Download citation
Download citation
link to html
In the title compound, C10H16N+·C12H15F3N2O3P, the two P—N distances are significantly different [1.740 (2) and 1.641 (2) Å]. In the crystal structure, cations and anions are connected via inter­molecular N—H...O hydrogen bonds to form chains of centrosymmetric rings propagating in the b-axis direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049586/lh2523sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049586/lh2523Isup2.hkl
Contains datablock I

CCDC reference: 667357

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.054
  • wR factor = 0.103
  • Data-to-parameter ratio = 21.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 49 Perc. PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 400 Deg. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.68 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.87 Ratio PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phosphoro-azo (isoelectronic analogues of orthophosphate [PO4]3-, in which the oxygen atoms are replaced by imido (NRR') groups) derivatives of Beta-diketones are potentially versatile multidentate ligands (Chivers et al., 2003). The presence of a peptide group in the compound causes it to possess diverse biological activity and some of these compounds have been proposed as anticancer drugs (Protsen et al., 1971). Phosphate, phosphonate and phosphoramide functionalies are also used in enhancing the solubility of drugs and in some cases they function as pro-drugs (Cho et al., 1982; Banaszczyk et al., 2002; Pettit et al., 2005; Hu et al., 2003). They have also been used in the synthesis of aminophosphonic acids and aminoalkylphosphonic acids, respectively, as surrogates for the corresponding amino acids in biological systems (Hamilton et al., 1995; Hammerschmidt & Hanbauer 2000). Here, we report on the synthesis, spectroscopic characterization and the crystal structure of the novel phosphate, [(CH3)2CHNH2CH2C6H5][CF3C(O)NHP(O)(O)NCH(CH3)2CH2C6H5], which contains both amine and peptide moieties linked to a P atom (Figure 1). The C1—O3 bond length of 1.217 (3) Å is typical for a peptide C=O bond and the P1—O1 = 1.4824 (16) Å and P1—O2 = 1.4961 (16) Å bond lengths are shorter than normal P—O single bonds. The P1—N1 distance of 1.740 (2) Å is clearly consistent with a P—N single bond (Corbridge, 1995), whereas P1—N2 = 1.641 (2) Å shows partial double bond character. The sum of the surrounding angles around the atom N2 atom is close to 360° (357.9°), suggesting considerable sp2 character. The P···P distance between two anions linked by two hydrogen bonds is 4.569 Å. In the crystal structure, cations and anions are connected via intermolecular N—H···O hydrogen bonds to form chains of centrosymmetric rings propagating in the b axis direction (Fig. 2). These chains, are in turn, connected via weak C15—H15A···O3 hydrogen bonds, C15···O3iii = 3.402 Å; H15A···O3iii = 2.53 Å and C15—H15A···O3iii = 153° [symmetry code: (iii) x + 1, y, z], see Figure 3.

Related literature top

For related literature, see: Banaszczyk et al. (2002); Chivers et al. (2003); Cho et al. (1982); Corbridge (1995); Hamilton et al. (1995); Hammerschmidt & Hanbauer (2000); Hu et al. (2003); Pettit et al. (2005); Protsen et al. (1971); Shokol et al. (1969).

Experimental top

CF3C(O)N(H)P(O)Cl2 was prepared similar to the literature method (Shokol et al., 1969) from the reaction of phosphorus pentachloride and 2,2,2-triflouoroacetamide in CCl4 and then the treatment of formic acid. Synthesis of [(CH3)2CHNH2CH2C6H5][CF3C(O)NHP(O)(O)NCH(CH3)2CH2C6H5] To a solution of (1.15 g, 5 mmol) triflouroacetyl phosphoramidic dichloride in CCl4 (20 ml), a solution of N-isopropyl benzylamine (2.98 g, 20 mmol) in CCl4 (10 ml) was added dropwise at 273 K. After 24 h, the solvent removed in vacuum and the solid washed with distilled water. The residue recrystallized in CH3CN. Anal. Calc. for C22H31F3N3O3P: C, 55.80; H, 6.55; N, 8.88. Found: C, 54.69; H, 6.14; N, 8.52%. 31P NMR ([D6]DMSO): -2.44. 13C NMR ([D6]DMSO): 18.44 (s, 2 C, CH3), 21.54 (d, 3J(P,C) = 2.6 Hz, 2 C, CH3), 45.86 (d), 46.58 (d, 2J(P,C) = 5.1 Hz), 47.20 (s), 49.09 (s), 125.47 (s), 127.19 (s), 127.34 (s), 128.41 (s), 128.51 (s), 129.78 (s), 132.50 (s). 1H NMR ([D6]DMSO): 0.84 (d, 3J(H,H) = 6.7 Hz, 6H, 2CH3), 1.25 (d, 3J(H,H) = 6.5 Hz, 6H, 2CH3), 3.19 (m, 1H, CH), 3.86 (m, 1H, CH), 4.04 (s, 2H, CH2), 4.25 (d, 3J(P,H) = 11.2 Hz, 2H, CH2), 7.10 (t, 3J(H,H) = 7.3 Hz, 1H, Ar—H), 7.20 (t, 3J(H,H) = 7.5 Hz, 2H, Ar—H), 7.36–7.59 (m, 7H, Ar—H), 9.07 (b, 1H, NH), 9.22 (b, 2H, NH2). IR (KBr, cm-1): 3405, 3025, 2900, 2760, 2425, 1698 (C=O), 1595, 1480, 1450, 1366, 1312, 1244, 1213, 1171, 1092, 908, 928, 658.

Refinement top

The hydrogen atoms of NH2 and NH groups were found in difference Fourier maps but were subsequently placed in idealized geometry with N—H = 0.85 Å. The H(C) atom positions were calculated with C—H = 0.93–0.98 Å. All hydrogen atoms were refined in isotropic approximation in the riding-model with the Uiso(H) parameters equal to 1.2 Ueq(Ci) (or 1.5Ueq(Ci) for methyl C atoms) where Ueq(Ci) are the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Structure description top

Phosphoro-azo (isoelectronic analogues of orthophosphate [PO4]3-, in which the oxygen atoms are replaced by imido (NRR') groups) derivatives of Beta-diketones are potentially versatile multidentate ligands (Chivers et al., 2003). The presence of a peptide group in the compound causes it to possess diverse biological activity and some of these compounds have been proposed as anticancer drugs (Protsen et al., 1971). Phosphate, phosphonate and phosphoramide functionalies are also used in enhancing the solubility of drugs and in some cases they function as pro-drugs (Cho et al., 1982; Banaszczyk et al., 2002; Pettit et al., 2005; Hu et al., 2003). They have also been used in the synthesis of aminophosphonic acids and aminoalkylphosphonic acids, respectively, as surrogates for the corresponding amino acids in biological systems (Hamilton et al., 1995; Hammerschmidt & Hanbauer 2000). Here, we report on the synthesis, spectroscopic characterization and the crystal structure of the novel phosphate, [(CH3)2CHNH2CH2C6H5][CF3C(O)NHP(O)(O)NCH(CH3)2CH2C6H5], which contains both amine and peptide moieties linked to a P atom (Figure 1). The C1—O3 bond length of 1.217 (3) Å is typical for a peptide C=O bond and the P1—O1 = 1.4824 (16) Å and P1—O2 = 1.4961 (16) Å bond lengths are shorter than normal P—O single bonds. The P1—N1 distance of 1.740 (2) Å is clearly consistent with a P—N single bond (Corbridge, 1995), whereas P1—N2 = 1.641 (2) Å shows partial double bond character. The sum of the surrounding angles around the atom N2 atom is close to 360° (357.9°), suggesting considerable sp2 character. The P···P distance between two anions linked by two hydrogen bonds is 4.569 Å. In the crystal structure, cations and anions are connected via intermolecular N—H···O hydrogen bonds to form chains of centrosymmetric rings propagating in the b axis direction (Fig. 2). These chains, are in turn, connected via weak C15—H15A···O3 hydrogen bonds, C15···O3iii = 3.402 Å; H15A···O3iii = 2.53 Å and C15—H15A···O3iii = 153° [symmetry code: (iii) x + 1, y, z], see Figure 3.

For related literature, see: Banaszczyk et al. (2002); Chivers et al. (2003); Cho et al. (1982); Corbridge (1995); Hamilton et al. (1995); Hammerschmidt & Hanbauer (2000); Hu et al. (2003); Pettit et al. (2005); Protsen et al. (1971); Shokol et al. (1969).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with thermal ellipsoid at 50% probability level.
[Figure 2] Fig. 2. The crystal packing, showing hydrogen-bonded centrosymmetric rings propagating in the b axis direction. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Connection of the extended hydrogen bonded chains in crystal network via weak C15—H15A···O3 hydrogen bonds, H atoms are omitted for clarity. Red and blue dashed lines indicate hydrogen bonds.
N-Benzylpropan-2-aminium (benzylisopropylamido)(2,2,2-trifluoroacetamido)phosphate top
Crystal data top
C10H16N+·C12H15F3N2O3PZ = 2
Mr = 473.47F(000) = 500
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6147 (18) ÅCell parameters from 1506 reflections
b = 10.027 (2) Åθ = 5.8–45.6°
c = 13.503 (3) ŵ = 0.17 mm1
α = 68.355 (4)°T = 150 K
β = 75.939 (4)°Needle, colourless
γ = 88.494 (4)°0.55 × 0.30 × 0.25 mm
V = 1170.9 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3060 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 29.0°, θmin = 1.7°
φ and ω scansh = 1313
14154 measured reflectionsk = 1313
6183 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.103H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
6183 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C10H16N+·C12H15F3N2O3Pγ = 88.494 (4)°
Mr = 473.47V = 1170.9 (4) Å3
Triclinic, P1Z = 2
a = 9.6147 (18) ÅMo Kα radiation
b = 10.027 (2) ŵ = 0.17 mm1
c = 13.503 (3) ÅT = 150 K
α = 68.355 (4)°0.55 × 0.30 × 0.25 mm
β = 75.939 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3060 reflections with I > 2σ(I)
14154 measured reflectionsRint = 0.081
6183 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
6183 reflectionsΔρmin = 0.46 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.44594 (7)0.23272 (7)0.42151 (5)0.01853 (16)
F10.10818 (15)0.11604 (15)0.63153 (13)0.0370 (4)
F20.06390 (14)0.02192 (15)0.60075 (12)0.0349 (4)
F30.04486 (16)0.02252 (16)0.72108 (12)0.0406 (4)
N10.3090 (2)0.11036 (19)0.51924 (16)0.0195 (5)
H1N10.34070.02720.54040.023*
N20.4138 (2)0.2526 (2)0.30309 (16)0.0209 (5)
N30.70019 (19)0.41357 (19)0.49447 (15)0.0208 (5)
H1N30.67520.48760.50900.025*
H2N30.63160.39550.47070.025*
O10.57863 (16)0.15789 (16)0.43698 (13)0.0220 (4)
O20.43257 (16)0.37217 (16)0.43854 (13)0.0229 (4)
O30.12192 (18)0.25182 (17)0.49109 (14)0.0319 (5)
C10.1712 (3)0.1383 (3)0.5349 (2)0.0222 (6)
C20.0649 (3)0.0146 (3)0.6219 (2)0.0245 (6)
C30.3566 (3)0.3843 (3)0.2365 (2)0.0286 (6)
H3A0.31520.43380.28620.034*
C40.2356 (3)0.3524 (3)0.1932 (3)0.0594 (10)
H4A0.16290.28850.25320.089*
H4B0.27230.30820.14100.089*
H4C0.19490.44050.15800.089*
C50.4741 (3)0.4858 (3)0.1473 (2)0.0513 (9)
H5A0.54760.50340.17890.077*
H5B0.43520.57490.11180.077*
H5C0.51460.44380.09420.077*
C60.4310 (3)0.1295 (3)0.2680 (2)0.0245 (6)
H6A0.34300.11090.25080.029*
H6B0.44400.04530.32920.029*
C70.5554 (3)0.1488 (2)0.1694 (2)0.0230 (6)
C80.6935 (3)0.1853 (3)0.1699 (2)0.0284 (6)
H8A0.70920.19820.23120.034*
C90.8073 (3)0.2025 (3)0.0806 (2)0.0359 (7)
H9A0.89920.22720.08210.043*
C100.7865 (3)0.1833 (3)0.0115 (2)0.0375 (7)
H10A0.86350.19510.07170.045*
C110.6502 (3)0.1466 (3)0.0123 (2)0.0358 (7)
H11A0.63510.13320.07360.043*
C120.5350 (3)0.1293 (3)0.0771 (2)0.0296 (6)
H12A0.44340.10450.07540.036*
C130.7003 (2)0.2879 (2)0.59973 (19)0.0221 (6)
H13A0.72280.20250.58150.026*
C140.5517 (3)0.2611 (3)0.6757 (2)0.0284 (6)
H14A0.48350.24380.63960.043*
H14B0.52750.34380.69450.043*
H14C0.54930.17880.74150.043*
C150.8153 (3)0.3158 (3)0.6505 (2)0.0324 (7)
H15A0.90730.33200.59870.049*
H15B0.81630.23400.71580.049*
H15C0.79500.39920.66900.049*
C160.8400 (3)0.4436 (3)0.4097 (2)0.0296 (6)
H16A0.87430.35340.40580.035*
H16B0.90990.48620.43240.035*
C170.8300 (2)0.5428 (3)0.2971 (2)0.0237 (6)
C180.8503 (3)0.4934 (3)0.2117 (2)0.0347 (7)
H18A0.86780.39760.22470.042*
C190.8447 (3)0.5848 (3)0.1078 (2)0.0446 (8)
H19A0.85890.55020.05120.054*
C200.8182 (3)0.7265 (3)0.0871 (2)0.0398 (7)
H20A0.81290.78720.01700.048*
C210.7997 (3)0.7782 (3)0.1697 (2)0.0397 (7)
H21A0.78290.87440.15560.048*
C220.8062 (3)0.6868 (3)0.2749 (2)0.0326 (7)
H22A0.79440.72250.33070.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0193 (3)0.0139 (3)0.0226 (4)0.0020 (3)0.0048 (3)0.0074 (3)
F10.0271 (8)0.0209 (8)0.0559 (11)0.0019 (7)0.0068 (8)0.0087 (8)
F20.0181 (8)0.0375 (9)0.0471 (10)0.0025 (7)0.0071 (7)0.0142 (8)
F30.0442 (10)0.0440 (10)0.0257 (9)0.0071 (8)0.0006 (7)0.0086 (8)
N10.0200 (11)0.0132 (10)0.0259 (12)0.0059 (8)0.0071 (9)0.0074 (9)
N20.0265 (12)0.0183 (11)0.0202 (12)0.0063 (9)0.0086 (9)0.0083 (9)
N30.0195 (11)0.0181 (11)0.0271 (12)0.0032 (9)0.0070 (9)0.0105 (9)
O10.0180 (9)0.0180 (9)0.0297 (10)0.0035 (7)0.0073 (7)0.0080 (8)
O20.0264 (10)0.0170 (9)0.0268 (10)0.0007 (7)0.0063 (8)0.0100 (8)
O30.0285 (10)0.0235 (10)0.0349 (11)0.0099 (8)0.0054 (9)0.0030 (9)
C10.0217 (14)0.0221 (13)0.0241 (14)0.0037 (11)0.0044 (11)0.0111 (12)
C20.0201 (14)0.0254 (14)0.0278 (16)0.0041 (11)0.0060 (11)0.0098 (12)
C30.0346 (16)0.0255 (14)0.0265 (15)0.0122 (12)0.0116 (13)0.0086 (12)
C40.059 (2)0.053 (2)0.079 (3)0.0222 (18)0.047 (2)0.021 (2)
C50.059 (2)0.0303 (17)0.043 (2)0.0094 (16)0.0025 (17)0.0032 (15)
C60.0277 (14)0.0194 (13)0.0279 (15)0.0012 (11)0.0070 (12)0.0107 (12)
C70.0322 (15)0.0150 (12)0.0218 (14)0.0034 (11)0.0077 (11)0.0064 (11)
C80.0310 (15)0.0296 (15)0.0277 (16)0.0044 (12)0.0082 (12)0.0137 (13)
C90.0337 (16)0.0395 (17)0.0344 (17)0.0030 (13)0.0054 (14)0.0158 (14)
C100.0475 (19)0.0290 (15)0.0292 (17)0.0082 (14)0.0002 (14)0.0096 (13)
C110.057 (2)0.0293 (16)0.0242 (16)0.0030 (14)0.0102 (14)0.0132 (13)
C120.0374 (16)0.0238 (14)0.0303 (16)0.0008 (12)0.0099 (13)0.0121 (13)
C130.0281 (14)0.0159 (12)0.0230 (14)0.0059 (11)0.0092 (11)0.0067 (11)
C140.0295 (15)0.0266 (14)0.0278 (15)0.0010 (12)0.0064 (12)0.0091 (13)
C150.0364 (16)0.0348 (16)0.0328 (16)0.0110 (13)0.0135 (13)0.0177 (14)
C160.0200 (14)0.0314 (15)0.0307 (16)0.0041 (12)0.0017 (12)0.0095 (13)
C170.0175 (13)0.0249 (14)0.0282 (15)0.0031 (11)0.0017 (11)0.0116 (12)
C180.0377 (17)0.0284 (15)0.0384 (18)0.0005 (13)0.0028 (14)0.0171 (14)
C190.0464 (19)0.059 (2)0.0313 (18)0.0018 (17)0.0053 (15)0.0226 (17)
C200.0332 (17)0.0457 (19)0.0296 (17)0.0014 (15)0.0044 (13)0.0037 (15)
C210.0424 (18)0.0256 (15)0.0401 (19)0.0064 (14)0.0057 (15)0.0031 (15)
C220.0321 (16)0.0283 (15)0.0391 (18)0.0017 (13)0.0044 (13)0.0174 (14)
Geometric parameters (Å, º) top
P1—O11.4824 (16)C8—H8A0.9300
P1—O21.4961 (16)C9—C101.386 (4)
P1—N21.641 (2)C9—H9A0.9300
P1—N11.740 (2)C10—C111.374 (4)
F1—C21.333 (3)C10—H10A0.9300
F2—C21.331 (3)C11—C121.386 (4)
F3—C21.338 (3)C11—H11A0.9300
N1—C11.330 (3)C12—H12A0.9300
N1—H1N10.8500C13—C141.507 (3)
N2—C61.469 (3)C13—C151.515 (3)
N2—C31.477 (3)C13—H13A0.9800
N3—C161.492 (3)C14—H14A0.9600
N3—C131.512 (3)C14—H14B0.9600
N3—H1N30.8501C14—H14C0.9600
N3—H2N30.8500C15—H15A0.9600
O3—C11.217 (3)C15—H15B0.9600
C1—C21.540 (3)C15—H15C0.9600
C3—C51.503 (4)C16—C171.504 (3)
C3—C41.511 (4)C16—H16A0.9700
C3—H3A0.9800C16—H16B0.9700
C4—H4A0.9600C17—C181.384 (4)
C4—H4B0.9600C17—C221.387 (3)
C4—H4C0.9600C18—C191.378 (4)
C5—H5A0.9600C18—H18A0.9300
C5—H5B0.9600C19—C201.373 (4)
C5—H5C0.9600C19—H19A0.9300
C6—C71.514 (3)C20—C211.368 (4)
C6—H6A0.9700C20—H20A0.9300
C6—H6B0.9700C21—C221.394 (4)
C7—C121.388 (3)C21—H21A0.9300
C7—C81.388 (3)C22—H22A0.9300
C8—C91.378 (4)
O1—P1—O2117.01 (9)C7—C8—H8A119.7
O1—P1—N2112.16 (10)C8—C9—C10120.7 (3)
O2—P1—N2109.92 (10)C8—C9—H9A119.7
O1—P1—N1103.82 (9)C10—C9—H9A119.7
O2—P1—N1108.49 (9)C11—C10—C9119.0 (3)
N2—P1—N1104.44 (10)C11—C10—H10A120.5
C1—N1—P1123.04 (16)C9—C10—H10A120.5
C1—N1—H1N1125.6C10—C11—C12120.7 (3)
P1—N1—H1N1109.3C10—C11—H11A119.6
C6—N2—C3119.4 (2)C12—C11—H11A119.6
C6—N2—P1118.09 (16)C11—C12—C7120.5 (3)
C3—N2—P1122.23 (16)C11—C12—H12A119.8
C16—N3—C13113.40 (18)C7—C12—H12A119.8
C16—N3—H1N3111.3C14—C13—N3108.73 (18)
C13—N3—H1N3109.7C14—C13—C15113.1 (2)
C16—N3—H2N3111.6N3—C13—C15110.31 (19)
C13—N3—H2N3107.2C14—C13—H13A108.2
H1N3—N3—H2N3103.1N3—C13—H13A108.2
O3—C1—N1126.9 (2)C15—C13—H13A108.2
O3—C1—C2117.4 (2)C13—C14—H14A109.5
N1—C1—C2115.6 (2)C13—C14—H14B109.5
F2—C2—F1107.4 (2)H14A—C14—H14B109.5
F2—C2—F3106.4 (2)C13—C14—H14C109.5
F1—C2—F3106.8 (2)H14A—C14—H14C109.5
F2—C2—C1111.7 (2)H14B—C14—H14C109.5
F1—C2—C1114.0 (2)C13—C15—H15A109.5
F3—C2—C1110.1 (2)C13—C15—H15B109.5
N2—C3—C5111.6 (2)H15A—C15—H15B109.5
N2—C3—C4112.7 (2)C13—C15—H15C109.5
C5—C3—C4112.6 (2)H15A—C15—H15C109.5
N2—C3—H3A106.4H15B—C15—H15C109.5
C5—C3—H3A106.4N3—C16—C17113.3 (2)
C4—C3—H3A106.4N3—C16—H16A108.9
C3—C4—H4A109.5C17—C16—H16A108.9
C3—C4—H4B109.5N3—C16—H16B108.9
H4A—C4—H4B109.5C17—C16—H16B108.9
C3—C4—H4C109.5H16A—C16—H16B107.7
H4A—C4—H4C109.5C18—C17—C22118.4 (2)
H4B—C4—H4C109.5C18—C17—C16120.6 (2)
C3—C5—H5A109.5C22—C17—C16121.0 (2)
C3—C5—H5B109.5C19—C18—C17120.7 (3)
H5A—C5—H5B109.5C19—C18—H18A119.6
C3—C5—H5C109.5C17—C18—H18A119.6
H5A—C5—H5C109.5C20—C19—C18120.5 (3)
H5B—C5—H5C109.5C20—C19—H19A119.8
N2—C6—C7114.8 (2)C18—C19—H19A119.8
N2—C6—H6A108.6C21—C20—C19119.8 (3)
C7—C6—H6A108.6C21—C20—H20A120.1
N2—C6—H6B108.6C19—C20—H20A120.1
C7—C6—H6B108.6C20—C21—C22120.0 (3)
H6A—C6—H6B107.5C20—C21—H21A120.0
C12—C7—C8118.5 (2)C22—C21—H21A120.0
C12—C7—C6121.2 (2)C17—C22—C21120.5 (3)
C8—C7—C6120.3 (2)C17—C22—H22A119.7
C9—C8—C7120.6 (3)C21—C22—H22A119.7
C9—C8—H8A119.7
O1—P1—N1—C1177.84 (18)N2—C6—C7—C12126.2 (2)
O2—P1—N1—C152.7 (2)N2—C6—C7—C854.5 (3)
N2—P1—N1—C164.5 (2)C12—C7—C8—C90.4 (4)
O1—P1—N2—C644.1 (2)C6—C7—C8—C9179.7 (2)
O2—P1—N2—C6176.07 (16)C7—C8—C9—C100.2 (4)
N1—P1—N2—C667.71 (19)C8—C9—C10—C110.1 (4)
O1—P1—N2—C3141.44 (18)C9—C10—C11—C120.2 (4)
O2—P1—N2—C39.4 (2)C10—C11—C12—C70.0 (4)
N1—P1—N2—C3106.77 (19)C8—C7—C12—C110.3 (4)
P1—N1—C1—O35.3 (4)C6—C7—C12—C11179.6 (2)
P1—N1—C1—C2177.62 (17)C16—N3—C13—C14176.1 (2)
O3—C1—C2—F230.5 (3)C16—N3—C13—C1559.4 (3)
N1—C1—C2—F2152.2 (2)C13—N3—C16—C17165.9 (2)
O3—C1—C2—F1152.4 (2)N3—C16—C17—C18113.5 (3)
N1—C1—C2—F130.2 (3)N3—C16—C17—C2269.1 (3)
O3—C1—C2—F387.5 (3)C22—C17—C18—C191.0 (4)
N1—C1—C2—F389.9 (2)C16—C17—C18—C19178.4 (2)
C6—N2—C3—C588.0 (3)C17—C18—C19—C200.3 (4)
P1—N2—C3—C597.6 (2)C18—C19—C20—C211.1 (4)
C6—N2—C3—C439.9 (3)C19—C20—C21—C220.7 (4)
P1—N2—C3—C4134.5 (2)C18—C17—C22—C211.4 (4)
C3—N2—C6—C773.6 (3)C16—C17—C22—C21178.8 (2)
P1—N2—C6—C7111.8 (2)C20—C21—C22—C170.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.851.942.781 (3)170
N3—H1N3···O2ii0.851.962.791 (3)164
N3—H2N3···O20.852.102.932 (3)166
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H16N+·C12H15F3N2O3P
Mr473.47
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.6147 (18), 10.027 (2), 13.503 (3)
α, β, γ (°)68.355 (4), 75.939 (4), 88.494 (4)
V3)1170.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.55 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14154, 6183, 3060
Rint0.081
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.103, 1.00
No. of reflections6183
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.46

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.851.942.781 (3)170
N3—H1N3···O2ii0.851.962.791 (3)164
N3—H2N3···O20.852.102.932 (3)166
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds