Download citation
Download citation
link to html
The title compound, [Cu2(C13H18N2O2)2(ClO4)2(CH4O)], consists of two six-coordinate Jahn–Teller-distorted copper(II) complex units with the tetra­dentate ligand 2-{1-[2-(2-hydroxy­ethyl­amino)ethyl­imino]prop­yl}phenolate observed in a planar coordination mode. Each copper center has octahedral coordination geometry. The complex units are axially connected by a bridging perchlorate anion. For one copper center, the other axial position is occupied by a terminal methanol mol­ecule, while for the other copper center, the axial position is occupied by a weakly coordinated second perchlorate anion. As well as inter­molecular N—H...O hydrogen bonds, the two Cu complex units are also linked by intra­molecular O—H...O hydrogen-bonding inter­actions. The four O atoms of one perchlorate are disordered over four positions; the site occupancy factors are 0.43. 0.25, 0.19 and 0.13.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053500/im2022sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053500/im2022Isup2.hkl
Contains datablock I

CCDC reference: 667254

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Wave) = 0.000 Å
  • R factor = 0.083
  • wR factor = 0.189
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level A DIFF022_ALERT_1_A _diffrn_standards_decay_% is missing Percentage decrease in standards intensity.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.893 Tmax scaled 0.671 Tmin scaled 0.566
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The stucture of the title compound, (I), is shown in Figure 1, bond lengths and angles are available as Supplementary Material.

Hydrogen bonds play a key role in interactions in biological structures, supramolecular chemistry, and crystal engineering (Plass et al., 2001). As such they are also important to understand the properties of relevant magnetic materials (Cros et al., 1987). In particular for some copper(II)-containing coordination compounds it has been shown that the variation of possible supramolecular interactions can substantially influence the magnetic properties of related coordination polymers (Swamy et al., 2001). As part of a program involving molecular recognition through intermolecular hydrogen bonding interactions (Butcher & Towns, 2005), the title compound was synthesized from 2-hydroxypropiophenone, copper(II) perchlorate, and 2-(2-aminoethylamino)ethanol in the presence of base.

The title compound consists of two six-coordinate Jahn-Teller distorted copper(II) complex units with the tetradentate ligand, (N-(2-hydroxopropiophenimine)-N'-(2-hydroxoethyl)ethylenediamine, observed in a planar coordination mode. The complex units are axially connected by a mutually µ,µ' bridging perchlorate anion. For one copper center the other axial position is occupied by a terminal methanol while for the other copper center the axial position is occupied by a weakly coordinated perchlorate anion. The two Cu complexes are also linked by intramolecular O—H···O hydrogen bonding interactions. In addition, there are also intermolecular N—H···O hydrogen bond interactions.

Related literature top

For related literature, see: Butcher & Towns (2005); Cros et al. (1987); Plass et al. (2001); Swamy et al. (2001).

Experimental top

The title compound, C27H41Cl2Cu2N4O13, was obtained by refluxing 2-hydroxypropiophenone (0.30 g, 2 mmol), 2-(2-aminoethylamino)ethanol (0.20 g, 2 mmol), and copper(II) perchlorate hexa hydrate (0.74 g, 2 mmol) in 200 ml of methanol in the presence of app. 2 ml base (trimethylamine or 2,6,dimethylpiperidine) for 1 h. The product deposited on cooling the solution. Suitable crystals were grown from a methanolic solution.

Refinement top

The bridging perchlorate is disordered such that O24 is unique and the remaining O atoms are disordered over two conformations with occupancy factors of 0.63 (1) and 0.37 (1), respectively. The terminal perchlorate anion is disordered over three positions with multiplicities of 0.39 (4), 0.33 (3) and 0.28 (3). The thermal parameters of one of the perchlorate O atoms (O14D) did not behave well and thus were fixed. The H atoms were idealized with an N—H distance of 0.91 and C—H distances of 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C) for the CH2 groups and (1.5U~eq~(C) for the CH3 protons). The H atoms attached to O atoms were refined isotropically.

Structure description top

The stucture of the title compound, (I), is shown in Figure 1, bond lengths and angles are available as Supplementary Material.

Hydrogen bonds play a key role in interactions in biological structures, supramolecular chemistry, and crystal engineering (Plass et al., 2001). As such they are also important to understand the properties of relevant magnetic materials (Cros et al., 1987). In particular for some copper(II)-containing coordination compounds it has been shown that the variation of possible supramolecular interactions can substantially influence the magnetic properties of related coordination polymers (Swamy et al., 2001). As part of a program involving molecular recognition through intermolecular hydrogen bonding interactions (Butcher & Towns, 2005), the title compound was synthesized from 2-hydroxypropiophenone, copper(II) perchlorate, and 2-(2-aminoethylamino)ethanol in the presence of base.

The title compound consists of two six-coordinate Jahn-Teller distorted copper(II) complex units with the tetradentate ligand, (N-(2-hydroxopropiophenimine)-N'-(2-hydroxoethyl)ethylenediamine, observed in a planar coordination mode. The complex units are axially connected by a mutually µ,µ' bridging perchlorate anion. For one copper center the other axial position is occupied by a terminal methanol while for the other copper center the axial position is occupied by a weakly coordinated perchlorate anion. The two Cu complexes are also linked by intramolecular O—H···O hydrogen bonding interactions. In addition, there are also intermolecular N—H···O hydrogen bond interactions.

For related literature, see: Butcher & Towns (2005); Cros et al. (1987); Plass et al. (2001); Swamy et al. (2001).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The title compound with numbering scheme used. Hydrogen bonding interactions shown as dotted lines. Ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. The packing arrangement viewed down the b axis showing the intramolecular O—H···O and intermolecular N—H···O hydrogen bond interactions (dashed bonds).
Bis(2-{1-[2-(2-hydroxyethylamino)ethylimino]propyl}phenolato)- 1κ4O,N,N',O';2κ4O,N,N',O'-methanol-2κO-µ-perchlorato-1:2κ2O:O'- perchlorato-1κO-dicopper(II) top
Crystal data top
[Cu2(C13H19N2O2)2(ClO4)2(CH4O)]F(000) = 1712
Mr = 828.63Dx = 1.618 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.405 (4) ÅCell parameters from 30 reflections
b = 13.154 (5) Åθ = 2.1–12.5°
c = 20.019 (6) ŵ = 1.48 mm1
β = 105.52 (3)°T = 293 K
V = 3401.4 (18) Å3Prism, dark green
Z = 40.45 × 0.40 × 0.27 mm
Data collection top
Bruker P4
diffractometer
4119 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
2θ/ω scansh = 170
Absorption correction: empirical (using intensity measurements)
ψ scans (North et al., 1968)
k = 170
Tmin = 0.634, Tmax = 0.752l = 2526
8124 measured reflections3 standard reflections every 97 reflections
7797 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.052P)2 + 9.8043P]
where P = (Fo2 + 2Fc2)/3
7797 reflections(Δ/σ)max = 0.008
550 parametersΔρmax = 0.65 e Å3
239 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Cu2(C13H19N2O2)2(ClO4)2(CH4O)]V = 3401.4 (18) Å3
Mr = 828.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.405 (4) ŵ = 1.48 mm1
b = 13.154 (5) ÅT = 293 K
c = 20.019 (6) Å0.45 × 0.40 × 0.27 mm
β = 105.52 (3)°
Data collection top
Bruker P4
diffractometer
7797 independent reflections
Absorption correction: empirical (using intensity measurements)
ψ scans (North et al., 1968)
4119 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.752Rint = 0.048
8124 measured reflections3 standard reflections every 97 reflections
Refinement top
R[F2 > 2σ(F2)] = 0.083239 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.65 e Å3
7797 reflectionsΔρmin = 0.65 e Å3
550 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.14849 (3)0.51255 (3)0.190520 (19)0.04693 (11)
Cu20.02884 (3)0.30996 (3)0.328905 (18)0.03873 (10)
Cl10.45541 (7)0.45505 (7)0.29502 (6)0.0708 (3)
Cl20.10543 (7)0.57528 (6)0.23851 (5)0.0544 (3)
O1M0.0105 (2)0.1247 (2)0.34752 (14)0.0858 (10)
H1M0.01060.10320.30910.103*
O1A0.10619 (15)0.38175 (15)0.16018 (9)0.0418 (6)
O2A0.16987 (15)0.48768 (16)0.29101 (10)0.0432 (6)
H2A0.142 (2)0.447 (2)0.3062 (15)0.052*
O1B0.10558 (14)0.35433 (16)0.37063 (9)0.0372 (6)
O2B0.00764 (15)0.29067 (17)0.23388 (9)0.0460 (6)
H2B0.040 (2)0.313 (2)0.2135 (15)0.055*
O11A0.4335 (5)0.4950 (5)0.3564 (3)0.110 (2)0.4302 (1)
O12A0.4813 (5)0.3511 (4)0.3035 (4)0.108 (2)0.4302 (1)
O13A0.3707 (4)0.4721 (5)0.2345 (3)0.090 (2)0.4302 (1)
O14A0.5437 (4)0.5078 (5)0.2841 (3)0.118 (3)0.4302 (1)
O11B0.4580 (7)0.5628 (4)0.2883 (4)0.082 (3)0.2496 (1)
O12B0.4345 (7)0.4296 (8)0.3600 (3)0.136 (4)0.2496 (1)
O13B0.5500 (4)0.4112 (7)0.2921 (5)0.137 (3)0.2496 (1)
O14B0.3712 (5)0.4153 (6)0.2394 (4)0.088 (3)0.2496 (1)
O11C0.5673 (4)0.4637 (8)0.3148 (5)0.067 (3)0.1858 (1)
O12C0.4244 (6)0.4529 (8)0.3596 (3)0.075 (3)0.1858 (1)
O13C0.4289 (8)0.3609 (5)0.2602 (4)0.072 (3)0.1858 (1)
O14C0.4101 (7)0.5390 (5)0.2551 (4)0.060 (3)0.1858 (1)
O11D0.4156 (6)0.3574 (4)0.3011 (5)0.036 (3)0.1345 (1)
O12D0.5407 (5)0.4480 (9)0.2633 (4)0.091 (4)0.1345 (1)
O13D0.3780 (6)0.5186 (6)0.2502 (5)0.074 (4)0.1345 (1)
O14D0.4908 (10)0.5026 (7)0.3613 (3)0.100*0.1345 (1)
O210.2137 (2)0.5690 (2)0.20947 (17)0.0988 (10)
O220.0547 (2)0.5460 (3)0.18836 (15)0.0986 (10)
O230.0772 (3)0.6730 (2)0.26572 (18)0.1055 (11)
O240.0725 (2)0.5066 (2)0.29527 (14)0.0783 (9)
N1A0.1606 (2)0.5596 (2)0.10104 (13)0.0464 (8)
N2A0.1778 (3)0.6545 (2)0.22188 (14)0.0706 (11)
H2AA0.11320.68190.21220.085*
N1B0.07766 (18)0.33053 (19)0.41155 (12)0.0403 (7)
N2B0.17316 (18)0.2742 (2)0.28020 (13)0.0473 (8)
H2BA0.18020.20620.28600.057*
C1M0.0237 (4)0.0509 (4)0.3833 (3)0.116 (2)
H1MA0.03450.01470.41170.174*
H1MB0.06720.00460.35130.174*
H1MC0.06250.08110.41210.174*
C1A0.1222 (2)0.3993 (2)0.04164 (15)0.0399 (9)
C2A0.1038 (2)0.3433 (2)0.09920 (15)0.0402 (9)
C3A0.0778 (2)0.2396 (3)0.08817 (16)0.0444 (10)
H3AA0.06390.20260.12430.053*
C4A0.0720 (2)0.1905 (3)0.02661 (18)0.0588 (11)
H4AA0.05490.12190.02150.071*
C5A0.0921 (3)0.2448 (3)0.02768 (18)0.0679 (12)
H5AA0.08960.21240.06940.082*
C6A0.1154 (3)0.3452 (3)0.02011 (17)0.0565 (11)
H6AA0.12750.38000.05760.068*
C7A0.1448 (2)0.5079 (3)0.04489 (14)0.0431 (9)
C8A0.1536 (3)0.5602 (3)0.02135 (15)0.0548 (11)
H8AA0.10710.52740.06100.066*
H8AB0.13230.63060.02080.066*
C9A0.2628 (3)0.5564 (4)0.0292 (2)0.0911 (16)
H9AA0.26340.58330.07370.137*
H9AB0.28650.48730.02570.137*
H9AC0.30760.59630.00670.137*
C10A0.1841 (3)0.6685 (3)0.10308 (18)0.0662 (12)
H10A0.23730.68120.07940.079*
H10B0.12260.70610.07930.079*
C11A0.2199 (3)0.7033 (3)0.17473 (19)0.0792 (14)
H11A0.29460.69550.18980.095*
H11D0.20500.77540.17590.095*
C12A0.2094 (4)0.6612 (3)0.29207 (18)0.0741 (15)
H12A0.18130.72350.30550.089*
H12D0.28420.66800.30540.089*
C13A0.1833 (3)0.5803 (2)0.33157 (16)0.0531 (11)
H13A0.11990.59640.34380.064*
H13B0.23800.57120.37410.064*
C1B0.0881 (2)0.3723 (2)0.48796 (14)0.0398 (9)
C2B0.1461 (2)0.3745 (2)0.43768 (14)0.0362 (8)
C3B0.2504 (2)0.4007 (2)0.45846 (15)0.0419 (9)
H3BA0.28770.40200.42540.050*
C4B0.3004 (3)0.4246 (3)0.52616 (16)0.0521 (11)
H4BA0.37040.44150.53860.063*
C5B0.2455 (3)0.4233 (3)0.57492 (17)0.0577 (12)
H5BA0.27800.44040.62070.069*
C6B0.1436 (3)0.3972 (3)0.55661 (16)0.0542 (11)
H6BA0.10860.39560.59090.065*
C7B0.0219 (2)0.3495 (2)0.47347 (14)0.0428 (9)
C8B0.0726 (3)0.3432 (3)0.53342 (16)0.0662 (12)
H8BA0.04180.39340.56840.079*
H8BB0.14590.35790.51650.079*
C9B0.0575 (4)0.2373 (3)0.5654 (2)0.0963 (16)
H9BA0.09150.23320.60190.144*
H9BB0.01510.22420.58400.144*
H9BC0.08670.18760.53050.144*
C10B0.1908 (2)0.3119 (3)0.39431 (17)0.0557 (10)
H10C0.22260.35910.41960.067*
H10D0.20380.24330.40780.067*
C11B0.2366 (2)0.3253 (3)0.3185 (2)0.0724 (13)
H11B0.30610.29740.30530.087*
H11C0.24100.39720.30720.087*
C12B0.1916 (3)0.2919 (3)0.20665 (17)0.0608 (12)
H12B0.20490.36360.19670.073*
H12C0.25210.25390.18150.073*
C13B0.1007 (3)0.2598 (3)0.18377 (17)0.0617 (12)
H13C0.10120.18650.17840.074*
H13D0.10340.29030.13920.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0725 (2)0.0371 (2)0.03671 (17)0.0156 (2)0.02405 (16)0.00140 (17)
Cu20.03875 (16)0.0461 (2)0.03576 (16)0.00538 (18)0.01762 (13)0.00192 (17)
Cl10.0591 (5)0.0495 (5)0.1053 (7)0.0015 (5)0.0246 (5)0.0053 (5)
Cl20.0473 (4)0.0415 (4)0.0707 (5)0.0018 (4)0.0093 (4)0.0003 (4)
O1M0.1241 (19)0.0559 (16)0.0965 (17)0.0002 (16)0.0627 (14)0.0035 (14)
O1A0.0614 (12)0.0350 (11)0.0346 (9)0.0068 (10)0.0227 (8)0.0032 (9)
O2A0.0575 (11)0.0393 (11)0.0381 (10)0.0060 (10)0.0222 (9)0.0004 (9)
O1B0.0382 (10)0.0459 (12)0.0318 (9)0.0055 (9)0.0167 (8)0.0071 (9)
O2B0.0516 (11)0.0587 (13)0.0315 (9)0.0222 (11)0.0174 (8)0.0062 (10)
O11A0.105 (4)0.115 (4)0.113 (4)0.015 (3)0.035 (3)0.030 (3)
O12A0.112 (4)0.081 (4)0.126 (4)0.012 (3)0.025 (3)0.015 (3)
O13A0.085 (3)0.102 (4)0.082 (3)0.022 (3)0.019 (3)0.002 (3)
O14A0.113 (4)0.116 (4)0.125 (4)0.032 (3)0.030 (3)0.023 (3)
O11B0.089 (5)0.065 (4)0.088 (5)0.000 (4)0.016 (4)0.006 (4)
O12B0.141 (5)0.138 (5)0.131 (5)0.005 (4)0.041 (4)0.018 (4)
O13B0.133 (5)0.131 (5)0.146 (5)0.016 (4)0.036 (4)0.004 (4)
O14B0.087 (5)0.079 (5)0.095 (5)0.002 (4)0.020 (4)0.004 (4)
O11C0.058 (5)0.069 (5)0.077 (5)0.005 (4)0.023 (4)0.005 (4)
O12C0.082 (5)0.073 (5)0.072 (5)0.000 (4)0.026 (4)0.013 (4)
O13C0.074 (5)0.063 (5)0.071 (5)0.007 (4)0.007 (4)0.001 (4)
O14C0.055 (5)0.057 (5)0.066 (5)0.002 (4)0.014 (4)0.010 (4)
O11D0.033 (5)0.024 (5)0.050 (5)0.013 (4)0.007 (4)0.002 (4)
O12D0.089 (6)0.092 (6)0.095 (6)0.006 (5)0.026 (4)0.004 (5)
O13D0.073 (5)0.070 (6)0.078 (6)0.000 (4)0.020 (4)0.008 (4)
O210.0706 (15)0.0900 (17)0.1269 (19)0.0030 (14)0.0109 (14)0.0201 (15)
O220.0915 (16)0.133 (2)0.0777 (15)0.0004 (16)0.0343 (12)0.0057 (15)
O230.1000 (18)0.0687 (16)0.1237 (19)0.0029 (15)0.0117 (15)0.0020 (15)
O240.0874 (15)0.0730 (15)0.0777 (14)0.0033 (13)0.0274 (12)0.0100 (13)
N1A0.0540 (14)0.0445 (15)0.0458 (13)0.0021 (13)0.0220 (11)0.0082 (12)
N2A0.122 (2)0.0462 (16)0.0495 (15)0.0310 (17)0.0331 (15)0.0081 (14)
N1B0.0515 (13)0.0386 (14)0.0399 (11)0.0063 (12)0.0278 (9)0.0013 (11)
N2B0.0392 (13)0.0548 (16)0.0487 (14)0.0075 (13)0.0134 (11)0.0017 (13)
C1M0.120 (4)0.103 (4)0.121 (4)0.012 (3)0.025 (3)0.045 (3)
C1A0.0329 (15)0.0490 (18)0.0368 (15)0.0037 (15)0.0077 (12)0.0028 (14)
C2A0.0391 (15)0.0409 (17)0.0405 (15)0.0076 (14)0.0106 (13)0.0074 (14)
C3A0.0429 (16)0.0479 (19)0.0426 (16)0.0019 (16)0.0115 (13)0.0069 (15)
C4A0.0487 (18)0.059 (2)0.070 (2)0.0056 (18)0.0181 (16)0.0262 (18)
C5A0.0584 (19)0.097 (3)0.0526 (18)0.008 (2)0.0218 (15)0.0315 (19)
C6A0.0557 (19)0.073 (2)0.0441 (17)0.0035 (19)0.0195 (14)0.0078 (17)
C7A0.0390 (15)0.062 (2)0.0297 (13)0.0095 (16)0.0125 (11)0.0132 (15)
C8A0.0609 (19)0.068 (2)0.0410 (15)0.0100 (18)0.0230 (14)0.0196 (16)
C9A0.075 (2)0.139 (4)0.070 (2)0.010 (3)0.0391 (18)0.038 (3)
C10A0.091 (2)0.057 (2)0.0603 (19)0.017 (2)0.0355 (17)0.0089 (18)
C11A0.118 (3)0.052 (2)0.078 (2)0.034 (2)0.044 (2)0.0023 (19)
C12A0.121 (3)0.041 (2)0.054 (2)0.012 (2)0.014 (2)0.0045 (18)
C13A0.071 (2)0.0467 (19)0.0437 (17)0.0119 (18)0.0196 (15)0.0080 (16)
C1B0.0644 (18)0.0271 (15)0.0313 (13)0.0115 (14)0.0184 (13)0.0043 (12)
C2B0.0465 (16)0.0269 (14)0.0338 (14)0.0050 (14)0.0083 (12)0.0000 (12)
C3B0.0469 (17)0.0405 (17)0.0383 (15)0.0051 (15)0.0111 (13)0.0036 (14)
C4B0.055 (2)0.0454 (19)0.0463 (19)0.0112 (17)0.0024 (17)0.0029 (16)
C5B0.080 (2)0.047 (2)0.0351 (17)0.0136 (19)0.0033 (17)0.0042 (16)
C6B0.085 (2)0.049 (2)0.0320 (14)0.0109 (19)0.0229 (15)0.0036 (15)
C7B0.0684 (17)0.0302 (15)0.0410 (13)0.0101 (15)0.0339 (12)0.0004 (13)
C8B0.095 (2)0.072 (2)0.0480 (16)0.000 (2)0.0467 (14)0.0044 (17)
C9B0.164 (4)0.070 (3)0.075 (2)0.017 (3)0.067 (2)0.013 (2)
C10B0.0549 (17)0.055 (2)0.0687 (18)0.0128 (17)0.0363 (14)0.0070 (17)
C11B0.0366 (16)0.085 (3)0.102 (3)0.0170 (19)0.0299 (16)0.035 (2)
C12B0.053 (2)0.070 (2)0.055 (2)0.010 (2)0.0057 (17)0.0086 (19)
C13B0.063 (2)0.077 (2)0.0428 (18)0.025 (2)0.0110 (16)0.0116 (19)
Geometric parameters (Å, º) top
Cu1—O1A1.862 (2)C3A—C4A1.375 (5)
Cu1—N1A1.943 (3)C3A—H3AA0.9300
Cu1—N2A1.975 (3)C4A—C5A1.386 (5)
Cu1—O2A1.982 (2)C4A—H4AA0.9300
Cu1—O222.748 (3)C5A—C6A1.356 (6)
Cu1—O13A2.921 (5)C5A—H5AA0.9300
Cu2—O1B1.8654 (19)C6A—H6AA0.9300
Cu2—N1B1.954 (3)C7A—C8A1.526 (4)
Cu2—N2B1.976 (2)C8A—C9A1.514 (5)
Cu2—O2B2.013 (2)C8A—H8AA0.9700
Cu2—O1M2.500 (3)C8A—H8AB0.9700
Cu2—O242.698 (3)C9A—H9AA0.9600
Cl1—O14C1.403 (6)C9A—H9AB0.9600
Cl1—O13B1.408 (7)C9A—H9AC0.9600
Cl1—O11D1.409 (6)C10A—C11A1.459 (5)
Cl1—O12A1.410 (5)C10A—H10A0.9700
Cl1—O13C1.420 (6)C10A—H10B0.9700
Cl1—O11B1.425 (5)C11A—H11A0.9700
Cl1—O14D1.428 (7)C11A—H11D0.9700
Cl1—O11A1.438 (6)C12A—C13A1.424 (5)
Cl1—O13A1.439 (5)C12A—H12A0.9700
Cl1—O14A1.439 (6)C12A—H12D0.9700
Cl1—O12B1.443 (7)C13A—H13A0.9700
Cl1—O13D1.443 (7)C13A—H13B0.9700
Cl2—O231.408 (3)C1B—C6B1.415 (4)
Cl2—O221.409 (3)C1B—C2B1.427 (5)
Cl2—O211.414 (3)C1B—C7B1.457 (4)
Cl2—O241.426 (3)C2B—C3B1.391 (4)
O1M—C1M1.357 (6)C3B—C4B1.378 (4)
O1M—H1M0.8200C3B—H3BA0.9300
O1A—C2A1.314 (4)C4B—C5B1.371 (5)
O2A—C13A1.448 (4)C4B—H4BA0.9300
O2A—H2A0.76 (3)C5B—C6B1.360 (5)
O1B—C2B1.333 (3)C5B—H5BA0.9300
O2B—C13B1.435 (4)C6B—H6BA0.9300
O2B—H2B0.90 (3)C7B—C8B1.531 (5)
N1A—C7A1.282 (4)C8B—C9B1.524 (6)
N1A—C10A1.465 (4)C8B—H8BA0.9700
N2A—C12A1.358 (4)C8B—H8BB0.9700
N2A—C11A1.381 (5)C9B—H9BA0.9600
N2A—H2AA0.9100C9B—H9BB0.9600
N1B—C7B1.289 (3)C9B—H9BC0.9600
N1B—C10B1.483 (4)C10B—C11B1.488 (5)
N2B—C12B1.445 (4)C10B—H10C0.9700
N2B—C11B1.453 (5)C10B—H10D0.9700
N2B—H2BA0.9100C11B—H11B0.9700
C1M—H1MA0.9600C11B—H11C0.9700
C1M—H1MB0.9600C12B—C13B1.474 (5)
C1M—H1MC0.9600C12B—H12B0.9700
C1A—C6A1.408 (5)C12B—H12C0.9700
C1A—C2A1.444 (4)C13B—H13C0.9700
C1A—C7A1.458 (5)C13B—H13D0.9700
C2A—C3A1.411 (4)
O1A—Cu1—N1A94.99 (10)C10B—N1B—Cu2109.48 (18)
O1A—Cu1—N2A173.93 (13)C12B—N2B—C11B119.9 (3)
N1A—Cu1—N2A86.18 (12)C12B—N2B—Cu2110.0 (2)
O1A—Cu1—O2A97.32 (9)C11B—N2B—Cu2105.29 (19)
N1A—Cu1—O2A164.47 (10)C12B—N2B—H2BA107.0
N2A—Cu1—O2A82.59 (10)C11B—N2B—H2BA107.0
O1A—Cu1—O2285.91 (10)Cu2—N2B—H2BA107.0
N1A—Cu1—O22105.17 (10)O1M—C1M—H1MA109.5
N2A—Cu1—O2288.04 (13)O1M—C1M—H1MB109.5
O2A—Cu1—O2285.17 (9)H1MA—C1M—H1MB109.5
O1A—Cu1—O13A97.29 (14)O1M—C1M—H1MC109.5
N1A—Cu1—O13A90.34 (14)H1MA—C1M—H1MC109.5
N2A—Cu1—O13A88.65 (16)H1MB—C1M—H1MC109.5
O2A—Cu1—O13A78.76 (13)C6A—C1A—C2A117.2 (3)
O22—Cu1—O13A163.88 (13)C6A—C1A—C7A119.9 (3)
O1B—Cu2—N1B94.58 (9)C2A—C1A—C7A122.8 (3)
O1B—Cu2—N2B175.01 (10)O1A—C2A—C3A117.5 (3)
N1B—Cu2—N2B86.86 (11)O1A—C2A—C1A125.3 (3)
O1B—Cu2—O2B95.67 (9)C3A—C2A—C1A117.2 (3)
N1B—Cu2—O2B168.94 (9)C4A—C3A—C2A123.1 (3)
N2B—Cu2—O2B82.58 (10)C4A—C3A—H3AA118.4
O1B—Cu2—O1M95.65 (9)C2A—C3A—H3AA118.4
N1B—Cu2—O1M96.53 (10)C3A—C4A—C5A119.0 (3)
N2B—Cu2—O1M88.92 (10)C3A—C4A—H4AA120.5
O2B—Cu2—O1M86.59 (9)C5A—C4A—H4AA120.5
O1B—Cu2—O2486.03 (9)C6A—C5A—C4A120.1 (3)
N1B—Cu2—O2488.80 (10)C6A—C5A—H5AA119.9
N2B—Cu2—O2489.23 (10)C4A—C5A—H5AA119.9
O2B—Cu2—O2487.77 (9)C5A—C6A—C1A123.3 (3)
O1M—Cu2—O24174.25 (9)C5A—C6A—H6AA118.3
O14C—Cl1—O13B123.8 (6)C1A—C6A—H6AA118.3
O14C—Cl1—O11D130.6 (5)N1A—C7A—C1A122.9 (3)
O13B—Cl1—O11D89.8 (5)N1A—C7A—C8A119.3 (3)
O14C—Cl1—O12A152.5 (4)C1A—C7A—C8A117.8 (3)
O13B—Cl1—O12A54.0 (5)C9A—C8A—C7A112.2 (3)
O11D—Cl1—O12A36.1 (4)C9A—C8A—H8AA109.2
O14C—Cl1—O13C113.2 (4)C7A—C8A—H8AA109.2
O13B—Cl1—O13C74.4 (5)C9A—C8A—H8AB109.2
O11D—Cl1—O13C36.5 (6)C7A—C8A—H8AB109.2
O12A—Cl1—O13C40.0 (4)H8AA—C8A—H8AB107.9
O14C—Cl1—O11B35.0 (4)C8A—C9A—H9AA109.5
O13B—Cl1—O11B111.0 (5)C8A—C9A—H9AB109.5
O11D—Cl1—O11B159.2 (5)H9AA—C9A—H9AB109.5
O12A—Cl1—O11B164.7 (5)C8A—C9A—H9AC109.5
O13C—Cl1—O11B146.2 (5)H9AA—C9A—H9AC109.5
O14C—Cl1—O14D99.8 (5)H9AB—C9A—H9AC109.5
O13B—Cl1—O14D98.0 (6)C11A—C10A—N1A110.2 (3)
O11D—Cl1—O14D111.0 (6)C11A—C10A—H10A109.6
O12A—Cl1—O14D107.7 (5)N1A—C10A—H10A109.6
O13C—Cl1—O14D144.7 (5)C11A—C10A—H10B109.6
O11B—Cl1—O14D69.0 (5)N1A—C10A—H10B109.6
O14C—Cl1—O11A92.5 (4)H10A—C10A—H10B108.1
O13B—Cl1—O11A125.3 (5)N2A—C11A—C10A116.0 (3)
O11D—Cl1—O11A95.2 (5)N2A—C11A—H11A108.3
O12A—Cl1—O11A110.6 (4)C10A—C11A—H11A108.3
O13C—Cl1—O11A131.1 (5)N2A—C11A—H11D108.3
O11B—Cl1—O11A74.5 (5)C10A—C11A—H11D108.3
O14D—Cl1—O11A30.5 (6)H11A—C11A—H11D107.4
O14C—Cl1—O13A43.4 (4)N2A—C12A—C13A118.1 (3)
O13B—Cl1—O13A123.0 (5)N2A—C12A—H12A107.8
O11D—Cl1—O13A89.1 (4)C13A—C12A—H12A107.8
O12A—Cl1—O13A111.4 (4)N2A—C12A—H12D107.8
O13C—Cl1—O13A71.6 (4)C13A—C12A—H12D107.8
O11B—Cl1—O13A78.5 (4)H12A—C12A—H12D107.1
O14D—Cl1—O13A134.8 (5)C12A—C13A—O2A109.2 (3)
O11A—Cl1—O13A111.5 (3)C12A—C13A—H13A109.8
O14C—Cl1—O14A77.4 (4)O2A—C13A—H13A109.8
O13B—Cl1—O14A53.5 (5)C12A—C13A—H13B109.8
O11D—Cl1—O14A143.1 (5)O2A—C13A—H13B109.8
O12A—Cl1—O14A107.5 (4)H13A—C13A—H13B108.3
O13C—Cl1—O14A117.0 (5)C6B—C1B—C2B115.9 (3)
O11B—Cl1—O14A57.6 (5)C6B—C1B—C7B118.8 (3)
O14D—Cl1—O14A81.3 (6)C2B—C1B—C7B125.3 (2)
O11A—Cl1—O14A108.6 (4)O1B—C2B—C3B117.2 (3)
O13A—Cl1—O14A107.0 (4)O1B—C2B—C1B123.7 (3)
O14C—Cl1—O12B122.6 (6)C3B—C2B—C1B119.2 (3)
O13B—Cl1—O12B109.7 (5)C4B—C3B—C2B122.4 (3)
O11D—Cl1—O12B62.6 (6)C4B—C3B—H3BA118.8
O12A—Cl1—O12B76.5 (5)C2B—C3B—H3BA118.8
O13C—Cl1—O12B99.0 (6)C5B—C4B—C3B119.0 (3)
O11B—Cl1—O12B109.4 (5)C5B—C4B—H4BA120.5
O14D—Cl1—O12B50.2 (6)C3B—C4B—H4BA120.5
O11A—Cl1—O12B34.9 (5)C6B—C5B—C4B120.2 (3)
O13A—Cl1—O12B119.7 (4)C6B—C5B—H5BA119.9
O14A—Cl1—O12B128.0 (4)C4B—C5B—H5BA119.9
O14C—Cl1—O13D20.0 (5)C5B—C6B—C1B123.3 (3)
O13B—Cl1—O13D135.8 (6)C5B—C6B—H6BA118.4
O11D—Cl1—O13D110.9 (5)C1B—C6B—H6BA118.4
O12A—Cl1—O13D138.5 (4)N1B—C7B—C1B121.8 (3)
O13C—Cl1—O13D99.0 (5)N1B—C7B—C8B118.6 (3)
O11B—Cl1—O13D52.9 (5)C1B—C7B—C8B119.5 (2)
O14D—Cl1—O13D109.2 (6)C9B—C8B—C7B110.0 (3)
O11A—Cl1—O13D92.4 (5)C9B—C8B—H8BA109.7
O13A—Cl1—O13D27.4 (4)C7B—C8B—H8BA109.7
O14A—Cl1—O13D96.3 (5)C9B—C8B—H8BB109.7
O12B—Cl1—O13D114.5 (6)C7B—C8B—H8BB109.7
O23—Cl2—O22113.2 (2)H8BA—C8B—H8BB108.2
O23—Cl2—O21110.6 (2)C8B—C9B—H9BA109.5
O22—Cl2—O21109.22 (19)C8B—C9B—H9BB109.5
O23—Cl2—O24106.04 (18)H9BA—C9B—H9BB109.5
O22—Cl2—O24106.80 (19)C8B—C9B—H9BC109.5
O21—Cl2—O24110.83 (19)H9BA—C9B—H9BC109.5
C1M—O1M—Cu2133.6 (3)H9BB—C9B—H9BC109.5
C1M—O1M—H1M109.5N1B—C10B—C11B109.6 (3)
Cu2—O1M—H1M104.4N1B—C10B—H10C109.8
C2A—O1A—Cu1126.1 (2)C11B—C10B—H10C109.8
C13A—O2A—Cu1113.12 (17)N1B—C10B—H10D109.8
C13A—O2A—H2A111 (2)C11B—C10B—H10D109.8
Cu1—O2A—H2A125 (2)H10C—C10B—H10D108.2
C2B—O1B—Cu2126.70 (19)N2B—C11B—C10B110.1 (3)
C13B—O2B—Cu2112.3 (2)N2B—C11B—H11B109.6
C13B—O2B—H2B111.7 (17)C10B—C11B—H11B109.6
Cu2—O2B—H2B133.3 (18)N2B—C11B—H11C109.6
Cl1—O13A—Cu1142.5 (3)C10B—C11B—H11C109.6
Cl2—O22—Cu1134.28 (16)H11B—C11B—H11C108.2
Cl2—O24—Cu2143.76 (17)N2B—C12B—C13B109.9 (3)
C7A—N1A—C10A121.8 (3)N2B—C12B—H12B109.7
C7A—N1A—Cu1127.2 (2)C13B—C12B—H12B109.7
C10A—N1A—Cu1110.9 (2)N2B—C12B—H12C109.7
C12A—N2A—C11A127.3 (3)C13B—C12B—H12C109.7
C12A—N2A—Cu1111.8 (2)H12B—C12B—H12C108.2
C11A—N2A—Cu1107.8 (2)O2B—C13B—C12B109.8 (3)
C12A—N2A—H2AA102.1O2B—C13B—H13C109.7
C11A—N2A—H2AA102.1C12B—C13B—H13C109.7
Cu1—N2A—H2AA102.1O2B—C13B—H13D109.7
C7B—N1B—C10B123.3 (3)C12B—C13B—H13D109.7
C7B—N1B—Cu2127.0 (2)H13C—C13B—H13D108.2
O1B—Cu2—O1M—C1M118.3 (4)O24—Cu2—N1B—C7B97.1 (3)
N1B—Cu2—O1M—C1M23.0 (4)O1B—Cu2—N1B—C10B174.0 (2)
N2B—Cu2—O1M—C1M63.7 (4)N2B—Cu2—N1B—C10B1.3 (2)
O2B—Cu2—O1M—C1M146.3 (4)O2B—Cu2—N1B—C10B16.1 (6)
O24—Cu2—O1M—C1M135.0 (9)O1M—Cu2—N1B—C10B89.8 (2)
N1A—Cu1—O1A—C2A7.8 (2)O24—Cu2—N1B—C10B88.0 (2)
N2A—Cu1—O1A—C2A108.6 (10)O1B—Cu2—N2B—C12B48.7 (13)
O2A—Cu1—O1A—C2A162.7 (2)N1B—Cu2—N2B—C12B155.6 (2)
O22—Cu1—O1A—C2A112.7 (2)O2B—Cu2—N2B—C12B21.1 (2)
O13A—Cu1—O1A—C2A83.2 (2)O1M—Cu2—N2B—C12B107.8 (2)
O1A—Cu1—O2A—C13A167.8 (2)O24—Cu2—N2B—C12B66.8 (2)
N1A—Cu1—O2A—C13A50.0 (5)O1B—Cu2—N2B—C11B81.8 (12)
N2A—Cu1—O2A—C13A6.1 (2)N1B—Cu2—N2B—C11B25.1 (2)
O22—Cu1—O2A—C13A82.6 (2)O2B—Cu2—N2B—C11B151.6 (2)
O13A—Cu1—O2A—C13A96.2 (2)O1M—Cu2—N2B—C11B121.7 (2)
N1B—Cu2—O1B—C2B9.1 (2)O24—Cu2—N2B—C11B63.7 (2)
N2B—Cu2—O1B—C2B115.7 (12)Cu1—O1A—C2A—C3A174.6 (2)
O2B—Cu2—O1B—C2B175.1 (2)Cu1—O1A—C2A—C1A7.6 (4)
O1M—Cu2—O1B—C2B88.0 (2)C6A—C1A—C2A—O1A179.5 (3)
O24—Cu2—O1B—C2B97.5 (2)C7A—C1A—C2A—O1A0.9 (5)
O1B—Cu2—O2B—C13B177.1 (2)C6A—C1A—C2A—C3A1.6 (4)
N1B—Cu2—O2B—C13B19.3 (6)C7A—C1A—C2A—C3A177.0 (3)
N2B—Cu2—O2B—C13B1.8 (2)O1A—C2A—C3A—C4A179.6 (3)
O1M—Cu2—O2B—C13B87.5 (2)C1A—C2A—C3A—C4A1.6 (4)
O24—Cu2—O2B—C13B91.3 (2)C2A—C3A—C4A—C5A0.3 (5)
O14C—Cl1—O13A—Cu191.4 (9)C3A—C4A—C5A—C6A1.0 (5)
O13B—Cl1—O13A—Cu1162.5 (6)C4A—C5A—C6A—C1A1.0 (5)
O11D—Cl1—O13A—Cu173.4 (7)C2A—C1A—C6A—C5A0.4 (5)
O12A—Cl1—O13A—Cu1102.4 (6)C7A—C1A—C6A—C5A178.2 (3)
O13C—Cl1—O13A—Cu1106.1 (7)C10A—N1A—C7A—C1A179.4 (3)
O11B—Cl1—O13A—Cu189.8 (7)Cu1—N1A—C7A—C1A5.2 (4)
O14D—Cl1—O13A—Cu145.8 (10)C10A—N1A—C7A—C8A1.8 (5)
O11A—Cl1—O13A—Cu121.8 (7)Cu1—N1A—C7A—C8A177.2 (2)
O14A—Cl1—O13A—Cu1140.4 (6)C6A—C1A—C7A—N1A173.9 (3)
O12B—Cl1—O13A—Cu116.0 (9)C2A—C1A—C7A—N1A7.5 (5)
O13D—Cl1—O13A—Cu170.3 (11)C6A—C1A—C7A—C8A3.7 (4)
O1A—Cu1—O13A—Cl1102.7 (6)C2A—C1A—C7A—C8A174.8 (3)
N1A—Cu1—O13A—Cl1162.2 (6)N1A—C7A—C8A—C9A89.0 (4)
N2A—Cu1—O13A—Cl176.1 (6)C1A—C7A—C8A—C9A88.7 (4)
O2A—Cu1—O13A—Cl16.7 (6)C7A—N1A—C10A—C11A168.0 (3)
O22—Cu1—O13A—Cl12.1 (11)Cu1—N1A—C10A—C11A15.9 (4)
O23—Cl2—O22—Cu163.1 (3)C12A—N2A—C11A—C10A168.8 (4)
O21—Cl2—O22—Cu1173.2 (2)Cu1—N2A—C11A—C10A31.7 (4)
O24—Cl2—O22—Cu153.3 (3)N1A—C10A—C11A—N2A32.4 (5)
O1A—Cu1—O22—Cl2121.4 (3)C11A—N2A—C12A—C13A157.4 (4)
N1A—Cu1—O22—Cl2144.5 (3)Cu1—N2A—C12A—C13A21.6 (5)
N2A—Cu1—O22—Cl259.0 (3)N2A—C12A—C13A—O2A26.1 (5)
O2A—Cu1—O22—Cl223.7 (3)Cu1—O2A—C13A—C12A17.9 (3)
O13A—Cu1—O22—Cl219.2 (7)Cu2—O1B—C2B—C3B176.1 (2)
O23—Cl2—O24—Cu2161.3 (3)Cu2—O1B—C2B—C1B5.1 (4)
O22—Cl2—O24—Cu240.3 (3)C6B—C1B—C2B—O1B179.1 (3)
O21—Cl2—O24—Cu278.6 (3)C7B—C1B—C2B—O1B0.9 (5)
O1B—Cu2—O24—Cl2117.3 (3)C6B—C1B—C2B—C3B0.3 (4)
N1B—Cu2—O24—Cl2148.0 (3)C7B—C1B—C2B—C3B177.9 (3)
N2B—Cu2—O24—Cl261.2 (3)O1B—C2B—C3B—C4B179.0 (3)
O2B—Cu2—O24—Cl221.4 (3)C1B—C2B—C3B—C4B0.1 (5)
O1M—Cu2—O24—Cl210.1 (11)C2B—C3B—C4B—C5B0.4 (5)
O1A—Cu1—N1A—C7A1.6 (3)C3B—C4B—C5B—C6B1.0 (5)
N2A—Cu1—N1A—C7A175.6 (3)C4B—C5B—C6B—C1B1.3 (5)
O2A—Cu1—N1A—C7A140.8 (3)C2B—C1B—C6B—C5B0.9 (5)
O22—Cu1—N1A—C7A88.7 (3)C7B—C1B—C6B—C5B177.4 (3)
O13A—Cu1—N1A—C7A95.8 (3)C10B—N1B—C7B—C1B177.0 (3)
O1A—Cu1—N1A—C10A174.3 (2)Cu2—N1B—C7B—C1B8.8 (4)
N2A—Cu1—N1A—C10A0.3 (2)C10B—N1B—C7B—C8B5.6 (4)
O2A—Cu1—N1A—C10A43.4 (5)Cu2—N1B—C7B—C8B168.6 (2)
O22—Cu1—N1A—C10A87.2 (2)C6B—C1B—C7B—N1B177.0 (3)
O13A—Cu1—N1A—C10A88.4 (3)C2B—C1B—C7B—N1B1.2 (5)
O1A—Cu1—N2A—C12A97.3 (10)C6B—C1B—C7B—C8B5.7 (4)
N1A—Cu1—N2A—C12A161.4 (3)C2B—C1B—C7B—C8B176.1 (3)
O2A—Cu1—N2A—C12A7.9 (3)N1B—C7B—C8B—C9B92.8 (4)
O22—Cu1—N2A—C12A93.2 (3)C1B—C7B—C8B—C9B84.6 (4)
O13A—Cu1—N2A—C12A71.0 (3)C7B—N1B—C10B—C11B162.0 (3)
O1A—Cu1—N2A—C11A118.3 (10)Cu2—N1B—C10B—C11B22.8 (3)
N1A—Cu1—N2A—C11A17.1 (3)C12B—N2B—C11B—C10B168.9 (3)
O2A—Cu1—N2A—C11A152.2 (3)Cu2—N2B—C11B—C10B44.4 (3)
O22—Cu1—N2A—C11A122.4 (3)N1B—C10B—C11B—N2B45.4 (4)
O13A—Cu1—N2A—C11A73.4 (3)C11B—N2B—C12B—C13B162.2 (3)
O1B—Cu2—N1B—C7B11.2 (3)Cu2—N2B—C12B—C13B40.0 (4)
N2B—Cu2—N1B—C7B173.6 (3)Cu2—O2B—C13B—C12B23.9 (4)
O2B—Cu2—N1B—C7B169.0 (4)N2B—C12B—C13B—O2B41.6 (4)
O1M—Cu2—N1B—C7B85.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1B0.76 (3)1.93 (3)2.664 (3)162 (3)
O2B—H2B···O1A0.90 (3)1.80 (3)2.673 (3)164 (3)
N2A—H2AA···O13Ci0.912.523.134 (8)126
N2A—H2AA···O12Ai0.912.543.303 (7)142
N2B—H2BA···O21ii0.912.313.130 (4)149
O1M—H1M···O14Ciii0.822.062.791 (9)149
O1M—H1M···O11Biii0.822.172.976 (10)168
O1M—H1M···O14Aiii0.822.202.968 (7)155
O1M—H1M···O13Diii0.822.413.095 (11)141
O1M—H1M···O12Diii0.822.493.159 (11)139
O1M—H1M···O13Aiii0.822.653.266 (7)133
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C13H19N2O2)2(ClO4)2(CH4O)]
Mr828.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.405 (4), 13.154 (5), 20.019 (6)
β (°) 105.52 (3)
V3)3401.4 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.45 × 0.40 × 0.27
Data collection
DiffractometerBruker P4
Absorption correctionEmpirical (using intensity measurements)
ψ scans (North et al., 1968)
Tmin, Tmax0.634, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
8124, 7797, 4119
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.189, 1.03
No. of reflections7797
No. of parameters550
No. of restraints239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.65

Computer programs: XSCANS (Bruker, 1997), XSCANS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O1B0.76 (3)1.93 (3)2.664 (3)162 (3)
O2B—H2B···O1A0.90 (3)1.80 (3)2.673 (3)164 (3)
N2A—H2AA···O13Ci0.912.523.134 (8)125.5
N2A—H2AA···O12Ai0.912.543.303 (7)142.1
N2B—H2BA···O21ii0.912.313.130 (4)149.0
O1M—H1M···O14Ciii0.822.062.791 (9)149.2
O1M—H1M···O11Biii0.822.172.976 (10)167.9
O1M—H1M···O14Aiii0.822.202.968 (7)155.1
O1M—H1M···O13Diii0.822.413.095 (11)141.0
O1M—H1M···O12Diii0.822.493.159 (11)139.4
O1M—H1M···O13Aiii0.822.653.266 (7)133.3
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds