H32119.6
N1—C5—C4124.1 (4)C32—C33—N8125.7 (4)
N1—C5—H5117.9C32—C33—C34115.7 (3)
C4—C5—H5117.9N8—C33—C34118.5 (3)
N3—C6—C7124.6 (5)C35—C34—C33120.7 (4)
N3—C6—H6117.7C35—C34—H34119.7
C7—C6—H6117.7C33—C34—H34119.7
C6—C7—C8119.1 (5)N7—C35—C34122.4 (3)
C6—C7—H7120.4N9—C36—C37124.2 (4)
C8—C7—H7120.4N9—C36—H36117.9
C7—C8—C9116.8 (4)C37—C36—H36117.9
C7—C8—N2119.1 (4)C36—C37—C38119.5 (4)
C9—C8—N2123.9 (4)C36—C37—H37120.2
C10—C9—C8119.2 (4)C38—C37—H37120.2
C10—C9—H9120.4N8—C38—C39118.8 (4)
C8—C9—H9120.4N8—C38—C37125.1 (4)
N3—C10—C9124.7 (5)C39—C38—C37116.1 (3)
N3—C10—H10117.7C40—C39—C38120.4 (4)
C9—C10—H10117.7C40—C39—H39119.8
N4—C11—C12125.1 (4)C38—C39—H39119.8
N4—C11—H11117.5N9—C40—C39123.5 (4)
C12—C11—H11117.5N9—C40—H40118.2
C11—C12—C13119.0 (4)C39—C40—H40118.2
C11—C12—H12120.5
N9i—Ni1—O1—C271.4 (4)N5—C13—C14—C15174.7 (4)
N7—Ni1—O1—C27173.1 (2)C12—C13—C14—C152.9 (6)
N4—Ni1—O1—C2798.2 (2)C11—N4—C15—C143.1 (6)
N1—Ni1—O1—C2781.2 (2)Ni1—N4—C15—C14167.0 (3)
O2—Ni1—O1—C275.2 (2)C13—C14—C15—N40.8 (6)
N9i—Ni1—O2—C27173.3 (2)C20—N6—C16—C172.7 (8)
N7—Ni1—O2—C270.8 (4)N6—C16—C17—C180.7 (8)
N4—Ni1—O2—C2796.8 (2)C16—C17—C18—N5179.3 (4)
N1—Ni1—O2—C2782.3 (2)C16—C17—C18—C191.9 (6)
O1—Ni1—O2—C275.1 (2)C13—N5—C18—C1757.8 (6)
N9i—Ni1—N1—C538.6 (3)C13—N5—C18—C19123.4 (5)
N7—Ni1—N1—C5147.6 (3)C17—C18—C19—C202.5 (6)
O2—Ni1—N1—C555.4 (3)N5—C18—C19—C20178.7 (4)
O1—Ni1—N1—C5117.3 (3)C16—N6—C20—C192.1 (8)
C27—Ni1—N1—C586.6 (3)C18—C19—C20—N60.5 (8)
N9i—Ni1—N1—C1152.6 (3)C26—C21—C22—C230.1 (6)
N7—Ni1—N1—C143.6 (3)C27—C21—C22—C23177.9 (4)
O2—Ni1—N1—C1113.4 (3)C21—C22—C23—C241.1 (7)
O1—Ni1—N1—C151.6 (3)C22—C23—C24—C250.3 (6)
C27—Ni1—N1—C182.2 (3)C22—C23—C24—C28177.0 (4)
N9i—Ni1—N4—C11130.0 (3)C23—C24—C25—C261.5 (6)
N7—Ni1—N4—C11121.0 (3)C28—C24—C25—C26175.1 (4)
O2—Ni1—N4—C1135.9 (3)C22—C21—C26—C251.7 (6)
O1—Ni1—N4—C1125.8 (3)C27—C21—C26—C25179.7 (4)
C27—Ni1—N4—C114.7 (3)C24—C25—C26—C212.5 (7)
N9i—Ni1—N4—C1539.2 (3)Ni1—O1—C27—O28.8 (3)
N7—Ni1—N4—C1569.8 (3)Ni1—O1—C27—C21169.6 (3)
O2—Ni1—N4—C15133.3 (3)Ni1—O2—C27—O19.0 (4)
O1—Ni1—N4—C15165.0 (3)Ni1—O2—C27—C21169.5 (3)
C27—Ni1—N4—C15164.4 (3)C22—C21—C27—O1167.8 (4)
N9i—Ni1—N7—C31164.7 (3)C26—C21—C27—O110.2 (6)
N4—Ni1—N7—C3175.6 (3)C22—C21—C27—O210.7 (6)
N1—Ni1—N7—C31103.1 (3)C26—C21—C27—O2171.3 (4)
O2—Ni1—N7—C3121.6 (5)N9i—Ni1—C27—O1179.3 (2)
O1—Ni1—N7—C3117.7 (3)N7—Ni1—C27—O18.5 (3)
C27—Ni1—N7—C3122.1 (3)N4—Ni1—C27—O184.7 (2)
N9i—Ni1—N7—C3527.1 (4)N1—Ni1—C27—O195.1 (2)
N4—Ni1—N7—C35116.1 (3)O2—Ni1—C27—O1171.1 (4)
N1—Ni1—N7—C3565.1 (3)N9i—Ni1—C27—O28.2 (3)
O2—Ni1—N7—C35146.7 (3)N7—Ni1—C27—O2179.6 (2)
O1—Ni1—N7—C35150.5 (3)N4—Ni1—C27—O286.4 (2)
C27—Ni1—N7—C35146.2 (3)N1—Ni1—C27—O293.8 (2)
C5—N1—C1—C22.1 (6)O1—Ni1—C27—O2171.1 (4)
Ni1—N1—C1—C2171.7 (3)C23—C24—C28—O495.8 (5)
N1—C1—C2—C31.3 (6)C25—C24—C28—O487.6 (5)
C8—N2—C3—C234.4 (6)C23—C24—C28—O382.8 (5)
C8—N2—C3—C4149.3 (4)C25—C24—C28—O393.8 (5)
C1—C2—C3—N2179.9 (4)C35—N7—C31—C323.2 (6)
C1—C2—C3—C43.5 (6)Ni1—N7—C31—C32166.8 (3)
N2—C3—C4—C5179.0 (4)N7—C31—C32—C333.7 (7)
C2—C3—C4—C52.5 (6)C31—C32—C33—N8178.6 (4)
C1—N1—C5—C43.2 (6)C31—C32—C33—C341.1 (6)
Ni1—N1—C5—C4172.3 (3)C38—N8—C33—C321.0 (7)
C3—C4—C5—N10.9 (6)C38—N8—C33—C34176.5 (4)
C10—N3—C6—C70.5 (7)C32—C33—C34—C351.8 (6)
N3—C6—C7—C80.1 (7)N8—C33—C34—C35176.0 (4)
C6—C7—C8—C90.8 (6)C31—N7—C35—C340.2 (6)
C6—C7—C8—N2173.9 (4)Ni1—N7—C35—C34167.5 (3)
C3—N2—C8—C7164.6 (4)C33—C34—C35—N72.3 (6)
C3—N2—C8—C921.1 (6)C40—N9—C36—C372.3 (6)
C7—C8—C9—C100.9 (6)Ni1ii—N9—C36—C37170.0 (3)
N2—C8—C9—C10173.5 (4)N9—C36—C37—C382.4 (6)
C6—N3—C10—C90.4 (7)C33—N8—C38—C39152.2 (4)
C8—C9—C10—N30.3 (7)C33—N8—C38—C3729.4 (6)
C15—N4—C11—C121.6 (6)C36—C37—C38—N8176.2 (4)
Ni1—N4—C11—C12168.0 (3)C36—C37—C38—C395.4 (6)
N4—C11—C12—C132.1 (7)N8—C38—C39—C40177.5 (3)
C18—N5—C13—C122.9 (7)C37—C38—C39—C404.0 (6)
C18—N5—C13—C14174.4 (4)C36—N9—C40—C393.8 (6)
C11—C12—C13—N5173.2 (4)Ni1ii—N9—C40—C39167.4 (3)
C11—C12—C13—C144.2 (6)C38—C39—C40—N90.7 (6)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4iii0.99 (5)1.83 (5)2.793 (4)164 (4)
N5—H5N···O3iv0.94 (5)1.93 (5)2.874 (5)177 (4)
N8—H8N···O3v0.91 (4)1.93 (5)2.841 (4)179 (4)
Symmetry codes: (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C8H4O4)(C10H9N3)3]
Mr735.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)17.025 (3), 11.048 (2), 18.736 (4)
β (°) 110.281 (3)
V3)3305.7 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.38 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART 1K
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.834, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
39515, 8097, 4711
Rint0.118
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.168, 1.02
No. of reflections8097
No. of parameters481
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 0.84

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CrystalMaker (CrystalMaker Software, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4i0.99 (5)1.83 (5)2.793 (4)164 (4)
N5—H5N···O3ii0.94 (5)1.93 (5)2.874 (5)177 (4)
N8—H8N···O3iii0.91 (4)1.93 (5)2.841 (4)179 (4)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds