Download citation
Download citation
link to html
In the crystal structure of the title compound, [(C24H21NO2P2)2H]+·I3, the triiodide anion is linear, sitting across a centre of symmetry, with I—I distances of 2.9130 (6) Å. The [H{(OPPh2)2NH}2]+ cation is formed by two symmetry-related mol­ecules of tetra­phenyl­imido­diphos­phinic acid, (OPPh2)2NH, exbiting for the O—P—N—P—O skeleton an anti conformation [code (−,+)/(+,−)] with an angular P—N—P fragment. The charge is determined by a single proton shared by these two molecules, disordered across a centre of symmetry and forming an O—H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047198/lw2032sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047198/lw2032Isup2.hkl
Contains datablock I

CCDC reference: 667272

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.053
  • wR factor = 0.120
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.33 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.60 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C5 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C48 H43 I3 N2 O4 P4 Atom count from _chemical_formula_moiety:C48 H43 I1 N2 O4 P4 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The tetraphenylimidodiphosphinato ligand [(OPPh2)2N]- is extensively used in coordination chemistry due to its ability to form stable complexes with a variety of main group and transition metals, Garcia-Montalvo et al., 2001; Ghesner et al., 2005; Haiduc, 2004; Silvestru et al., 2001; Silvestru & Drake, 2001; Yi et al., 2006. In metal complexes the O,O'-monometallic biconnective pattern of this ligand is the most common, with an angular P—N—P fragment (Silvestru & Drake, 2001). Due to its ideal framework structure for minimization of radiationless decay pathways of NIR f-f luminescence, [(OPPh2)2N]- is also an efficient sensitizer for NIR light emitting complexes of NdIII, ErIII and YbIII (Bassett et al., 2005).

Metal complexes with the neutral ligand (OPPh2)2NH are much less common (Rietzel et al., 1990). The crystal structure of tetraphenylimidodiphosphinic acid, (OPPh2)2NH is known (Noth, 1982) and it features a polymeric structure with P—N—P fragments connected by symmetric O—H—O bridges.

The crystal of the title compound contains a perfect linear triiodide anion and the cation [H{(OPPh2)2NH}2]+ (Figure 1). In this cation a hydrogen atom (H1A) bridges two symmetry related (OPPh2)2NH molecules at O1. H1A appears to be disorded over two positions. A similar disordered hydrogen has been already reported in a similar compound [(Me3PO)2H][AuI2] (Godfrey et al., 1996). This proton briges two (OPPh2)2NH molecules at O1and its symmetry equivalent O1i atom [O1···O1i = 2.411 (5) Å; symmetry code: (i) = -x, -y + 2, -z + 1].

The P—O and N—P distances are of the same magnitude [O1—P1 = 1.516 (3) Å, O2—P2 1.493 (4) Å; N1—P1 = 1.641 (4) Å, N1—P2 = 1.669 (4) Å] suggesting a delocalization of the positive charge over the OPNPO skeleton of both (OPPh2)2NH molecules (Silvestru & Drake, 2001b).

Strong intermolecular interactions between the NH groups and the unprotonated oxygen atom, O2, from symmetry related cation units [H1···O2ii = 1.90 Å; N1···O2ii = 2.726 (5) Å; N1—H1—O2ii = 161°; symmetry code: (ii) = -x + 1, -y + 2, -z + 1] result in a chain polymer association (Figure 2). The hydrogen-bonding pattern can be designated as R22(8) (Bernstein et al., 1995).

Related literature top

For related literature, see: Bassett et al. (2005); Bernstein et al. (1995); Garcia-Montalvo et al. (2001); Ghesner et al. (2005); Godfrey et al. (1996); Haiduc (2004); Noth (1982); Rietzel et al. (1990); Silvestru et al. (2001); Silvestru & Drake (2001); Yi et al. (2006).

.

Experimental top

The compound was obtained from the reaction of elemental Se, I2 and (SePPh2)2NH (1:1:1 molar ratio) in dichloromethane. The crystals (33% yield) were obtained by slow diffusion from CH2Cl2/hexane. Spectroscopic analysis: 1H NMR (CDCl3, 300 MHz): δ 7.34 (ddd, 816H, C6H5-meta, 3JHH = 7.7, 4JHH = 3.4 Hz), 7.51 (7, 8H, C6H5-para, 3JHH = 6.7 Hz), 7.65 (dd, 16H, C6H5-ortho, 3JPH = 13.3, 3JHH = 7.5 Hz); 13C NMR (CDCl3, 75.47 MHz): 128.59 (m, C-meta), 130.50 (dd, C-ipso, 3JPP = 130.5, 4JPP = 1.7 Hz), 131.70 (m, C-ortho), 132.57 (s, C-para); 31P NMR (CDCl3, 121.48 MHz): δ 25.4 (s). The same compound was obtained by using elemental Se, I2 and (SPPh2)2NH (1:1:1 molar ratio).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and Uiso= 1.2Ueq (C) for aryl H. The H atom bonded to N1 was found in a difference map and refined with a restrained N—H distance of 0.86 (4) Å. The half hydrogen attached to O1 was located on a difference map and refined as a riding atom at 0.82 Å from O1.

There is a Q peak close to the O2 atom and the refinament of the structure was made taking into account this feature by partial protonation at O2 with different occupancy factors. In all our attempts the refinement did not yielded anything meaningful. The main problem is that the proton partially localized on O2 gets very close to the H1 atom bonded to nitrogen N1.

Structure description top

The tetraphenylimidodiphosphinato ligand [(OPPh2)2N]- is extensively used in coordination chemistry due to its ability to form stable complexes with a variety of main group and transition metals, Garcia-Montalvo et al., 2001; Ghesner et al., 2005; Haiduc, 2004; Silvestru et al., 2001; Silvestru & Drake, 2001; Yi et al., 2006. In metal complexes the O,O'-monometallic biconnective pattern of this ligand is the most common, with an angular P—N—P fragment (Silvestru & Drake, 2001). Due to its ideal framework structure for minimization of radiationless decay pathways of NIR f-f luminescence, [(OPPh2)2N]- is also an efficient sensitizer for NIR light emitting complexes of NdIII, ErIII and YbIII (Bassett et al., 2005).

Metal complexes with the neutral ligand (OPPh2)2NH are much less common (Rietzel et al., 1990). The crystal structure of tetraphenylimidodiphosphinic acid, (OPPh2)2NH is known (Noth, 1982) and it features a polymeric structure with P—N—P fragments connected by symmetric O—H—O bridges.

The crystal of the title compound contains a perfect linear triiodide anion and the cation [H{(OPPh2)2NH}2]+ (Figure 1). In this cation a hydrogen atom (H1A) bridges two symmetry related (OPPh2)2NH molecules at O1. H1A appears to be disorded over two positions. A similar disordered hydrogen has been already reported in a similar compound [(Me3PO)2H][AuI2] (Godfrey et al., 1996). This proton briges two (OPPh2)2NH molecules at O1and its symmetry equivalent O1i atom [O1···O1i = 2.411 (5) Å; symmetry code: (i) = -x, -y + 2, -z + 1].

The P—O and N—P distances are of the same magnitude [O1—P1 = 1.516 (3) Å, O2—P2 1.493 (4) Å; N1—P1 = 1.641 (4) Å, N1—P2 = 1.669 (4) Å] suggesting a delocalization of the positive charge over the OPNPO skeleton of both (OPPh2)2NH molecules (Silvestru & Drake, 2001b).

Strong intermolecular interactions between the NH groups and the unprotonated oxygen atom, O2, from symmetry related cation units [H1···O2ii = 1.90 Å; N1···O2ii = 2.726 (5) Å; N1—H1—O2ii = 161°; symmetry code: (ii) = -x + 1, -y + 2, -z + 1] result in a chain polymer association (Figure 2). The hydrogen-bonding pattern can be designated as R22(8) (Bernstein et al., 1995).

For related literature, see: Bassett et al. (2005); Bernstein et al. (1995); Garcia-Montalvo et al. (2001); Ghesner et al. (2005); Godfrey et al. (1996); Haiduc (2004); Noth (1982); Rietzel et al. (1990); Silvestru et al. (2001); Silvestru & Drake (2001); Yi et al. (2006).

.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. : A view of title compound showing the atom-numbering scheme at 30% probability thermal ellipsoids (hydrogen bonds shown as dotted lines). H atoms are shown as small spheres of arbitrary radii. Both components of the disorderd H1A are showed.
[Figure 2] Fig. 2. : View of the secondary interactions H···O (indicated as dotted lines). All another hydrogen atoms were omitted for clarity.
Hydrogen bis(tetraphenylimidodiphospinic acid) triiodide top
Crystal data top
C48H43N2O4P4+·I3Z = 1
Mr = 1216.42F(000) = 596
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2291 (14) ÅCell parameters from 3014 reflections
b = 11.3075 (15) Åθ = 2.3–21.7°
c = 11.3840 (15) ŵ = 2.07 mm1
α = 91.451 (2)°T = 297 K
β = 96.411 (2)°Block, brown
γ = 108.696 (2)°0.23 × 0.17 × 0.14 mm
V = 1236.8 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4347 independent reflections
Radiation source: fine-focus sealed tube3662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
h = 1212
Tmin = 0.635, Tmax = 0.745k = 1313
12050 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0442P)2 + 2.0708P]
where P = (Fo2 + 2Fc2)/3
4347 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 1.45 e Å3
1 restraintΔρmin = 0.63 e Å3
Crystal data top
C48H43N2O4P4+·I3γ = 108.696 (2)°
Mr = 1216.42V = 1236.8 (3) Å3
Triclinic, P1Z = 1
a = 10.2291 (14) ÅMo Kα radiation
b = 11.3075 (15) ŵ = 2.07 mm1
c = 11.3840 (15) ÅT = 297 K
α = 91.451 (2)°0.23 × 0.17 × 0.14 mm
β = 96.411 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4347 independent reflections
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
3662 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.745Rint = 0.031
12050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 1.45 e Å3
4347 reflectionsΔρmin = 0.63 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2542 (5)1.2068 (5)0.5979 (4)0.0371 (11)
C20.2634 (6)1.2393 (5)0.4821 (5)0.0469 (13)
H20.24881.17780.42180.056*
C30.2939 (7)1.3619 (6)0.4563 (6)0.0638 (17)
H30.30141.38380.37860.077*
C40.3132 (9)1.4524 (7)0.5448 (8)0.086 (2)
H40.33331.53560.52680.103*
C50.3034 (10)1.4215 (7)0.6585 (7)0.093 (3)
H50.31701.48360.71800.111*
C60.2734 (7)1.2985 (6)0.6865 (5)0.0606 (16)
H60.26611.27760.76450.073*
C70.2370 (5)1.0310 (5)0.7854 (4)0.0360 (11)
C80.3676 (6)1.0853 (5)0.8477 (5)0.0507 (14)
H80.44221.12740.80820.061*
C90.3871 (7)1.0771 (6)0.9679 (5)0.0627 (17)
H90.47461.11561.01000.075*
C100.2795 (8)1.0131 (7)1.0264 (5)0.0703 (19)
H100.29401.00721.10780.084*
C110.1503 (7)0.9575 (6)0.9654 (5)0.0633 (17)
H110.07730.91301.00550.076*
C120.1271 (6)0.9668 (5)0.8445 (5)0.0482 (13)
H120.03860.93040.80340.058*
C130.2745 (6)0.7944 (5)0.4045 (4)0.0419 (12)
C140.1562 (7)0.8115 (6)0.3462 (5)0.0560 (15)
H140.11150.85880.38360.067*
C150.1043 (8)0.7589 (7)0.2329 (5)0.074 (2)
H150.02340.76850.19490.089*
C160.1724 (9)0.6932 (7)0.1774 (6)0.085 (3)
H160.13820.65920.10050.102*
C170.2890 (9)0.6760 (6)0.2317 (7)0.082 (2)
H170.33410.63080.19190.098*
C180.3418 (7)0.7259 (5)0.3472 (5)0.0564 (16)
H180.42110.71330.38510.068*
C190.2451 (5)0.7607 (4)0.6548 (4)0.0360 (11)
C200.1062 (6)0.6920 (6)0.6285 (5)0.0531 (15)
H200.05820.69570.55510.064*
C210.0388 (6)0.6177 (6)0.7120 (6)0.0693 (19)
H210.05520.57180.69490.083*
C220.1088 (7)0.6109 (6)0.8195 (5)0.0589 (16)
H220.06230.56030.87510.071*
C230.2466 (6)0.6780 (5)0.8460 (5)0.0513 (14)
H230.29340.67350.91970.062*
C240.3163 (6)0.7523 (5)0.7642 (4)0.0437 (12)
H240.41070.79680.78180.052*
I10.50000.50000.00000.0595 (2)
I20.22309 (5)0.35171 (5)0.04825 (5)0.0815 (2)
N10.3180 (4)0.9957 (4)0.5632 (3)0.0340 (9)
O20.4953 (4)0.8718 (3)0.5776 (3)0.0482 (9)
O10.0584 (3)0.9733 (3)0.5882 (3)0.0444 (9)
H1A0.04270.97830.51660.067*0.50
P10.20980 (12)1.04556 (12)0.63033 (11)0.0323 (3)
P20.34452 (13)0.85791 (12)0.55250 (11)0.0343 (3)
H10.370 (4)1.051 (4)0.523 (4)0.038 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (3)0.037 (3)0.041 (3)0.016 (2)0.006 (2)0.005 (2)
C20.053 (3)0.047 (3)0.044 (3)0.022 (3)0.003 (3)0.008 (3)
C30.075 (4)0.062 (4)0.064 (4)0.031 (3)0.017 (3)0.032 (3)
C40.119 (7)0.046 (4)0.104 (6)0.038 (4)0.023 (5)0.020 (4)
C50.162 (9)0.050 (4)0.076 (5)0.046 (5)0.024 (5)0.001 (4)
C60.089 (5)0.054 (4)0.049 (4)0.034 (3)0.017 (3)0.007 (3)
C70.038 (3)0.040 (3)0.033 (3)0.016 (2)0.007 (2)0.005 (2)
C80.051 (3)0.054 (3)0.043 (3)0.013 (3)0.003 (3)0.008 (3)
C90.073 (4)0.070 (4)0.040 (3)0.023 (4)0.015 (3)0.001 (3)
C100.108 (6)0.080 (5)0.028 (3)0.039 (4)0.005 (4)0.009 (3)
C110.083 (5)0.073 (4)0.048 (4)0.035 (4)0.033 (3)0.023 (3)
C120.044 (3)0.055 (3)0.049 (3)0.018 (3)0.011 (3)0.013 (3)
C130.051 (3)0.037 (3)0.036 (3)0.008 (2)0.016 (2)0.003 (2)
C140.068 (4)0.061 (4)0.038 (3)0.019 (3)0.012 (3)0.001 (3)
C150.083 (5)0.081 (5)0.043 (4)0.004 (4)0.005 (3)0.002 (3)
C160.093 (6)0.080 (5)0.048 (4)0.022 (5)0.024 (4)0.021 (4)
C170.093 (6)0.052 (4)0.082 (5)0.012 (4)0.052 (5)0.027 (4)
C180.065 (4)0.041 (3)0.061 (4)0.007 (3)0.031 (3)0.004 (3)
C190.042 (3)0.034 (3)0.035 (3)0.014 (2)0.013 (2)0.011 (2)
C200.045 (3)0.062 (4)0.051 (3)0.014 (3)0.004 (3)0.024 (3)
C210.046 (4)0.076 (5)0.076 (5)0.001 (3)0.017 (3)0.034 (4)
C220.065 (4)0.060 (4)0.053 (4)0.013 (3)0.026 (3)0.031 (3)
C230.065 (4)0.057 (4)0.036 (3)0.024 (3)0.009 (3)0.015 (3)
C240.051 (3)0.042 (3)0.038 (3)0.014 (3)0.010 (2)0.006 (2)
I10.0620 (4)0.0660 (4)0.0568 (4)0.0341 (3)0.0025 (3)0.0116 (3)
I20.0716 (3)0.0742 (3)0.0942 (4)0.0167 (3)0.0177 (3)0.0173 (3)
N10.035 (2)0.033 (2)0.032 (2)0.0074 (18)0.0092 (18)0.0063 (18)
O20.040 (2)0.052 (2)0.059 (2)0.0169 (17)0.0231 (17)0.0202 (19)
O10.0338 (19)0.051 (2)0.045 (2)0.0096 (16)0.0002 (15)0.0119 (17)
P10.0285 (6)0.0367 (7)0.0316 (7)0.0103 (5)0.0035 (5)0.0051 (5)
P20.0359 (7)0.0367 (7)0.0339 (7)0.0137 (6)0.0117 (5)0.0090 (5)
Geometric parameters (Å, º) top
C1—C61.380 (7)C14—H140.9300
C1—C21.383 (7)C15—C161.358 (11)
C1—P11.791 (5)C15—H150.9300
C2—C31.366 (8)C16—C171.354 (11)
C2—H20.9300C16—H160.9300
C3—C41.370 (10)C17—C181.395 (9)
C3—H30.9300C17—H170.9300
C4—C51.355 (10)C18—H180.9300
C4—H40.9300C19—C201.378 (7)
C5—C61.378 (9)C19—C241.393 (7)
C5—H50.9300C19—P21.792 (5)
C6—H60.9300C20—C211.378 (8)
C7—C81.381 (7)C20—H200.9300
C7—C121.383 (7)C21—C221.365 (8)
C7—P11.776 (5)C21—H210.9300
C8—C91.371 (8)C22—C231.364 (8)
C8—H80.9300C22—H220.9300
C9—C101.362 (10)C23—C241.373 (7)
C9—H90.9300C23—H230.9300
C10—C111.365 (9)C24—H240.9300
C10—H100.9300I1—I22.9130 (6)
C11—C121.383 (8)N1—P11.641 (4)
C11—H110.9300N1—P21.669 (4)
C12—H120.9300N1—H10.86 (4)
C13—C181.385 (7)O2—P21.493 (4)
C13—C141.385 (8)O1—P11.516 (3)
C13—P21.791 (5)O1—H1A0.82
C14—C151.379 (8)
C6—C1—C2119.5 (5)C17—C16—C15121.3 (7)
C6—C1—P1120.7 (4)C17—C16—H16119.3
C2—C1—P1119.7 (4)C15—C16—H16119.3
C3—C2—C1120.1 (6)C16—C17—C18120.2 (7)
C3—C2—H2120.0C16—C17—H17119.9
C1—C2—H2120.0C18—C17—H17119.9
C2—C3—C4120.1 (6)C13—C18—C17119.1 (7)
C2—C3—H3120.0C13—C18—H18120.4
C4—C3—H3120.0C17—C18—H18120.4
C5—C4—C3120.4 (6)C20—C19—C24119.7 (5)
C5—C4—H4119.8C20—C19—P2123.5 (4)
C3—C4—H4119.8C24—C19—P2116.8 (4)
C4—C5—C6120.5 (7)C19—C20—C21119.5 (5)
C4—C5—H5119.8C19—C20—H20120.3
C6—C5—H5119.8C21—C20—H20120.3
C5—C6—C1119.5 (6)C22—C21—C20120.5 (6)
C5—C6—H6120.2C22—C21—H21119.7
C1—C6—H6120.2C20—C21—H21119.7
C8—C7—C12119.7 (5)C23—C22—C21120.4 (5)
C8—C7—P1120.1 (4)C23—C22—H22119.8
C12—C7—P1120.2 (4)C21—C22—H22119.8
C9—C8—C7119.8 (6)C22—C23—C24120.2 (5)
C9—C8—H8120.1C22—C23—H23119.9
C7—C8—H8120.1C24—C23—H23119.9
C10—C9—C8120.7 (6)C23—C24—C19119.7 (5)
C10—C9—H9119.7C23—C24—H24120.2
C8—C9—H9119.7C19—C24—H24120.2
C9—C10—C11120.0 (6)I2—I1—I2180.0
C9—C10—H10120.0P1—N1—P2133.4 (3)
C11—C10—H10120.0P1—N1—H1113 (3)
C10—C11—C12120.5 (6)P2—N1—H1113 (3)
C10—C11—H11119.8P1—O1—H1A109.5
C12—C11—H11119.8O1—P1—N1113.0 (2)
C11—C12—C7119.3 (6)O1—P1—C7107.2 (2)
C11—C12—H12120.3N1—P1—C7110.3 (2)
C7—C12—H12120.3O1—P1—C1112.0 (2)
C18—C13—C14119.4 (5)N1—P1—C1103.6 (2)
C18—C13—P2118.3 (5)C7—P1—C1110.7 (2)
C14—C13—P2122.4 (4)O2—P2—N1111.7 (2)
C15—C14—C13120.4 (6)O2—P2—C13111.6 (2)
C15—C14—H14119.8N1—P2—C13105.7 (2)
C13—C14—H14119.8O2—P2—C19111.4 (2)
C16—C15—C14119.5 (7)N1—P2—C19107.0 (2)
C16—C15—H15120.2C13—P2—C19109.2 (2)
C14—C15—H15120.2
C6—C1—C2—C31.2 (8)P2—C19—C24—C23179.1 (4)
P1—C1—C2—C3178.4 (4)P2—N1—P1—O159.5 (4)
C1—C2—C3—C41.0 (10)P2—N1—P1—C760.5 (4)
C2—C3—C4—C50.5 (12)P2—N1—P1—C1179.1 (3)
C3—C4—C5—C60.2 (14)C8—C7—P1—O1178.3 (4)
C4—C5—C6—C10.4 (12)C12—C7—P1—O12.6 (5)
C2—C1—C6—C51.0 (9)C8—C7—P1—N154.9 (5)
P1—C1—C6—C5178.1 (6)C12—C7—P1—N1126.0 (4)
C12—C7—C8—C91.1 (8)C8—C7—P1—C159.2 (5)
P1—C7—C8—C9178.0 (5)C12—C7—P1—C1119.9 (4)
C7—C8—C9—C101.7 (10)C6—C1—P1—O1105.7 (5)
C8—C9—C10—C110.7 (10)C2—C1—P1—O171.4 (5)
C9—C10—C11—C120.8 (10)C6—C1—P1—N1132.2 (5)
C10—C11—C12—C71.3 (9)C2—C1—P1—N150.7 (5)
C8—C7—C12—C110.4 (8)C6—C1—P1—C714.0 (5)
P1—C7—C12—C11179.5 (4)C2—C1—P1—C7168.9 (4)
C18—C13—C14—C151.2 (9)P1—N1—P2—O2131.9 (3)
P2—C13—C14—C15178.8 (5)P1—N1—P2—C13106.6 (4)
C13—C14—C15—C161.9 (10)P1—N1—P2—C199.7 (4)
C14—C15—C16—C171.2 (11)C18—C13—P2—O222.7 (5)
C15—C16—C17—C180.2 (11)C14—C13—P2—O2157.3 (4)
C14—C13—C18—C170.2 (8)C18—C13—P2—N1144.3 (4)
P2—C13—C18—C17179.8 (4)C14—C13—P2—N135.7 (5)
C16—C17—C18—C130.9 (9)C18—C13—P2—C19100.9 (4)
C24—C19—C20—C211.3 (9)C14—C13—P2—C1979.1 (5)
P2—C19—C20—C21178.7 (5)C20—C19—P2—O2153.2 (4)
C19—C20—C21—C220.6 (10)C24—C19—P2—O224.3 (5)
C20—C21—C22—C230.2 (11)C20—C19—P2—N184.4 (5)
C21—C22—C23—C240.5 (10)C24—C19—P2—N198.1 (4)
C22—C23—C24—C191.2 (8)C20—C19—P2—C1329.5 (5)
C20—C19—C24—C231.6 (8)C24—C19—P2—C13148.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.821.712.411 (5)143
N1—H1···O2ii0.86 (4)1.90 (4)2.726 (5)161
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC48H43N2O4P4+·I3
Mr1216.42
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)10.2291 (14), 11.3075 (15), 11.3840 (15)
α, β, γ (°)91.451 (2), 96.411 (2), 108.696 (2)
V3)1236.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.23 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SHELXTL; Bruker, 2001)
Tmin, Tmax0.635, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
12050, 4347, 3662
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.121, 1.12
No. of reflections4347
No. of parameters281
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.45, 0.63

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2001), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O1i0.821.712.411 (5)143
N1—H1···O2ii0.86 (4)1.90 (4)2.726 (5)161
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds