Download citation
Download citation
link to html
The title compound, [Pr2(C8H9N2O)6C12H8N2)2]n, is a polymeric complex based on a binuclear unit with an inversion centre mid-way between the two PrIII ions, which are bridged by two tridentate, two bidentate and four monodentate (within the binuclear unit) acetamide groups. Each Pr atom is nine-coordinated by two 1,10-phenanthroline N atoms and four O and three N atoms of anilinoacetamide ligands. In the crystal structure, C—H...O, C—H...N, N—H...N and N—H...O hydrogen bonds result in the formation of a supra­molecular network structure; an N—H...O hydrogen bond is also present within one ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047733/hk2337sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047733/hk2337Isup2.hkl
Contains datablock I

CCDC reference: 1259415

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.047
  • wR factor = 0.138
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N9 PLAT331_ALERT_2_B Small Average Phenyl C-C Dist. C15 -C20 1.36 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.79 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.76 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C6 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C23 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C33 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C31 -C36 1.37 Ang. PLAT335_ALERT_2_C Large Benzene C-C Range ....... C4 -C6 0.18 Ang. PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 12 PLAT414_ALERT_2_C Short Intra D-H..H-X H1 .. H7A .. 1.90 Ang. PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N8 - H8 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N9 - H9 ... ? PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 72.00 A   3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Pr1 (3) 6.21 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 14 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The crystal structure of catena-Poly[hexakis(µ2-anilinoacetamide)bis(1,10 -phenanthroline)disamarium(III)], (II), has previously been reported (Liu & Zhu, 2007). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate the molecular conformation and to compare it with that of (II). We report herein the crystal structure of (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). It has an inversion centre midway between the two PrIII ions, which are bridged by two tridentate, two bidentate and four mondentate acetamide groups. Each Pr atom is nine-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and four O and three N atoms of anilinoacetamide ligands. The Pr—O and Pr—N bonds are in the range of [2.520 (3)–2.573 (3) Å] and [2.414 (3)–2.863 (4) Å], respectively (Table 1), as in (II).

In the crystal structure, intermolecular C—H···O, C—H···N, N—H···N and N—H···O hydrogen bonds (Table 2, Fig. 2) result in the formation of a supramolecular network structure; intramolecular N—H···O hydrogen bond (Table 2) is also present, as in (II).

The both compounds, (I) and (II), are isostructural.

Related literature top

For a related structure, see: Liu & Zhu (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Praseodymium (III) nitrate hexahydrate (213.8 mg, 0.5 mmol), phen (198 mg, 1 mmol), anilinoacetamide (290.4 mg, 2 mmol) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H5 and H8 (for NH) were located in difference syntheses and refined isotropically [N—H = 0.77 (2) and 0.81 (5) Å, Uiso(H) = 0.059 (18) and 0.07 (2) Å2]. The remaining H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.97 Å, for aromatic and methylene H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

The crystal structure of catena-Poly[hexakis(µ2-anilinoacetamide)bis(1,10 -phenanthroline)disamarium(III)], (II), has previously been reported (Liu & Zhu, 2007). The crystal structure determination of the title compound, (I), has been carried out in order to elucidate the molecular conformation and to compare it with that of (II). We report herein the crystal structure of (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). It has an inversion centre midway between the two PrIII ions, which are bridged by two tridentate, two bidentate and four mondentate acetamide groups. Each Pr atom is nine-coordinated by two N atoms of 1,10-phenanthroline (phen) ligand and four O and three N atoms of anilinoacetamide ligands. The Pr—O and Pr—N bonds are in the range of [2.520 (3)–2.573 (3) Å] and [2.414 (3)–2.863 (4) Å], respectively (Table 1), as in (II).

In the crystal structure, intermolecular C—H···O, C—H···N, N—H···N and N—H···O hydrogen bonds (Table 2, Fig. 2) result in the formation of a supramolecular network structure; intramolecular N—H···O hydrogen bond (Table 2) is also present, as in (II).

The both compounds, (I) and (II), are isostructural.

For a related structure, see: Liu & Zhu (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): 2 - x, -y, 2 - z]. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
catena-Poly[hexakis(µ2-anilinoacetamide)bis(1,10- phenanthroline)dipraseodymium(III)] top
Crystal data top
[Pr2(C8H9N2O)6(C12H8N2)2]F(000) = 1560
Mr = 768.63Dx = 1.512 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8891 reflections
a = 19.9013 (11) Åθ = 2.6–26.5°
b = 8.6081 (14) ŵ = 1.49 mm1
c = 20.581 (2) ÅT = 273 K
β = 106.774 (2)°Plate, colourless
V = 3375.8 (7) Å30.33 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
7311 independent reflections
Radiation source: fine-focus sealed tube4903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 27.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.640, Tmax = 0.891k = 1011
26534 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.285P]
where P = (Fo2 + 2Fc2)/3
7311 reflections(Δ/σ)max = 0.001
411 parametersΔρmax = 1.39 e Å3
6 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Pr2(C8H9N2O)6(C12H8N2)2]V = 3375.8 (7) Å3
Mr = 768.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 19.9013 (11) ŵ = 1.49 mm1
b = 8.6081 (14) ÅT = 273 K
c = 20.581 (2) Å0.33 × 0.12 × 0.08 mm
β = 106.774 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4903 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.891Rint = 0.042
26534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 1.39 e Å3
7311 reflectionsΔρmin = 0.72 e Å3
411 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.931196 (13)0.19067 (3)0.964285 (12)0.03954 (11)
O10.84617 (16)0.0357 (4)0.91891 (16)0.0470 (8)
O21.06673 (18)0.0827 (4)0.92134 (16)0.0521 (8)
O31.0070 (2)0.6127 (4)1.09077 (16)0.0592 (10)
N10.7967 (2)0.2336 (5)0.9666 (2)0.0496 (10)
N20.8344 (2)0.3064 (4)0.8549 (2)0.0498 (10)
N30.97080 (18)0.0613 (4)0.87540 (16)0.0343 (8)
H3A0.93960.05560.83660.041*
N40.94712 (18)0.1394 (5)0.97706 (17)0.0364 (8)
H40.94400.04830.99310.044*
N50.9401 (2)0.4226 (4)1.03380 (17)0.0347 (8)
H50.932 (3)0.335 (3)1.035 (3)0.059 (18)*
N71.1181 (2)0.0162 (5)0.8217 (2)0.0529 (11)
H7A1.13950.07370.85550.063*
N80.9877 (2)0.5260 (5)1.20638 (18)0.0476 (10)
H80.962 (3)0.600 (4)1.2049 (19)0.07 (2)*
N90.7855 (2)0.3271 (4)0.8983 (2)0.0489 (10)
H90.76240.34200.85650.059*
C10.7787 (3)0.1912 (7)1.0202 (3)0.0660 (16)
H10.81370.16831.06000.079*
C20.7092 (4)0.1793 (9)1.0196 (4)0.086 (2)
H20.69770.15081.05870.104*
C30.6582 (4)0.2099 (9)0.9612 (5)0.092 (2)
H30.61130.19760.95980.111*
C40.6746 (3)0.2579 (10)0.9053 (4)0.0784 (19)
C50.7462 (3)0.2669 (6)0.9094 (3)0.0544 (13)
C60.6218 (4)0.2942 (11)0.8397 (5)0.115 (4)
H60.57430.28280.83540.138*
C70.6417 (4)0.3421 (11)0.7878 (4)0.103 (3)
H70.60780.36970.74790.124*
C80.7134 (3)0.3530 (8)0.7911 (3)0.0716 (18)
C90.7661 (3)0.3092 (6)0.8505 (3)0.0551 (14)
C100.7358 (5)0.4047 (9)0.7374 (3)0.090 (2)
H100.70330.44090.69820.109*
C110.8044 (5)0.4030 (8)0.7416 (3)0.085 (2)
H110.81960.43690.70530.102*
C120.8526 (3)0.3500 (7)0.8007 (3)0.0665 (16)
H120.89970.34500.80210.080*
C131.0285 (3)0.0024 (6)0.8772 (2)0.0466 (11)
C141.0523 (3)0.0517 (7)0.8173 (3)0.0567 (13)
H14A1.01810.01920.77560.068*
H14B1.05610.16400.81670.068*
C151.1460 (3)0.0141 (7)0.7694 (3)0.0651 (15)
C161.2074 (3)0.0556 (9)0.7760 (3)0.0800 (19)
H161.22790.11700.81370.096*
C171.2398 (4)0.0356 (10)0.7265 (5)0.096 (2)
H171.28310.08200.73070.115*
C181.2086 (5)0.0530 (10)0.6708 (5)0.111 (3)
H181.23030.06350.63670.134*
C191.1480 (5)0.1242 (12)0.6644 (4)0.112 (3)
H191.12760.18540.62660.135*
C201.1149 (4)0.1055 (9)0.7159 (4)0.086 (2)
H201.07260.15500.71300.103*
C210.8838 (3)0.1525 (6)0.9388 (2)0.0469 (12)
C220.8579 (3)0.3147 (6)0.9198 (3)0.0579 (14)
H22A0.87640.35120.88380.069*
H22B0.87600.38190.95870.069*
C230.7543 (7)0.3146 (10)0.9466 (7)0.1284 (17)
C240.7844 (7)0.2801 (10)1.0107 (7)0.1284 (17)
H240.83250.26211.02640.154*
C250.7416 (6)0.2712 (11)1.0554 (6)0.1284 (17)
H250.76130.24961.10120.154*
C260.6745 (6)0.2940 (10)1.0307 (7)0.1284 (17)
H260.64730.28321.06030.154*
C270.6385 (6)0.3346 (10)0.9613 (6)0.1284 (17)
H270.59060.35500.94620.154*
C280.6799 (6)0.3403 (11)0.9207 (6)0.1284 (17)
H280.66030.36130.87480.154*
C290.9693 (3)0.4994 (6)1.0864 (2)0.0463 (11)
C300.9488 (3)0.4459 (7)1.1474 (2)0.0584 (14)
H30A0.89910.46421.14020.070*
H30B0.95730.33521.15360.070*
C310.9742 (3)0.4889 (7)1.2656 (2)0.0579 (14)
C320.9279 (3)0.3789 (9)1.2721 (3)0.0739 (18)
H320.90200.32371.23430.089*
C330.9195 (5)0.3498 (12)1.3343 (4)0.109 (3)
H330.88900.27221.33950.131*
C340.9567 (5)0.4366 (11)1.3902 (3)0.105 (3)
H340.94870.42171.43210.126*
C351.0043 (4)0.5418 (9)1.3836 (3)0.091 (2)
H351.03040.59621.42150.109*
C361.0145 (3)0.5696 (8)1.3221 (3)0.0743 (17)
H361.04780.64141.31790.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.04542 (17)0.03514 (17)0.03339 (15)0.00150 (11)0.00395 (10)0.00062 (10)
O10.0468 (18)0.0380 (19)0.0487 (19)0.0002 (15)0.0018 (14)0.0035 (14)
O20.063 (2)0.051 (2)0.0435 (19)0.0085 (17)0.0172 (16)0.0114 (16)
O30.085 (3)0.055 (2)0.0387 (19)0.026 (2)0.0200 (18)0.0049 (16)
N10.047 (2)0.046 (2)0.049 (2)0.0037 (19)0.0035 (19)0.0084 (19)
N20.060 (3)0.045 (3)0.036 (2)0.0023 (19)0.0004 (18)0.0006 (17)
N30.0397 (19)0.038 (2)0.0239 (16)0.0050 (17)0.0073 (14)0.0010 (15)
N40.0362 (19)0.0320 (19)0.0346 (19)0.0018 (15)0.0000 (15)0.0039 (15)
N50.054 (2)0.0190 (19)0.0296 (18)0.0064 (17)0.0097 (15)0.0053 (14)
N70.052 (2)0.070 (3)0.043 (2)0.017 (2)0.0232 (19)0.022 (2)
N80.068 (3)0.047 (3)0.030 (2)0.021 (2)0.0169 (18)0.0050 (17)
N90.045 (2)0.037 (2)0.054 (3)0.0137 (18)0.0015 (19)0.0065 (18)
C10.059 (3)0.080 (5)0.059 (4)0.008 (3)0.018 (3)0.000 (3)
C20.058 (4)0.121 (7)0.085 (5)0.007 (4)0.028 (4)0.010 (4)
C30.051 (4)0.106 (7)0.118 (7)0.004 (4)0.020 (4)0.015 (5)
C40.055 (4)0.094 (5)0.072 (4)0.006 (3)0.003 (3)0.017 (4)
C50.054 (3)0.041 (3)0.060 (3)0.007 (2)0.003 (2)0.008 (2)
C60.056 (4)0.157 (10)0.105 (7)0.017 (5)0.020 (4)0.033 (6)
C70.079 (5)0.119 (7)0.080 (5)0.038 (5)0.028 (4)0.018 (5)
C80.075 (4)0.069 (4)0.048 (3)0.019 (3)0.017 (3)0.012 (3)
C90.063 (3)0.037 (3)0.051 (3)0.005 (2)0.006 (2)0.005 (2)
C100.120 (6)0.074 (5)0.049 (4)0.017 (4)0.021 (4)0.001 (3)
C110.123 (6)0.082 (5)0.035 (3)0.003 (4)0.001 (3)0.013 (3)
C120.082 (4)0.056 (4)0.052 (3)0.000 (3)0.005 (3)0.009 (3)
C130.062 (3)0.039 (3)0.037 (2)0.012 (2)0.010 (2)0.003 (2)
C140.065 (3)0.058 (3)0.049 (3)0.005 (3)0.019 (2)0.010 (2)
C150.070 (4)0.074 (4)0.059 (3)0.009 (3)0.031 (3)0.002 (3)
C160.079 (4)0.099 (5)0.073 (4)0.005 (4)0.040 (4)0.002 (4)
C170.092 (5)0.098 (6)0.115 (6)0.003 (5)0.058 (5)0.006 (5)
C180.149 (8)0.086 (6)0.141 (8)0.015 (6)0.108 (7)0.001 (6)
C190.153 (8)0.118 (7)0.093 (6)0.022 (7)0.077 (6)0.035 (5)
C200.100 (5)0.098 (5)0.078 (4)0.003 (4)0.053 (4)0.022 (4)
C210.048 (3)0.055 (3)0.033 (2)0.003 (2)0.004 (2)0.005 (2)
C220.064 (3)0.050 (3)0.055 (3)0.004 (3)0.009 (3)0.005 (2)
C230.139 (4)0.097 (3)0.174 (5)0.017 (3)0.084 (4)0.032 (3)
C240.139 (4)0.097 (3)0.174 (5)0.017 (3)0.084 (4)0.032 (3)
C250.139 (4)0.097 (3)0.174 (5)0.017 (3)0.084 (4)0.032 (3)
C260.139 (4)0.097 (3)0.174 (5)0.017 (3)0.084 (4)0.032 (3)
C270.139 (4)0.097 (3)0.174 (5)0.017 (3)0.084 (4)0.032 (3)
C280.139 (4)0.097 (3)0.174 (5)0.017 (3)0.084 (4)0.032 (3)
C290.058 (3)0.035 (3)0.045 (3)0.002 (2)0.014 (2)0.005 (2)
C300.077 (4)0.057 (3)0.043 (3)0.022 (3)0.018 (2)0.006 (2)
C310.076 (4)0.059 (3)0.038 (3)0.003 (3)0.015 (2)0.004 (2)
C320.076 (4)0.096 (5)0.052 (3)0.034 (4)0.022 (3)0.006 (3)
C330.124 (7)0.145 (8)0.070 (5)0.046 (6)0.046 (5)0.003 (5)
C340.124 (6)0.148 (8)0.051 (4)0.030 (6)0.038 (4)0.007 (5)
C350.118 (6)0.105 (6)0.045 (3)0.018 (5)0.014 (3)0.008 (4)
C360.086 (4)0.082 (5)0.051 (3)0.018 (4)0.013 (3)0.013 (3)
Geometric parameters (Å, º) top
Pr1—O12.573 (3)C8—C91.413 (7)
Pr1—O2i2.520 (3)C10—C111.344 (10)
Pr1—O3ii2.543 (3)C10—H100.9300
Pr1—N12.715 (4)C11—C121.389 (8)
Pr1—N22.696 (4)C11—H110.9300
Pr1—N32.458 (3)C12—H120.9300
Pr1—N42.863 (4)C13—C141.502 (7)
Pr1—N4i2.414 (3)C14—H14A0.9700
Pr1—N52.433 (4)C14—H14B0.9700
O1—C211.250 (6)C15—C161.334 (9)
O2—C131.243 (6)C15—C201.350 (9)
O2—Pr1i2.520 (3)C16—C171.363 (10)
O3—C291.217 (6)C16—H160.9300
O3—Pr1ii2.543 (3)C17—C181.369 (12)
N1—C11.306 (7)C17—H170.9300
N1—C51.340 (7)C18—C191.325 (11)
N2—C121.323 (7)C18—H180.9300
N2—C91.336 (7)C19—C201.409 (9)
N3—C131.246 (6)C19—H190.9300
N3—H3A0.8600C20—H200.9300
N4—C211.284 (6)C21—C221.500 (7)
N4—Pr1i2.414 (3)C22—H22A0.9700
N4—H40.8600C22—H22B0.9700
N5—C291.258 (6)C23—C241.316 (16)
N5—H50.77 (2)C23—C281.438 (16)
N7—C151.372 (7)C24—C251.424 (13)
N7—C141.413 (6)C24—H240.9300
N7—H7A0.8600C25—C261.300 (15)
N8—C311.360 (6)C25—H250.9300
N8—C301.416 (6)C26—C271.444 (16)
N8—H80.81 (5)C26—H260.9300
N9—C231.319 (12)C27—C281.332 (12)
N9—C221.384 (7)C27—H270.9300
N9—H90.8600C28—H280.9300
C1—C21.384 (9)C29—C301.500 (7)
C1—H10.9300C30—H30A0.9700
C2—C31.357 (11)C30—H30B0.9700
C2—H20.9300C31—C321.354 (8)
C3—C41.348 (11)C31—C361.393 (8)
C3—H30.9300C32—C331.363 (9)
C4—C51.407 (8)C32—H320.9300
C4—C61.486 (11)C33—C341.391 (11)
C5—C91.428 (8)C33—H330.9300
C6—C71.306 (13)C34—C351.345 (10)
C6—H60.9300C34—H340.9300
C7—C81.413 (11)C35—C361.359 (9)
C7—H70.9300C35—H350.9300
C8—C101.379 (10)C36—H360.9300
O1—Pr1—N163.97 (12)N1—C5—C9118.6 (5)
O1—Pr1—N274.94 (11)C4—C5—C9119.3 (5)
O1—Pr1—N372.85 (11)C7—C6—C4120.6 (8)
O1—Pr1—N447.58 (10)C7—C6—H6119.7
O1—Pr1—N5139.78 (12)C4—C6—H6119.7
N1—Pr1—N259.62 (14)C6—C7—C8121.4 (7)
N1—Pr1—N3127.16 (12)C6—C7—H7119.3
N1—Pr1—N4102.53 (12)C8—C7—H7119.3
N1—Pr1—N577.46 (13)C10—C8—C9116.6 (6)
N2—Pr1—N381.43 (12)C10—C8—C7122.6 (7)
N2—Pr1—N4118.48 (11)C9—C8—C7120.8 (7)
N2—Pr1—N595.81 (12)N2—C9—C8123.4 (6)
N3—Pr1—N464.39 (11)N2—C9—C5117.6 (5)
N3—Pr1—N5145.60 (12)C8—C9—C5118.9 (6)
N4—Pr1—N5140.65 (11)C11—C10—C8120.2 (6)
N4i—Pr1—N587.92 (13)C11—C10—H10119.9
N4i—Pr1—N378.38 (12)C8—C10—H10119.9
N4i—Pr1—O2i73.85 (11)C10—C11—C12119.5 (6)
N5—Pr1—O2i76.97 (12)C10—C11—H11120.3
N3—Pr1—O2i127.29 (12)C12—C11—H11120.3
N4i—Pr1—O2i73.85 (11)N2—C12—C11122.9 (7)
N5—Pr1—O2i76.97 (12)N2—C12—H12118.5
N3—Pr1—O2i127.29 (12)C11—C12—H12118.5
O2i—Pr1—O2i0.0 (2)O2—C13—N3128.7 (5)
N4i—Pr1—O2i73.85 (11)O2—C13—C14119.7 (5)
N5—Pr1—O2i76.97 (12)N3—C13—C14111.5 (4)
N3—Pr1—O2i127.29 (12)N7—C14—C13109.6 (4)
O2i—Pr1—O2i0.0 (2)N7—C14—H14A109.7
O2i—Pr1—O2i0.0 (2)C13—C14—H14A109.7
N4i—Pr1—O3ii78.47 (13)N7—C14—H14B109.7
N5—Pr1—O3ii75.71 (12)C13—C14—H14B109.7
N3—Pr1—O3ii70.72 (11)H14A—C14—H14B108.2
O2i—Pr1—O3ii141.45 (11)C16—C15—C20122.4 (6)
O2i—Pr1—O3ii141.45 (11)C16—C15—N7113.7 (6)
O2i—Pr1—O3ii141.45 (11)C20—C15—N7123.9 (6)
N4i—Pr1—O1120.18 (12)C15—C16—C17119.0 (7)
O2i—Pr1—O183.77 (11)C15—C16—H16120.5
O2i—Pr1—O183.77 (11)C17—C16—H16120.5
O2i—Pr1—O183.77 (11)C16—C17—C18119.9 (8)
O3ii—Pr1—O1133.98 (11)C16—C17—H17120.1
N4i—Pr1—N2148.97 (13)C18—C17—H17120.1
O2i—Pr1—N2137.01 (13)C19—C18—C17121.4 (7)
O2i—Pr1—N2137.01 (13)C19—C18—H18119.3
O2i—Pr1—N2137.01 (13)C17—C18—H18119.3
O3ii—Pr1—N272.71 (13)C18—C19—C20118.8 (8)
N4i—Pr1—N1150.16 (12)C18—C19—H19120.6
O2i—Pr1—N177.54 (12)C20—C19—H19120.6
O2i—Pr1—N177.54 (12)C15—C20—C19118.4 (7)
O2i—Pr1—N177.54 (12)C15—C20—H20120.8
O3ii—Pr1—N1121.54 (14)C19—C20—H20120.8
N4i—Pr1—N472.79 (13)O1—C21—N4121.3 (5)
O2i—Pr1—N464.96 (11)O1—C21—C22122.4 (4)
O2i—Pr1—N464.96 (11)N4—C21—C22116.4 (5)
O2i—Pr1—N464.96 (11)N9—C22—C21113.8 (4)
O3ii—Pr1—N4130.29 (11)N9—C22—H22A108.8
N4i—Pr1—H587.3 (18)C21—C22—H22A108.8
N3—Pr1—H5158.2 (15)N9—C22—H22B108.8
O2i—Pr1—H562.2 (12)C21—C22—H22B108.8
O2i—Pr1—H562.2 (12)H22A—C22—H22B107.7
O2i—Pr1—H562.2 (12)C24—C23—N9126.5 (12)
O3ii—Pr1—H590.5 (12)C24—C23—C28122.0 (11)
O1—Pr1—H5128.9 (14)N9—C23—C28111.5 (12)
N2—Pr1—H5104.0 (17)C23—C24—C25118.3 (13)
N1—Pr1—H571.8 (17)C23—C24—H24120.9
N4—Pr1—H5126.8 (13)C25—C24—H24120.9
C21—O1—Pr1102.8 (3)C26—C25—C24118.6 (13)
C13—O2—Pr1i138.0 (3)C26—C25—H25120.7
C29—O3—Pr1ii150.1 (3)C24—C25—H25120.7
C1—N1—C5118.9 (5)C25—C26—C27125.7 (11)
C1—N1—Pr1119.2 (4)C25—C26—H26117.2
C5—N1—Pr1120.5 (4)C27—C26—H26117.2
C12—N2—C9117.2 (5)C28—C27—C26114.1 (12)
C12—N2—Pr1120.4 (4)C28—C27—H27122.9
C9—N2—Pr1122.1 (3)C26—C27—H27122.9
C13—N3—Pr1130.8 (3)C27—C28—C23121.2 (13)
C13—N3—H3A114.6C27—C28—H28119.4
Pr1—N3—H3A114.6C23—C28—H28119.4
C21—N4—Pr1i162.9 (4)O3—C29—N5127.3 (5)
C21—N4—Pr188.2 (3)O3—C29—C30119.6 (4)
Pr1i—N4—Pr1107.21 (13)N5—C29—C30112.9 (4)
C21—N4—H498.5N8—C30—C29110.8 (4)
Pr1i—N4—H498.5N8—C30—H30A109.5
C29—N5—Pr1150.9 (3)C29—C30—H30A109.5
C29—N5—H5122 (5)N8—C30—H30B109.5
C15—N7—C14116.7 (4)C29—C30—H30B109.5
C15—N7—H7A121.7H30A—C30—H30B108.1
C14—N7—H7A121.7C32—C31—N8124.7 (5)
C31—N8—C30116.9 (4)C32—C31—C36120.7 (5)
C31—N8—H886.1 (17)N8—C31—C36114.6 (5)
C30—N8—H8100 (4)C32—C31—H8124 (2)
C23—N9—C22115.2 (8)C36—C31—H8107 (2)
C23—N9—H9122.4C31—C32—C33119.5 (6)
C22—N9—H9122.4C31—C32—H32120.3
N1—C1—C2122.1 (6)C33—C32—H32120.3
N1—C1—H1119.0C32—C33—C34119.9 (7)
C2—C1—H1119.0C32—C33—H33120.1
C3—C2—C1119.0 (7)C34—C33—H33120.1
C3—C2—H2120.5C35—C34—C33120.1 (6)
C1—C2—H2120.5C35—C34—H34120.0
C4—C3—C2120.7 (7)C33—C34—H34120.0
C4—C3—H3119.6C34—C35—C36120.7 (7)
C2—C3—H3119.6C34—C35—H35119.7
C3—C4—C5117.2 (6)C36—C35—H35119.7
C3—C4—C6124.0 (7)C35—C36—C31119.0 (6)
C5—C4—C6118.7 (7)C35—C36—H36120.5
N1—C5—C4122.1 (6)C31—C36—H36120.5
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···N5iii0.972.393.329 (7)163
C12—H12···N8ii0.932.553.395 (8)151
C12—H12···O3ii0.932.473.050 (7)121
C10—H10···O1iv0.932.333.201 (7)155
C1—H1···O2i0.932.413.105 (7)131
N7—H7A···O20.862.252.605 (5)105
N5—H5···O2i0.77 (2)2.35 (3)3.083 (5)159 (6)
N4—H4···N4i0.862.633.152 (8)120
N4—H4···O2i0.862.152.905 (5)146
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Pr2(C8H9N2O)6(C12H8N2)2]
Mr768.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)19.9013 (11), 8.6081 (14), 20.581 (2)
β (°) 106.774 (2)
V3)3375.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.33 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.640, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
26534, 7311, 4903
Rint0.042
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 0.96
No. of reflections7311
No. of parameters411
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.39, 0.72

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL (Siemens, 1996.

Selected geometric parameters (Å, º) top
Pr1—O12.573 (3)Pr1—N32.458 (3)
Pr1—O2i2.520 (3)Pr1—N42.863 (4)
Pr1—O3ii2.543 (3)Pr1—N4i2.414 (3)
Pr1—N12.715 (4)Pr1—N52.433 (4)
Pr1—N22.696 (4)
O1—Pr1—N163.97 (12)N1—Pr1—N577.46 (13)
O1—Pr1—N274.94 (11)N2—Pr1—N381.43 (12)
O1—Pr1—N372.85 (11)N2—Pr1—N4118.48 (11)
O1—Pr1—N447.58 (10)N2—Pr1—N595.81 (12)
O1—Pr1—N5139.78 (12)N3—Pr1—N464.39 (11)
N1—Pr1—N259.62 (14)N3—Pr1—N5145.60 (12)
N1—Pr1—N3127.16 (12)N4—Pr1—N5140.65 (11)
N1—Pr1—N4102.53 (12)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···N5iii0.972.393.329 (7)163
C12—H12···N8ii0.932.553.395 (8)151
C12—H12···O3ii0.932.473.050 (7)121
C10—H10···O1iv0.932.333.201 (7)155
C1—H1···O2i0.932.413.105 (7)131
N7—H7A···O20.862.252.605 (5)105
N5—H5···O2i0.77 (2)2.35 (3)3.083 (5)159 (6)
N4—H4···N4i0.862.633.152 (8)120
N4—H4···O2i0.862.152.905 (5)146
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x, y1, z; (iv) x+3/2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds