Download citation
Download citation
link to html
In the title compound, {[Ag(C6H8N2)(H2O)](C6H4Cl2NO3S)}n, the AgI ion is three-coordinated by two N atoms from two symmetry-related 2,3-dimethyl­pyrazine (dmp) ligands, and one water O atom in a distorted trigonal–planar geometry. The dmp ligands bridge AgI ions to form a one-dimensional chain structure with charge-balancing 4-amino-2,5-dichloro­benzene­sulfonate anions. In the crystal structure, inter­molecular O—H...O and N—H...O hydrogen bonds form a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704977X/lh2525sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704977X/lh2525Isup2.hkl
Contains datablock I

CCDC reference: 667165

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.012 Å
  • R factor = 0.074
  • wR factor = 0.194
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.79 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.06 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 12 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C23 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C19 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (9) 0.78 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 5
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Metal–organic coordination polymers have received much attention for their interesting structural features and potential application in optical devices, enantiomer separation, chiral synthesis and selective catalysis (Yaghi & Li, 1995). In particular, silver(I) sulfonates have attracted intense interest from chemists (Cote & Shimizu, 2003). So far, some silver(I) sulfonate compounds with nitrogen-based secondary ligands have been observed in the literature (Li et al., 2006). Herein, we present a new sulfonate coordination polymer, namely [Ag(dmp)(H2O)].L (I), where dmp = 2,3-dimethylprazine and HL = 4-amino-2,5-dichlorobenzenesulfonic acid.

In the title compound, the unique AgI ion is three-coordinated by two N atoms from two symmetry realted dmp ligands, and one water O atom in a distorted trigonal-planar geometry (Fig. 1). The Ag—N distance is similar to those in reported compounds (Liu et al., 2007). The dmp ligands bridge neighboring AgI ions to form a chain structure (Fig. 2). The L ligand acts as a counter anion. Finally, the O—H···O and N—H···O hydrogen bonds complete the structure.

Related literature top

For general background, see: Yaghi & Li (1995). For studies of silver sulfonates, see: Cote & Shimizu (2003); Li et al. (2006); Liu et al. (2007).

Experimental top

An aqueous solution (9 ml) of 4-amino-2,5-dichlorobenzenesulfonic acid (1 mmol) was added to solid Ag2CO3 (0.5 mmol) and stirred for several minutes until no further CO2 was given off. 2,3-dimethylprazine (1 mmol) was then added and a precipitate was formed. The precipitate was dissolved by ammonium hydroxide. Crystals of were obtained by evaporation of the solution for several days at room temperature.

Refinement top

H atoms of C atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl. H atoms bonded to atom N3 were located in a difference map and refined freely, but with Uiso(H) = 1.5Ueq(N). The water H atoms were located from a difference map and refined freely with Uiso(H) = 1.5Ueq(O). Restraints were applied to the N—H and O—H distances.

Structure description top

Metal–organic coordination polymers have received much attention for their interesting structural features and potential application in optical devices, enantiomer separation, chiral synthesis and selective catalysis (Yaghi & Li, 1995). In particular, silver(I) sulfonates have attracted intense interest from chemists (Cote & Shimizu, 2003). So far, some silver(I) sulfonate compounds with nitrogen-based secondary ligands have been observed in the literature (Li et al., 2006). Herein, we present a new sulfonate coordination polymer, namely [Ag(dmp)(H2O)].L (I), where dmp = 2,3-dimethylprazine and HL = 4-amino-2,5-dichlorobenzenesulfonic acid.

In the title compound, the unique AgI ion is three-coordinated by two N atoms from two symmetry realted dmp ligands, and one water O atom in a distorted trigonal-planar geometry (Fig. 1). The Ag—N distance is similar to those in reported compounds (Liu et al., 2007). The dmp ligands bridge neighboring AgI ions to form a chain structure (Fig. 2). The L ligand acts as a counter anion. Finally, the O—H···O and N—H···O hydrogen bonds complete the structure.

For general background, see: Yaghi & Li (1995). For studies of silver sulfonates, see: Cote & Shimizu (2003); Li et al. (2006); Liu et al. (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with symmetry complete AgI coordination, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) x - 1, y, z.
[Figure 2] Fig. 2. View of the one-dimensional chain structure.
catena-Poly[[[aquasilver(I)]-µ-2,3-dimethylpyrazine-κ2N:N'] 4-amino-2,5-dichlorobenzenesulfonate] top
Crystal data top
[Ag(C6H8N2)(H2O)](C6H4Cl2NO3S)F(000) = 944
Mr = 475.09Dx = 2.024 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 12993 reflections
a = 7.162 (4) Åθ = 3.0–27.5°
b = 16.298 (9) ŵ = 1.79 mm1
c = 13.721 (6) ÅT = 293 K
β = 103.26 (2)°Block, colourless
V = 1558.9 (14) Å30.28 × 0.22 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3520 independent reflections
Radiation source: rotating anode2932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2121
Tmin = 0.597, Tmax = 0.710l = 1717
14717 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0533P)2 + 23.775P]
where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 2.58 e Å3
5 restraintsΔρmin = 0.93 e Å3
Crystal data top
[Ag(C6H8N2)(H2O)](C6H4Cl2NO3S)V = 1558.9 (14) Å3
Mr = 475.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.162 (4) ŵ = 1.79 mm1
b = 16.298 (9) ÅT = 293 K
c = 13.721 (6) Å0.28 × 0.22 × 0.19 mm
β = 103.26 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3520 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2932 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.710Rint = 0.039
14717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0745 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0533P)2 + 23.775P]
where P = (Fo2 + 2Fc2)/3
3520 reflectionsΔρmax = 2.58 e Å3
220 parametersΔρmin = 0.93 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.29399 (9)0.23016 (5)0.46242 (6)0.0406 (2)
Cl10.4029 (3)0.11290 (13)0.70107 (19)0.0383 (5)
S10.0264 (3)0.03566 (11)0.70936 (15)0.0269 (4)
Cl20.2908 (3)0.34574 (12)0.72206 (17)0.0351 (5)
C70.1131 (11)0.3127 (5)0.4664 (6)0.0251 (15)
C80.3063 (10)0.3119 (5)0.4708 (6)0.0237 (14)
O10.0284 (10)0.0027 (4)0.7928 (5)0.0393 (14)
O30.2262 (10)0.0319 (4)0.7124 (6)0.0466 (17)
C60.2032 (11)0.1760 (5)0.7083 (6)0.0262 (15)
C40.0839 (11)0.3161 (5)0.7147 (6)0.0261 (15)
O20.0909 (12)0.0070 (4)0.6145 (6)0.056 (2)
N20.4000 (8)0.2405 (4)0.4677 (5)0.0238 (13)
C10.0228 (10)0.1426 (4)0.7134 (6)0.0232 (14)
N30.1112 (11)0.3970 (4)0.7135 (7)0.0383 (17)
HN20.225 (7)0.401 (8)0.722 (9)0.057*
HN10.013 (10)0.414 (7)0.756 (7)0.057*
C30.0991 (10)0.2810 (4)0.7199 (6)0.0239 (14)
N10.0099 (10)0.2414 (5)0.4624 (5)0.0322 (15)
C20.1272 (12)0.1976 (5)0.7203 (6)0.0284 (16)
H20.25050.17740.72530.034*
C190.4244 (13)0.3885 (6)0.4822 (8)0.040 (2)
H19A0.55530.37470.48340.061*
H19B0.41820.41540.54360.061*
H19C0.37570.42450.42680.061*
C100.2999 (13)0.1707 (5)0.4620 (7)0.0343 (18)
H100.36070.12070.45870.041*
C50.2334 (12)0.2593 (5)0.7078 (6)0.0314 (17)
H50.35740.27870.70260.038*
C90.1084 (12)0.1724 (6)0.4612 (7)0.0351 (18)
H90.04390.12280.45980.042*
C230.0026 (14)0.3922 (6)0.4655 (8)0.041 (2)
H23A0.12980.38000.46260.062*
H23B0.01220.42400.40800.062*
H23C0.05530.42270.52530.062*
O1W0.3165 (10)0.0749 (4)0.4468 (6)0.0462 (16)
HW110.270 (17)0.050 (7)0.403 (6)0.069*
HW120.269 (17)0.050 (7)0.501 (4)0.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0212 (3)0.0460 (4)0.0564 (5)0.0001 (3)0.0129 (3)0.0038 (3)
Cl10.0224 (9)0.0321 (10)0.0620 (14)0.0046 (8)0.0131 (9)0.0019 (9)
S10.0296 (9)0.0151 (8)0.0387 (10)0.0003 (7)0.0136 (8)0.0007 (7)
Cl20.0326 (10)0.0222 (9)0.0519 (12)0.0081 (7)0.0128 (9)0.0044 (8)
C70.027 (4)0.025 (4)0.025 (3)0.003 (3)0.008 (3)0.002 (3)
C80.017 (3)0.026 (4)0.028 (4)0.002 (3)0.006 (3)0.001 (3)
O10.049 (4)0.025 (3)0.049 (4)0.005 (3)0.023 (3)0.010 (3)
O30.044 (4)0.017 (3)0.085 (5)0.004 (3)0.029 (4)0.004 (3)
C60.021 (3)0.028 (4)0.031 (4)0.007 (3)0.009 (3)0.002 (3)
C40.029 (4)0.022 (4)0.027 (4)0.000 (3)0.007 (3)0.000 (3)
O20.082 (6)0.029 (3)0.050 (4)0.005 (3)0.001 (4)0.015 (3)
N20.014 (3)0.030 (3)0.029 (3)0.003 (2)0.007 (2)0.004 (3)
C10.017 (3)0.019 (3)0.036 (4)0.003 (3)0.010 (3)0.001 (3)
N30.034 (4)0.020 (3)0.062 (5)0.005 (3)0.013 (4)0.005 (3)
C30.023 (4)0.019 (3)0.029 (4)0.001 (3)0.006 (3)0.001 (3)
N10.029 (3)0.032 (4)0.037 (4)0.005 (3)0.009 (3)0.008 (3)
C20.029 (4)0.020 (4)0.038 (4)0.002 (3)0.010 (3)0.000 (3)
C190.032 (4)0.032 (5)0.062 (6)0.011 (4)0.019 (4)0.006 (4)
C100.042 (5)0.026 (4)0.036 (4)0.002 (3)0.010 (4)0.005 (3)
C50.026 (4)0.026 (4)0.042 (5)0.007 (3)0.009 (3)0.000 (3)
C90.025 (4)0.034 (4)0.045 (5)0.002 (3)0.007 (3)0.007 (4)
C230.040 (5)0.031 (5)0.054 (6)0.010 (4)0.014 (4)0.000 (4)
O1W0.047 (4)0.044 (4)0.049 (4)0.010 (3)0.014 (3)0.000 (3)
Geometric parameters (Å, º) top
Ag1—N12.184 (7)N2—Ag1ii2.216 (6)
Ag1—N2i2.216 (6)C1—C21.385 (10)
Ag1—O1W2.542 (8)N3—HN20.85 (7)
Cl1—C61.745 (8)N3—HN10.85 (9)
S1—O31.424 (7)C3—C21.375 (10)
S1—O11.435 (6)N1—C91.329 (11)
S1—O21.455 (7)C2—H20.9300
S1—C11.782 (7)C19—H19A0.9600
Cl2—C31.726 (8)C19—H19B0.9600
C7—C81.371 (10)C19—H19C0.9600
C7—N11.373 (11)C10—C91.369 (12)
C7—C231.516 (11)C10—H100.9300
C8—N21.350 (10)C5—H50.9300
C8—C191.496 (11)C9—H90.9300
C6—C51.376 (11)C23—H23A0.9600
C6—C11.388 (10)C23—H23B0.9600
C4—N31.333 (10)C23—H23C0.9600
C4—C51.402 (11)O1W—HW110.85 (10)
C4—C31.417 (10)O1W—HW120.85 (7)
N2—C101.338 (11)
N1—Ag1—N2i170.7 (2)C4—C3—Cl2118.5 (6)
N1—Ag1—O1W97.3 (3)C9—N1—C7115.7 (7)
N2i—Ag1—O1W92.0 (2)C9—N1—Ag1117.5 (6)
O3—S1—O1114.5 (4)C7—N1—Ag1126.8 (5)
O3—S1—O2112.5 (5)C3—C2—C1121.9 (7)
O1—S1—O2111.5 (5)C3—C2—H2119.0
O3—S1—C1104.2 (3)C1—C2—H2119.0
O1—S1—C1108.0 (4)C8—C19—H19A109.5
O2—S1—C1105.3 (4)C8—C19—H19B109.5
C8—C7—N1121.5 (7)H19A—C19—H19B109.5
C8—C7—C23121.9 (7)C8—C19—H19C109.5
N1—C7—C23116.6 (7)H19A—C19—H19C109.5
N2—C8—C7120.7 (7)H19B—C19—H19C109.5
N2—C8—C19116.7 (7)N2—C10—C9120.3 (8)
C7—C8—C19122.5 (7)N2—C10—H10119.8
C5—C6—C1122.0 (7)C9—C10—H10119.8
C5—C6—Cl1117.1 (6)C6—C5—C4122.3 (7)
C1—C6—Cl1120.9 (6)C6—C5—H5118.8
N3—C4—C5123.0 (7)C4—C5—H5118.8
N3—C4—C3122.1 (7)N1—C9—C10123.5 (8)
C5—C4—C3114.9 (7)N1—C9—H9118.3
C10—N2—C8118.1 (7)C10—C9—H9118.3
C10—N2—Ag1ii117.0 (5)C7—C23—H23A109.5
C8—N2—Ag1ii124.7 (5)C7—C23—H23B109.5
C2—C1—C6116.7 (7)H23A—C23—H23B109.5
C2—C1—S1118.6 (6)C7—C23—H23C109.5
C6—C1—S1124.7 (5)H23A—C23—H23C109.5
C4—N3—HN2102 (9)H23B—C23—H23C109.5
C4—N3—HN1102 (9)Ag1—O1W—HW11120 (9)
HN2—N3—HN1123 (10)Ag1—O1W—HW12113 (9)
C2—C3—C4122.2 (7)HW11—O1W—HW12104 (10)
C2—C3—Cl2119.3 (6)
N1—C7—C8—N22.3 (12)C5—C4—C3—Cl2176.7 (6)
C23—C7—C8—N2177.5 (7)C8—C7—N1—C91.1 (11)
N1—C7—C8—C19175.8 (8)C23—C7—N1—C9178.7 (8)
C23—C7—C8—C194.4 (13)C8—C7—N1—Ag1176.8 (6)
C7—C8—N2—C101.2 (11)C23—C7—N1—Ag13.4 (10)
C19—C8—N2—C10177.1 (8)O1W—Ag1—N1—C94.0 (7)
C7—C8—N2—Ag1ii175.1 (5)O1W—Ag1—N1—C7178.1 (7)
C19—C8—N2—Ag1ii6.6 (10)C4—C3—C2—C11.4 (13)
C5—C6—C1—C21.5 (12)Cl2—C3—C2—C1176.6 (6)
Cl1—C6—C1—C2179.2 (6)C6—C1—C2—C31.4 (12)
C5—C6—C1—S1177.3 (7)S1—C1—C2—C3177.5 (6)
Cl1—C6—C1—S12.0 (10)C8—N2—C10—C91.1 (12)
O3—S1—C1—C21.3 (8)Ag1ii—N2—C10—C9177.6 (7)
O1—S1—C1—C2120.9 (7)C1—C6—C5—C41.6 (13)
O2—S1—C1—C2119.9 (7)Cl1—C6—C5—C4179.1 (6)
O3—S1—C1—C6177.5 (7)N3—C4—C5—C6179.5 (9)
O1—S1—C1—C660.3 (8)C3—C4—C5—C61.4 (12)
O2—S1—C1—C658.9 (8)C7—N1—C9—C101.2 (13)
N3—C4—C3—C2179.5 (8)Ag1—N1—C9—C10179.3 (7)
C5—C4—C3—C21.3 (12)N2—C10—C9—N12.4 (14)
N3—C4—C3—Cl21.5 (11)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O3iii0.85 (10)2.15 (10)2.977 (10)164 (13)
N3—HN2···O1iv0.85 (7)2.34 (8)3.040 (10)140 (11)
O1W—HW12···O20.85 (7)1.90 (4)2.725 (11)162 (12)
Symmetry codes: (iii) x, y, z+1; (iv) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag(C6H8N2)(H2O)](C6H4Cl2NO3S)
Mr475.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.162 (4), 16.298 (9), 13.721 (6)
β (°) 103.26 (2)
V3)1558.9 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.28 × 0.22 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.597, 0.710
No. of measured, independent and
observed [I > 2σ(I)] reflections
14717, 3520, 2932
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.194, 1.14
No. of reflections3520
No. of parameters220
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0533P)2 + 23.775P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.58, 0.93

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Ag1—N12.184 (7)Ag1—O1W2.542 (8)
Ag1—N2i2.216 (6)
N1—Ag1—N2i170.7 (2)N2i—Ag1—O1W92.0 (2)
N1—Ag1—O1W97.3 (3)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O3ii0.85 (10)2.15 (10)2.977 (10)164 (13)
N3—HN2···O1iii0.85 (7)2.34 (8)3.040 (10)140 (11)
O1W—HW12···O20.85 (7)1.90 (4)2.725 (11)162 (12)
Symmetry codes: (ii) x, y, z+1; (iii) x1/2, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds