Download citation
Download citation
link to html
In the title compound, C20H25N3O5S, the pyrrolidine ring is trans-fused to the dihydro­pyran ring. The pyrrolidine ring adopts a twist conformation and the dihydro­pyran ring is in an envelope conformation. The tosyl group is attached to the pyrrolidine ring in a biaxial position and its benzene ring forms a dihedral angle of 85.61 (4)° with the pyrimidine ring. The crystal packing shows that the mol­ecules are linked into a three-dimensional framework through C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050799/is2221sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050799/is2221Isup2.hkl
Contains datablock I

CCDC reference: 667390

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.042
  • wR factor = 0.128
  • Data-to-parameter ratio = 26.6

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyranopyrimidine derivatives exhibit antiviral (Shamroukh et al., 2007) and antimicrobial activities (Bedair et al., 2000, 2001; Eid et al., 2004; Abdel Fattah et al., 2004). We report here the crystal structure of the title compound, a pyranopyrimidine derivative.

In the molecule of the title compound (Fig. 1), bond lengths are within normal ranges (Allen et al., 1987). The sum of the angles at the atom N1 of the pyrrolidine ring (347.9°) is in accordance with sp3 hybridization. Atom S1 has a distorted tetrahedral configuration, with the angle O2—S1—O1 [120.33 (6)°] deviating significantly from the ideal tetrahedral value.

The pyrimidine ring is planar, with an r.m.s. deviation of fitted atoms of 0.009 Å, and atoms O4, O5, C19 and C20 deviating by 0.040 (2), 0.012 (2), 0.051 (2) and -0.011 (2) Å, respectively. The pyrrolidine ring adopts a twist conformation, confirmed by its ring-puckering parameters (Cremer & Pople, 1975) q2 = 0.443 (1) Å and φ2 = 92.3 (2)°, and asymmetry parameter (Duax et al., 1976) ΔC2[C2—C3] = 2.9 (1)°. The pyran ring adopts an envelope conformation, with atom C2 deviating from the C5/O3/C6/C7/C3 plane by 0.684 (2) Å. The asymmetry parameter ΔCs[C2] is 3.8 (1)°, and the puckering parameters Q, θ and φ are 0.502 (1) Å, 129.5 (1)° and 295.3 (2)°, respectively. The tosyl group is attached to the pyrrolidine in a biaxial position and its benzene ring forms a dihedral angle of 85.61 (4)° with the pyrimidine ring. The dihedral angle between the C5/O3/C6/C7/C3 plane and the pyrimidine ring is 2.70 (8)°. The pyrrolidine ring is trans-fused to the dihydropyran ring.

In the crystal structure, inversion-related molecules are alternately linked by a pair each of C15—H15A···O4i and C20—H20C···O5ii hydrogen bonds to form a chain along the b axis (Fig. 2). Glide-related molecules in the adjacent chains are linked via C19—H19B···O2iii hydrogen bonds, forming a two-dimensional network parallel to the bc plane. Screw-related molecules in the adjacent networks are cross-linked by C14—H14B···O1iv hydrogen bonds (symmetry codes are given in Table 1) into a three-dimensional framework (Fig. 3).

Related literature top

For biological activities of pyranopyrimidine derivatives, see: Abdel Fattah et al. (2004); Bedair et al. (2000, 2001); Eid et al. (2004); Shamroukh et al. (2007). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 1,3-dimethyl pyrimidine-2,4,6-trione (1 mmol) in dry toluene (20 ml), the corresponding 2-[N-(3-methylbut-2-enyl)-N-tosylamino] acetaldehyde (1 mmol), and catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA) were added and the reaction mixture was refluxed for 12 h. After completion of reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane-ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). A rotating group model was used for the methyl groups attached to aromatic rings.

Structure description top

Pyranopyrimidine derivatives exhibit antiviral (Shamroukh et al., 2007) and antimicrobial activities (Bedair et al., 2000, 2001; Eid et al., 2004; Abdel Fattah et al., 2004). We report here the crystal structure of the title compound, a pyranopyrimidine derivative.

In the molecule of the title compound (Fig. 1), bond lengths are within normal ranges (Allen et al., 1987). The sum of the angles at the atom N1 of the pyrrolidine ring (347.9°) is in accordance with sp3 hybridization. Atom S1 has a distorted tetrahedral configuration, with the angle O2—S1—O1 [120.33 (6)°] deviating significantly from the ideal tetrahedral value.

The pyrimidine ring is planar, with an r.m.s. deviation of fitted atoms of 0.009 Å, and atoms O4, O5, C19 and C20 deviating by 0.040 (2), 0.012 (2), 0.051 (2) and -0.011 (2) Å, respectively. The pyrrolidine ring adopts a twist conformation, confirmed by its ring-puckering parameters (Cremer & Pople, 1975) q2 = 0.443 (1) Å and φ2 = 92.3 (2)°, and asymmetry parameter (Duax et al., 1976) ΔC2[C2—C3] = 2.9 (1)°. The pyran ring adopts an envelope conformation, with atom C2 deviating from the C5/O3/C6/C7/C3 plane by 0.684 (2) Å. The asymmetry parameter ΔCs[C2] is 3.8 (1)°, and the puckering parameters Q, θ and φ are 0.502 (1) Å, 129.5 (1)° and 295.3 (2)°, respectively. The tosyl group is attached to the pyrrolidine in a biaxial position and its benzene ring forms a dihedral angle of 85.61 (4)° with the pyrimidine ring. The dihedral angle between the C5/O3/C6/C7/C3 plane and the pyrimidine ring is 2.70 (8)°. The pyrrolidine ring is trans-fused to the dihydropyran ring.

In the crystal structure, inversion-related molecules are alternately linked by a pair each of C15—H15A···O4i and C20—H20C···O5ii hydrogen bonds to form a chain along the b axis (Fig. 2). Glide-related molecules in the adjacent chains are linked via C19—H19B···O2iii hydrogen bonds, forming a two-dimensional network parallel to the bc plane. Screw-related molecules in the adjacent networks are cross-linked by C14—H14B···O1iv hydrogen bonds (symmetry codes are given in Table 1) into a three-dimensional framework (Fig. 3).

For biological activities of pyranopyrimidine derivatives, see: Abdel Fattah et al. (2004); Bedair et al. (2000, 2001); Eid et al. (2004); Shamroukh et al. (2007). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 80% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. View of a hydrogen-bonded (dashed lines) chain in the title compound. Atoms labelled with the suffixes A and B are generated by the symmetry operations (-x, 1 - y, 1 - z) and (-x, -y, 1 - z), respectively. For the sake of clarity, H atoms not involved in the interactions have been omitted.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
4,4,6,8-Tetramethyl-2-tosylpyrrolo[3,4-c]pyrano[6,5-b]pyrimidine- 7,9-dione top
Crystal data top
C20H25N3O5SF(000) = 888
Mr = 419.49Dx = 1.398 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7931 reflections
a = 14.5605 (2) Åθ = 2.6–34.9°
b = 8.9142 (1) ŵ = 0.20 mm1
c = 15.3963 (3) ÅT = 100 K
β = 94.316 (1)°Block, light-yellow
V = 1992.70 (5) Å30.50 × 0.30 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
7053 independent reflections
Radiation source: fine-focus sealed tube5564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.33 pixels mm-1θmax = 32.5°, θmin = 1.4°
ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.906, Tmax = 0.958l = 2123
26688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.4491P]
where P = (Fo2 + 2Fc2)/3
7053 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C20H25N3O5SV = 1992.70 (5) Å3
Mr = 419.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5605 (2) ŵ = 0.20 mm1
b = 8.9142 (1) ÅT = 100 K
c = 15.3963 (3) Å0.50 × 0.30 × 0.22 mm
β = 94.316 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
7053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5564 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.958Rint = 0.036
26688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.10Δρmax = 0.48 e Å3
7053 reflectionsΔρmin = 0.38 e Å3
265 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31057 (2)0.11286 (3)0.21463 (2)0.01524 (8)
O10.33383 (6)0.19239 (11)0.13827 (6)0.02021 (19)
O20.27045 (6)0.03417 (10)0.20717 (7)0.01941 (19)
O30.17594 (6)0.57429 (10)0.47387 (7)0.01950 (19)
O40.00954 (7)0.39530 (12)0.68758 (7)0.0247 (2)
O50.12949 (6)0.05091 (10)0.50809 (7)0.01987 (19)
N10.23857 (7)0.21847 (11)0.26204 (8)0.0164 (2)
N20.09159 (7)0.48102 (12)0.57743 (8)0.0184 (2)
N30.06741 (7)0.22240 (12)0.59639 (8)0.0185 (2)
C10.26274 (9)0.38059 (13)0.27282 (9)0.0182 (2)
H1A0.24190.43820.22170.022*
H1B0.32860.39440.28470.022*
C20.21053 (8)0.42342 (13)0.35102 (9)0.0154 (2)
H20.14570.43590.33020.018*
C30.21703 (8)0.28259 (13)0.40731 (9)0.0148 (2)
H30.28100.26930.43050.018*
C40.19337 (8)0.16103 (13)0.33970 (9)0.0168 (2)
H4A0.21850.06470.35860.020*
H4B0.12730.15170.32750.020*
C50.23892 (8)0.56320 (13)0.40294 (9)0.0169 (2)
C60.14398 (8)0.44905 (14)0.50888 (9)0.0160 (2)
C70.15809 (8)0.30612 (13)0.48152 (8)0.0151 (2)
C80.41258 (8)0.09762 (14)0.28349 (9)0.0157 (2)
C90.42372 (8)0.01963 (13)0.34305 (9)0.0164 (2)
H90.37640.08820.34860.020*
C100.50606 (9)0.03344 (14)0.39420 (9)0.0179 (2)
H100.51350.11180.43400.021*
C110.57798 (8)0.06859 (14)0.38686 (9)0.0175 (2)
C120.56465 (9)0.18709 (15)0.32874 (10)0.0225 (3)
H120.61120.25750.32440.027*
C130.48266 (9)0.20210 (15)0.27689 (10)0.0216 (3)
H130.47480.28170.23800.026*
C140.66833 (9)0.04688 (16)0.43953 (10)0.0226 (3)
H14A0.71190.11980.42230.034*
H14B0.69130.05210.42960.034*
H14C0.65940.05910.50030.034*
C150.21943 (9)0.70446 (14)0.35015 (10)0.0215 (3)
H15A0.15740.70160.32430.032*
H15B0.26140.71090.30510.032*
H15C0.22710.79040.38750.032*
C160.33649 (9)0.55984 (15)0.44606 (10)0.0237 (3)
H16A0.34870.65180.47730.035*
H16B0.37960.54880.40230.035*
H16C0.34270.47680.48580.035*
C170.05352 (8)0.36716 (15)0.62489 (9)0.0191 (2)
C180.11981 (8)0.18359 (14)0.52689 (9)0.0162 (2)
C190.08075 (9)0.63604 (15)0.60710 (10)0.0229 (3)
H19A0.07150.70110.55750.034*
H19B0.13520.66620.64180.034*
H19C0.02850.64220.64140.034*
C200.02666 (10)0.09960 (16)0.64391 (10)0.0238 (3)
H20A0.00430.13780.69670.036*
H20B0.07250.02420.65790.036*
H20C0.02350.05640.60830.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01498 (13)0.01655 (13)0.01413 (16)0.00030 (9)0.00080 (10)0.00044 (10)
O10.0227 (4)0.0243 (4)0.0139 (5)0.0021 (3)0.0032 (4)0.0016 (4)
O20.0184 (4)0.0180 (4)0.0215 (5)0.0012 (3)0.0005 (4)0.0032 (3)
O30.0231 (4)0.0155 (4)0.0204 (5)0.0011 (3)0.0048 (4)0.0012 (3)
O40.0218 (5)0.0345 (5)0.0185 (5)0.0006 (4)0.0051 (4)0.0030 (4)
O50.0197 (4)0.0182 (4)0.0218 (5)0.0005 (3)0.0019 (4)0.0029 (4)
N10.0164 (4)0.0150 (4)0.0180 (5)0.0001 (3)0.0035 (4)0.0013 (4)
N20.0182 (5)0.0209 (5)0.0161 (5)0.0006 (4)0.0008 (4)0.0033 (4)
N30.0172 (5)0.0230 (5)0.0153 (5)0.0020 (4)0.0020 (4)0.0017 (4)
C10.0215 (6)0.0143 (5)0.0193 (7)0.0007 (4)0.0057 (5)0.0020 (4)
C20.0155 (5)0.0147 (5)0.0161 (6)0.0004 (4)0.0015 (4)0.0021 (4)
C30.0141 (5)0.0144 (5)0.0160 (6)0.0003 (4)0.0013 (4)0.0015 (4)
C40.0169 (5)0.0151 (5)0.0187 (6)0.0009 (4)0.0042 (4)0.0007 (4)
C50.0170 (5)0.0164 (5)0.0177 (6)0.0009 (4)0.0032 (4)0.0006 (4)
C60.0153 (5)0.0185 (5)0.0138 (6)0.0006 (4)0.0009 (4)0.0001 (4)
C70.0139 (5)0.0169 (5)0.0142 (6)0.0005 (4)0.0002 (4)0.0009 (4)
C80.0137 (5)0.0191 (5)0.0146 (6)0.0002 (4)0.0017 (4)0.0003 (4)
C90.0169 (5)0.0169 (5)0.0156 (6)0.0015 (4)0.0013 (4)0.0008 (4)
C100.0196 (5)0.0184 (5)0.0155 (6)0.0003 (4)0.0000 (4)0.0003 (4)
C110.0142 (5)0.0216 (5)0.0168 (6)0.0010 (4)0.0011 (4)0.0029 (5)
C120.0168 (5)0.0232 (6)0.0275 (8)0.0048 (4)0.0013 (5)0.0029 (5)
C130.0178 (5)0.0227 (6)0.0243 (7)0.0026 (4)0.0013 (5)0.0077 (5)
C140.0176 (5)0.0290 (7)0.0207 (7)0.0015 (5)0.0021 (5)0.0041 (5)
C150.0240 (6)0.0150 (5)0.0257 (7)0.0015 (4)0.0025 (5)0.0028 (5)
C160.0197 (6)0.0221 (6)0.0285 (8)0.0032 (4)0.0028 (5)0.0019 (5)
C170.0149 (5)0.0274 (6)0.0148 (6)0.0011 (4)0.0006 (4)0.0018 (5)
C180.0130 (5)0.0212 (5)0.0139 (6)0.0008 (4)0.0014 (4)0.0025 (4)
C190.0215 (6)0.0229 (6)0.0240 (7)0.0035 (4)0.0004 (5)0.0064 (5)
C200.0244 (6)0.0289 (7)0.0187 (7)0.0053 (5)0.0051 (5)0.0049 (5)
Geometric parameters (Å, º) top
S1—O11.4350 (10)C6—C71.3624 (17)
S1—O21.4360 (9)C7—C181.4318 (17)
S1—N11.6228 (11)C8—C131.3910 (17)
S1—C81.7639 (13)C8—C91.3919 (18)
O3—C61.3384 (15)C9—C101.3894 (18)
O3—C51.4812 (16)C9—H90.93
O4—C171.2238 (16)C10—C111.3980 (17)
O5—C181.2283 (15)C10—H100.93
N1—C11.4938 (16)C11—C121.3886 (19)
N1—C41.4977 (16)C11—C141.5051 (18)
N2—C61.3778 (17)C12—C131.3917 (19)
N2—C171.3901 (17)C12—H120.93
N2—C191.4677 (17)C13—H130.93
N3—C171.3827 (17)C14—H14A0.96
N3—C181.4035 (17)C14—H14B0.96
N3—C201.4666 (17)C14—H14C0.96
C1—C21.5202 (18)C15—H15A0.96
C1—H1A0.97C15—H15B0.96
C1—H1B0.97C15—H15C0.96
C2—C51.5207 (17)C16—H16A0.96
C2—C31.5244 (17)C16—H16B0.96
C2—H20.98C16—H16C0.96
C3—C71.4945 (17)C19—H19A0.96
C3—C41.5240 (18)C19—H19B0.96
C3—H30.98C19—H19C0.96
C4—H4A0.97C20—H20A0.96
C4—H4B0.97C20—H20B0.96
C5—C151.5140 (18)C20—H20C0.96
C5—C161.5225 (18)
O1—S1—O2120.33 (6)C13—C8—S1119.58 (10)
O1—S1—N1106.40 (6)C9—C8—S1120.33 (9)
O2—S1—N1107.02 (5)C10—C9—C8119.52 (11)
O1—S1—C8106.89 (6)C10—C9—H9120.2
O2—S1—C8107.27 (6)C8—C9—H9120.2
N1—S1—C8108.52 (6)C9—C10—C11121.07 (12)
C6—O3—C5119.64 (10)C9—C10—H10119.5
C1—N1—C4110.86 (10)C11—C10—H10119.5
C1—N1—S1117.16 (8)C12—C11—C10118.55 (12)
C4—N1—S1119.89 (8)C12—C11—C14121.27 (12)
C6—N2—C17121.15 (11)C10—C11—C14120.16 (12)
C6—N2—C19120.79 (11)C11—C12—C13121.00 (12)
C17—N2—C19117.87 (11)C11—C12—H12119.5
C17—N3—C18124.95 (11)C13—C12—H12119.5
C17—N3—C20117.64 (11)C8—C13—C12119.74 (12)
C18—N3—C20117.38 (11)C8—C13—H13120.1
N1—C1—C2101.73 (9)C12—C13—H13120.1
N1—C1—H1A111.4C11—C14—H14A109.5
C2—C1—H1A111.4C11—C14—H14B109.5
N1—C1—H1B111.4H14A—C14—H14B109.5
C2—C1—H1B111.4C11—C14—H14C109.5
H1A—C1—H1B109.3H14A—C14—H14C109.5
C1—C2—C5119.32 (10)H14B—C14—H14C109.5
C1—C2—C3103.30 (9)C5—C15—H15A109.5
C5—C2—C3111.91 (11)C5—C15—H15B109.5
C1—C2—H2107.2H15A—C15—H15B109.5
C5—C2—H2107.2C5—C15—H15C109.5
C3—C2—H2107.2H15A—C15—H15C109.5
C7—C3—C4120.58 (10)H15B—C15—H15C109.5
C7—C3—C2107.72 (10)C5—C16—H16A109.5
C4—C3—C2101.31 (10)C5—C16—H16B109.5
C7—C3—H3108.9H16A—C16—H16B109.5
C4—C3—H3108.9C5—C16—H16C109.5
C2—C3—H3108.9H16A—C16—H16C109.5
N1—C4—C3102.24 (9)H16B—C16—H16C109.5
N1—C4—H4A111.3O4—C17—N3122.63 (12)
C3—C4—H4A111.3O4—C17—N2121.19 (12)
N1—C4—H4B111.3N3—C17—N2116.17 (12)
C3—C4—H4B111.3O5—C18—N3119.71 (11)
H4A—C4—H4B109.2O5—C18—C7124.32 (12)
O3—C5—C15103.82 (10)N3—C18—C7115.96 (11)
O3—C5—C2106.47 (9)N2—C19—H19A109.5
C15—C5—C2111.51 (11)N2—C19—H19B109.5
O3—C5—C16106.80 (11)H19A—C19—H19B109.5
C15—C5—C16112.43 (10)N2—C19—H19C109.5
C2—C5—C16114.89 (10)H19A—C19—H19C109.5
O3—C6—C7126.20 (12)H19B—C19—H19C109.5
O3—C6—N2111.42 (11)N3—C20—H20A109.5
C7—C6—N2122.36 (11)N3—C20—H20B109.5
C6—C7—C18119.30 (12)H20A—C20—H20B109.5
C6—C7—C3118.44 (11)N3—C20—H20C109.5
C18—C7—C3122.20 (11)H20A—C20—H20C109.5
C13—C8—C9120.07 (12)H20B—C20—H20C109.5
O1—S1—N1—C146.84 (11)C4—C3—C7—C6142.71 (12)
O2—S1—N1—C1176.68 (9)C2—C3—C7—C627.39 (15)
C8—S1—N1—C167.86 (11)C4—C3—C7—C1840.19 (17)
O1—S1—N1—C4174.01 (9)C2—C3—C7—C18155.52 (11)
O2—S1—N1—C444.17 (11)O1—S1—C8—C1325.07 (12)
C8—S1—N1—C471.29 (10)O2—S1—C8—C13155.40 (11)
C4—N1—C1—C212.07 (13)N1—S1—C8—C1389.30 (12)
S1—N1—C1—C2154.71 (9)O1—S1—C8—C9153.79 (10)
N1—C1—C2—C5160.36 (11)O2—S1—C8—C923.47 (12)
N1—C1—C2—C335.44 (12)N1—S1—C8—C991.83 (11)
C1—C2—C3—C7173.40 (10)C13—C8—C9—C101.55 (19)
C5—C2—C3—C757.00 (12)S1—C8—C9—C10177.31 (10)
C1—C2—C3—C445.92 (11)C8—C9—C10—C110.01 (19)
C5—C2—C3—C4175.53 (9)C9—C10—C11—C121.7 (2)
C1—N1—C4—C315.84 (12)C9—C10—C11—C14176.80 (12)
S1—N1—C4—C3125.64 (9)C10—C11—C12—C131.9 (2)
C7—C3—C4—N1155.66 (10)C14—C11—C12—C13176.59 (13)
C2—C3—C4—N137.06 (11)C9—C8—C13—C121.4 (2)
C6—O3—C5—C15150.57 (11)S1—C8—C13—C12177.51 (11)
C6—O3—C5—C232.76 (14)C11—C12—C13—C80.4 (2)
C6—O3—C5—C1690.44 (13)C18—N3—C17—O4177.69 (12)
C1—C2—C5—O3179.96 (10)C20—N3—C17—O40.39 (19)
C3—C2—C5—O359.28 (12)C18—N3—C17—N23.09 (18)
C1—C2—C5—C1567.44 (14)C20—N3—C17—N2178.83 (11)
C3—C2—C5—C15171.88 (10)C6—N2—C17—O4177.54 (12)
C1—C2—C5—C1661.97 (16)C19—N2—C17—O42.55 (19)
C3—C2—C5—C1658.71 (14)C6—N2—C17—N33.23 (18)
C5—O3—C6—C75.18 (19)C19—N2—C17—N3178.23 (11)
C5—O3—C6—N2176.01 (10)C17—N3—C18—O5178.37 (12)
C17—N2—C6—O3178.26 (11)C20—N3—C18—O50.29 (17)
C19—N2—C6—O33.41 (17)C17—N3—C18—C72.33 (18)
C17—N2—C6—C72.88 (19)C20—N3—C18—C7179.59 (11)
C19—N2—C6—C7177.73 (12)C6—C7—C18—O5179.08 (12)
O3—C6—C7—C18179.29 (12)C3—C7—C18—O52.02 (19)
N2—C6—C7—C182.02 (19)C6—C7—C18—N31.65 (17)
O3—C6—C7—C32.11 (19)C3—C7—C18—N3178.72 (11)
N2—C6—C7—C3179.20 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O4i0.962.573.4571 (17)153
C20—H20C···O5ii0.962.473.4125 (18)168
C19—H19B···O2iii0.962.443.1917 (17)134
C14—H14B···O1iv0.962.523.3787 (17)149
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H25N3O5S
Mr419.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.5605 (2), 8.9142 (1), 15.3963 (3)
β (°) 94.316 (1)
V3)1992.70 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.30 × 0.22
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.906, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
26688, 7053, 5564
Rint0.036
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.10
No. of reflections7053
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O4i0.962.573.4571 (17)153
C20—H20C···O5ii0.962.473.4125 (18)168
C19—H19B···O2iii0.962.443.1917 (17)134
C14—H14B···O1iv0.962.523.3787 (17)149
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds