Download citation
Download citation
link to html
In the title compound, [Cu2Cl4(C36H44N4O4)(H2O)2], the dinuclear complex mol­ecule lies on an inversion centre. Each CuII atom shows a tetra­gonal–pyramidal coordination geometry formed by two Cl atoms, two N atoms from the macrocyclic ligand and one water mol­ecule. The coordinated water mol­ecules are hydrogen-bonded to the Cl atoms in adjacent mol­ecules, generating a one-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047678/hy2086sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047678/hy2086Isup2.hkl
Contains datablock I

CCDC reference: 667110

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.048
  • wR factor = 0.142
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of N1 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of N2 = ... S PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 1.99 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The use of macrocyclic ligands for the formation of selective metal complex has received considerable attention over many years (Davis et al., 1995). The method for the synthesis of the title complex has been reported (Adam et al., 1981). However, to the best of our knowledge, the crystal structure has not been reported yet.

The molecule of the title compound is composed of two CuII atoms, four Cl- atoms, a 3,4:9,10:17,18:23,24-tetrabenzo-1,12,15,26-tetraaza- 5,8,19,22-tetraoxacyclooctacosane (L) ligand and two water molecules (Fig.1). It is a centrosymmetric molecule. Each CuII atom shows a tetragonal-pyramidal coordination geometry, formed by two Cl- atoms, two N atoms from L and one water molecule. The bond distances and angles show normal values (Table 1) (Higa et al., 2007; Jiang et al., 2007; Michalska et al., 2007; Zhou et al., 2007). There are hydrogen-bonding interactions in the crystal structure. As shown in Fig. 2 and in Table 2, there are two O—H···Cl hydrogen bonds between the water molecule and Cl- atoms, leading to a one-dimensional supramolecular structure (Barczynśki et al., 2007).

Related literature top

For related literature, see: Adam et al. (1981); Barczynśki et al. (2007); Davis et al. (1995); Higa et al. (2007); Jiang et al. (2007); Michalska et al. (2007); Zhou et al. (2007).

Experimental top

L (0.100 g, 0.17 mmol) dissolved in hot ethanol (15 ml) was added to a solution of CuCl2.2H2O (0.030 g, 0.17 mmol) in hot water (10 ml). After stirring for 30 min, the mixture was filtered. Blue single crystals of the title compound were obtained after several days at room temperature.

Refinement top

All H atoms bound to C atoms were positioned geometrically and refined as riding, with C—H = 0.93Å (CH) and 0.97Å (CH2) and Uiso(H) = 1.2Ueq(C). The H atoms bound to N atoms and belonging to water molecule were located in a difference Fourier map and refined with Uiso(H) = 1.4Ueq(N) and Uiso(H) = 1.3Ueq(O), respectively.

Structure description top

The use of macrocyclic ligands for the formation of selective metal complex has received considerable attention over many years (Davis et al., 1995). The method for the synthesis of the title complex has been reported (Adam et al., 1981). However, to the best of our knowledge, the crystal structure has not been reported yet.

The molecule of the title compound is composed of two CuII atoms, four Cl- atoms, a 3,4:9,10:17,18:23,24-tetrabenzo-1,12,15,26-tetraaza- 5,8,19,22-tetraoxacyclooctacosane (L) ligand and two water molecules (Fig.1). It is a centrosymmetric molecule. Each CuII atom shows a tetragonal-pyramidal coordination geometry, formed by two Cl- atoms, two N atoms from L and one water molecule. The bond distances and angles show normal values (Table 1) (Higa et al., 2007; Jiang et al., 2007; Michalska et al., 2007; Zhou et al., 2007). There are hydrogen-bonding interactions in the crystal structure. As shown in Fig. 2 and in Table 2, there are two O—H···Cl hydrogen bonds between the water molecule and Cl- atoms, leading to a one-dimensional supramolecular structure (Barczynśki et al., 2007).

For related literature, see: Adam et al. (1981); Barczynśki et al. (2007); Davis et al. (1995); Higa et al. (2007); Jiang et al. (2007); Michalska et al. (2007); Zhou et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. One-dimensional structure in the title compound. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
(µ-3,4:9,10:17,18:23,24-Tetrabenzo-1,12,15,26-tetraaza-5,8,19,22- tetraoxacyclooctacosane- κ4N1,N26:N12,N15)bis[aquadichloridocopper(II)] top
Crystal data top
[Cu2Cl4(C36H44N4O4)(H2O)2]F(000) = 932
Mr = 901.66Dx = 1.515 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3493 reflections
a = 13.193 (1) Åθ = 1.8–25.1°
b = 8.4530 (8) ŵ = 1.40 mm1
c = 17.913 (2) ÅT = 293 K
β = 98.211 (2)°Block, blue
V = 1977.2 (3) Å30.45 × 0.36 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3493 independent reflections
Radiation source: fine-focus sealed tube2151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.55, Tmax = 0.72k = 109
9616 measured reflectionsl = 1021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
3493 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu2Cl4(C36H44N4O4)(H2O)2]V = 1977.2 (3) Å3
Mr = 901.66Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.193 (1) ŵ = 1.40 mm1
b = 8.4530 (8) ÅT = 293 K
c = 17.913 (2) Å0.45 × 0.36 × 0.24 mm
β = 98.211 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3493 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2151 reflections with I > 2σ(I)
Tmin = 0.55, Tmax = 0.72Rint = 0.062
9616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.47 e Å3
3493 reflectionsΔρmin = 0.46 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.44875 (4)0.70615 (7)0.52017 (3)0.0447 (2)
C10.2640 (5)0.4791 (7)0.2253 (3)0.0617 (15)
H7A0.20550.50580.18830.074*
H7B0.26470.36520.23200.074*
C20.1616 (4)0.5391 (6)0.3202 (3)0.0517 (14)
C30.0785 (5)0.4584 (7)0.2829 (4)0.0673 (17)
H40.08330.40840.23730.081*
C40.0119 (5)0.4520 (8)0.3135 (5)0.084 (2)
H30.06700.39500.28870.101*
C50.0218 (5)0.5281 (9)0.3794 (4)0.085 (2)
H20.08320.52430.39920.103*
C60.0609 (4)0.6105 (8)0.4161 (4)0.0679 (17)
H10.05420.66310.46070.082*
C70.1536 (4)0.6171 (6)0.3884 (3)0.0521 (14)
C80.2442 (4)0.7015 (6)0.4312 (3)0.0506 (13)
H16A0.27630.76600.39640.061*
H16B0.22070.77150.46800.061*
C90.2833 (4)0.4900 (6)0.5276 (3)0.0559 (15)
H17A0.32170.39180.53320.067*
H17B0.21170.46460.51180.067*
C100.2949 (4)0.5753 (7)0.6006 (3)0.0566 (15)
H18A0.27860.50530.64020.068*
H18B0.24840.66470.59740.068*
C110.5860 (4)0.2581 (6)0.3172 (3)0.0560 (15)
H15A0.51680.21640.30970.067*
H15B0.63270.17000.32880.067*
C120.6074 (5)0.3359 (7)0.2453 (3)0.0585 (15)
C130.6979 (5)0.3074 (8)0.2161 (4)0.0751 (19)
H140.74720.24110.24200.090*
C140.7156 (6)0.3762 (10)0.1493 (4)0.088 (2)
H130.77510.35250.12930.106*
C150.6462 (7)0.4785 (10)0.1127 (4)0.096 (3)
H120.66010.52720.06880.116*
C160.5547 (6)0.5120 (8)0.1396 (4)0.083 (2)
H110.50730.58180.11420.099*
C170.5361 (5)0.4361 (7)0.2071 (3)0.0638 (17)
C180.3590 (5)0.5285 (7)0.1969 (3)0.0703 (18)
H8A0.35510.50010.14410.084*
H8B0.36650.64240.20100.084*
N10.3214 (3)0.5906 (5)0.4705 (2)0.0453 (11)
N20.4025 (3)0.6311 (5)0.6184 (3)0.0472 (11)
O10.2538 (3)0.5538 (4)0.2951 (2)0.0561 (10)
O20.4457 (3)0.4535 (5)0.2392 (2)0.0693 (11)
O1W0.3772 (3)0.9524 (4)0.5303 (2)0.0613 (11)
Cl10.60735 (10)0.76791 (17)0.58394 (8)0.0568 (4)
Cl20.49428 (10)0.74432 (16)0.40179 (8)0.0546 (4)
H1C0.336 (4)0.521 (6)0.434 (3)0.065*
H2C0.437 (4)0.555 (6)0.631 (3)0.065*
H1A0.411 (4)1.010 (7)0.560 (3)0.082*
H1B0.361 (4)1.029 (6)0.488 (3)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0428 (4)0.0478 (4)0.0444 (4)0.0036 (3)0.0096 (3)0.0014 (3)
C10.066 (4)0.062 (4)0.053 (4)0.007 (3)0.006 (3)0.004 (3)
C20.043 (3)0.052 (3)0.057 (4)0.001 (3)0.002 (3)0.007 (3)
C30.064 (4)0.058 (4)0.073 (4)0.007 (3)0.013 (4)0.001 (3)
C40.049 (4)0.086 (5)0.106 (6)0.013 (3)0.024 (4)0.025 (5)
C50.052 (4)0.113 (6)0.090 (6)0.010 (4)0.006 (4)0.024 (5)
C60.055 (4)0.085 (5)0.062 (4)0.008 (3)0.006 (3)0.009 (3)
C70.043 (3)0.056 (3)0.057 (4)0.000 (3)0.005 (3)0.007 (3)
C80.049 (3)0.052 (3)0.051 (3)0.004 (3)0.008 (3)0.003 (3)
C90.049 (3)0.059 (4)0.058 (4)0.008 (3)0.005 (3)0.001 (3)
C100.052 (3)0.066 (4)0.053 (4)0.011 (3)0.012 (3)0.002 (3)
C110.057 (3)0.058 (4)0.056 (3)0.004 (3)0.018 (3)0.005 (3)
C120.071 (4)0.061 (4)0.046 (3)0.016 (3)0.019 (3)0.009 (3)
C130.069 (4)0.094 (5)0.069 (4)0.022 (4)0.033 (4)0.023 (4)
C140.089 (6)0.100 (6)0.084 (6)0.027 (5)0.045 (5)0.027 (5)
C150.116 (7)0.111 (7)0.076 (5)0.043 (5)0.062 (5)0.016 (5)
C160.114 (6)0.075 (5)0.061 (4)0.023 (4)0.018 (4)0.006 (4)
C170.081 (5)0.061 (4)0.053 (4)0.018 (3)0.021 (4)0.013 (3)
C180.096 (5)0.057 (4)0.060 (4)0.001 (4)0.016 (4)0.001 (3)
N10.040 (2)0.052 (3)0.043 (3)0.002 (2)0.005 (2)0.002 (2)
N20.049 (3)0.047 (3)0.048 (3)0.006 (2)0.015 (2)0.005 (2)
O10.056 (2)0.062 (2)0.049 (2)0.0024 (18)0.002 (2)0.0123 (19)
O20.076 (3)0.087 (3)0.048 (2)0.007 (2)0.019 (2)0.006 (2)
O1W0.065 (3)0.055 (3)0.068 (3)0.003 (2)0.022 (2)0.006 (2)
Cl10.0484 (8)0.0649 (9)0.0568 (8)0.0073 (6)0.0069 (7)0.0017 (7)
Cl20.0542 (8)0.0645 (9)0.0464 (7)0.0070 (6)0.0121 (7)0.0024 (7)
Geometric parameters (Å, º) top
Cu1—N12.035 (4)C9—H17B0.9700
Cu1—N22.044 (4)C10—N21.486 (6)
Cu1—Cl12.2964 (15)C10—H18A0.9700
Cu1—O1W2.303 (4)C10—H18B0.9700
Cu1—Cl22.3078 (15)C11—N2i1.477 (7)
C1—O11.425 (6)C11—C121.507 (7)
C1—C181.479 (7)C11—H15A0.9700
C1—H7A0.9700C11—H15B0.9700
C1—H7B0.9700C12—C171.373 (8)
C2—O11.362 (6)C12—C131.392 (7)
C2—C31.380 (7)C13—C141.381 (9)
C2—C71.406 (7)C13—H140.9300
C3—C41.382 (8)C14—C151.357 (10)
C3—H40.9300C14—H130.9300
C4—C51.368 (9)C15—C161.391 (9)
C4—H30.9300C15—H120.9300
C5—C61.379 (9)C16—C171.421 (8)
C5—H20.9300C16—H110.9300
C6—C71.385 (7)C17—O21.403 (6)
C6—H10.9300C18—O21.427 (7)
C7—C81.504 (7)C18—H8A0.9700
C8—N11.485 (6)C18—H8B0.9700
C8—H16A0.9700N1—H1C0.93 (5)
C8—H16B0.9700N2—C11i1.477 (7)
C9—N11.474 (6)N2—H2C0.80 (5)
C9—C101.481 (7)O1W—H1A0.81 (4)
C9—H17A0.9700O1W—H1B1.00 (4)
N1—Cu1—N284.17 (17)N2—C10—H18B110.0
N1—Cu1—Cl1164.46 (13)H18A—C10—H18B108.3
N2—Cu1—Cl190.30 (13)N2i—C11—C12112.3 (4)
N1—Cu1—O1W98.39 (16)N2i—C11—H15A109.1
N2—Cu1—O1W92.11 (16)C12—C11—H15A109.1
Cl1—Cu1—O1W96.31 (11)N2i—C11—H15B109.1
N1—Cu1—Cl288.39 (12)C12—C11—H15B109.1
N2—Cu1—Cl2169.54 (13)H15A—C11—H15B107.9
Cl1—Cu1—Cl294.99 (5)C17—C12—C13118.9 (6)
O1W—Cu1—Cl296.26 (11)C17—C12—C11119.7 (5)
O1—C1—C18111.6 (5)C13—C12—C11121.4 (6)
O1—C1—H7A109.3C14—C13—C12120.9 (7)
C18—C1—H7A109.3C14—C13—H14119.6
O1—C1—H7B109.3C12—C13—H14119.6
C18—C1—H7B109.3C15—C14—C13120.1 (7)
H7A—C1—H7B108.0C15—C14—H13120.0
O1—C2—C3124.9 (6)C13—C14—H13120.0
O1—C2—C7115.1 (5)C14—C15—C16121.4 (7)
C3—C2—C7120.0 (5)C14—C15—H12119.3
C2—C3—C4119.9 (6)C16—C15—H12119.3
C2—C3—H4120.0C15—C16—C17117.8 (7)
C4—C3—H4120.0C15—C16—H11121.1
C5—C4—C3121.2 (7)C17—C16—H11121.1
C5—C4—H3119.4C12—C17—O2115.0 (5)
C3—C4—H3119.4C12—C17—C16120.9 (6)
C4—C5—C6118.8 (6)O2—C17—C16124.2 (6)
C4—C5—H2120.6O2—C18—C1110.3 (5)
C6—C5—H2120.6O2—C18—H8A109.6
C5—C6—C7122.0 (6)C1—C18—H8A109.6
C5—C6—H1119.0O2—C18—H8B109.6
C7—C6—H1119.0C1—C18—H8B109.6
C6—C7—C2118.1 (5)H8A—C18—H8B108.1
C6—C7—C8121.0 (5)C9—N1—C8114.5 (4)
C2—C7—C8120.8 (5)C9—N1—Cu1108.4 (3)
N1—C8—C7112.5 (4)C8—N1—Cu1111.8 (3)
N1—C8—H16A109.1C9—N1—H1C105 (3)
C7—C8—H16A109.1C8—N1—H1C105 (3)
N1—C8—H16B109.1Cu1—N1—H1C112 (3)
C7—C8—H16B109.1C11i—N2—C10110.9 (4)
H16A—C8—H16B107.8C11i—N2—Cu1117.8 (3)
N1—C9—C10109.2 (4)C10—N2—Cu1107.9 (3)
N1—C9—H17A109.8C11i—N2—H2C107 (4)
C10—C9—H17A109.8C10—N2—H2C107 (4)
N1—C9—H17B109.8Cu1—N2—H2C106 (4)
C10—C9—H17B109.8C2—O1—C1116.7 (4)
H17A—C9—H17B108.3C17—O2—C18119.5 (5)
C9—C10—N2108.6 (4)Cu1—O1W—H1A113 (5)
C9—C10—H18A110.0Cu1—O1W—H1B125 (3)
N2—C10—H18A110.0H1A—O1W—H1B99 (5)
C9—C10—H18B110.0
O1—C2—C3—C4179.6 (5)C10—C9—N1—C886.8 (5)
C7—C2—C3—C41.2 (8)C10—C9—N1—Cu138.8 (5)
C2—C3—C4—C51.8 (10)C7—C8—N1—C961.3 (6)
C3—C4—C5—C60.9 (11)C7—C8—N1—Cu1175.0 (3)
C4—C5—C6—C70.6 (10)N2—Cu1—N1—C913.3 (3)
C5—C6—C7—C21.1 (9)Cl1—Cu1—N1—C956.3 (6)
C5—C6—C7—C8177.2 (6)O1W—Cu1—N1—C9104.6 (3)
O1—C2—C7—C6178.3 (5)Cl2—Cu1—N1—C9159.3 (3)
C3—C2—C7—C60.3 (8)N2—Cu1—N1—C8113.8 (3)
O1—C2—C7—C83.3 (7)Cl1—Cu1—N1—C8176.5 (3)
C3—C2—C7—C8178.1 (5)O1W—Cu1—N1—C822.5 (3)
C6—C7—C8—N1103.8 (6)Cl2—Cu1—N1—C873.6 (3)
C2—C7—C8—N174.6 (6)C9—C10—N2—C11i169.4 (4)
N1—C9—C10—N252.1 (6)C9—C10—N2—Cu139.0 (5)
N2i—C11—C12—C1775.4 (7)N1—Cu1—N2—C11i140.6 (4)
N2i—C11—C12—C13105.2 (6)Cl1—Cu1—N2—C11i54.0 (4)
C17—C12—C13—C141.0 (9)O1W—Cu1—N2—C11i42.3 (4)
C11—C12—C13—C14178.4 (6)Cl2—Cu1—N2—C11i174.5 (5)
C12—C13—C14—C152.8 (10)N1—Cu1—N2—C1014.1 (3)
C13—C14—C15—C162.4 (11)Cl1—Cu1—N2—C10179.5 (3)
C14—C15—C16—C170.3 (10)O1W—Cu1—N2—C1084.2 (3)
C13—C12—C17—O2177.9 (5)Cl2—Cu1—N2—C1059.0 (9)
C11—C12—C17—O21.5 (8)C3—C2—O1—C10.2 (7)
C13—C12—C17—C161.1 (9)C7—C2—O1—C1178.7 (5)
C11—C12—C17—C16179.5 (5)C18—C1—O1—C2169.0 (5)
C15—C16—C17—C121.5 (9)C12—C17—O2—C18167.5 (5)
C15—C16—C17—O2177.4 (6)C16—C17—O2—C1811.4 (8)
O1—C1—C18—O274.8 (6)C1—C18—O2—C17157.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···Cl1ii1.00 (4)2.22 (5)3.152 (4)155 (5)
O1W—H1A···Cl2ii0.81 (4)2.47 (5)3.215 (4)154 (6)
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C36H44N4O4)(H2O)2]
Mr901.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.193 (1), 8.4530 (8), 17.913 (2)
β (°) 98.211 (2)
V3)1977.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.45 × 0.36 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.55, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
9616, 3493, 2151
Rint0.062
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.01
No. of reflections3493
No. of parameters247
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.46

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Siemens, 1990).

Selected geometric parameters (Å, º) top
Cu1—N12.035 (4)Cu1—O1W2.303 (4)
Cu1—N22.044 (4)Cu1—Cl22.3078 (15)
Cu1—Cl12.2964 (15)
N1—Cu1—N284.17 (17)Cl1—Cu1—O1W96.31 (11)
N1—Cu1—Cl1164.46 (13)N1—Cu1—Cl288.39 (12)
N2—Cu1—Cl190.30 (13)N2—Cu1—Cl2169.54 (13)
N1—Cu1—O1W98.39 (16)Cl1—Cu1—Cl294.99 (5)
N2—Cu1—O1W92.11 (16)O1W—Cu1—Cl296.26 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···Cl1i1.00 (4)2.22 (5)3.152 (4)155 (5)
O1W—H1A···Cl2i0.81 (4)2.47 (5)3.215 (4)154 (6)
Symmetry code: (i) x+1, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds