Download citation
Download citation
link to html
The title compound, C13H12N4O3S3, was synthesized via condensation of 1,2,4-oxadiazole chloro­methane with 1,3,4-thia­diazo­lethiol. There are three rings in the molecule. The benzene and oxadiazole rings are coplanar due to the extended aromatic system. The angle between this plane and the thiadiazole plane is 82.2°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050313/lw2039sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050313/lw2039Isup2.hkl
Contains datablock I

CCDC reference: 669139

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.051
  • wR factor = 0.138
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,2,4-Oxadiazoles represent an important class of five-membered heterocycles. Some derivatives of 1,2,4-oxadiazoles have anti-inflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties. We are focusing our synthetic and structural studies on new oxindole derivatives. The sulfurether compounds exhibited considerably strong inhibiting activity to Staphylococcus aureus (Talar & Dejai, 1996). We report here the structure of its close analogue with thiadiazole sulfanylether group, (I). The benzene and oxadiazole rings are almost coplanar, howvever, the thiadiazole ring deviates from this plane. There are no classic hydrogen bonds in the molecular structure. The molecular structure of (I) is shown in Fig. 1.

Related literature top

For related literature, see: Nicolaides et al. (1998); Romero (2001); Talar & Dejai (1996).

Experimental top

5-Mercapto-2-methyl-1,3,4-thiadiazole (20 mmol) was dissolve in ethanol (70 ml) and water (70 mmol). Sodium acetate (20 mmol) was added to this mixture. Then 3-[4-(Methylsulfonyl)phenyl]-5-chloromethyl-1,2,4-oxadiazol (40 mmol) was added. The resulting mixture was refluxed for 8 h. After cooling and filtrating, crude compound (I) was gained. Pure compound (I) was obtained by crystallizing from a mixture of ethyl acetate (8 ml) and petrolum ether (4 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. 1H NMR (CDCl3, δ, p.p.m.): 7.95–7.99 (m, 2H), 7.75–7.76 (m, 2H), 4.17–4.18 (s, 2H), 2.85–2.86 (s,3H), 2.35–2.36 (s,3H).

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.96 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Structure description top

1,2,4-Oxadiazoles represent an important class of five-membered heterocycles. Some derivatives of 1,2,4-oxadiazoles have anti-inflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties. We are focusing our synthetic and structural studies on new oxindole derivatives. The sulfurether compounds exhibited considerably strong inhibiting activity to Staphylococcus aureus (Talar & Dejai, 1996). We report here the structure of its close analogue with thiadiazole sulfanylether group, (I). The benzene and oxadiazole rings are almost coplanar, howvever, the thiadiazole ring deviates from this plane. There are no classic hydrogen bonds in the molecular structure. The molecular structure of (I) is shown in Fig. 1.

For related literature, see: Nicolaides et al. (1998); Romero (2001); Talar & Dejai (1996).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
2-Methyl-5-{3-[4-(methylsulfonyl)phenyl]-1,2,4-oxadiazol-5-ylmethylsulfanyl}- 1,3,4-thiadiazole top
Crystal data top
C13H12N4O3S3F(000) = 760
Mr = 368.45Dx = 1.585 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.365 (3) Åθ = 10–13°
b = 15.956 (3) ŵ = 0.50 mm1
c = 8.2400 (16) ÅT = 293 K
β = 108.26 (3)°Block, colourless
V = 1543.9 (6) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2349 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 1514
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.825, Tmax = 0.907l = 010
3239 measured reflections3 standard reflections every 200 reflections
3019 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.08P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
3019 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C13H12N4O3S3V = 1543.9 (6) Å3
Mr = 368.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.365 (3) ŵ = 0.50 mm1
b = 15.956 (3) ÅT = 293 K
c = 8.2400 (16) Å0.40 × 0.30 × 0.20 mm
β = 108.26 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2349 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.825, Tmax = 0.9073 standard reflections every 200 reflections
3239 measured reflections intensity decay: none
3019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
3019 reflectionsΔρmin = 0.57 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72521 (7)0.34658 (5)0.36586 (11)0.0417 (2)
O10.4584 (2)0.04592 (14)0.1689 (3)0.0481 (6)
N10.7921 (2)0.19730 (17)0.4507 (4)0.0441 (7)
C10.9215 (3)0.3017 (2)0.6335 (5)0.0467 (8)
H1B0.96370.25320.68740.070*
H1C0.89780.33290.71590.070*
H1D0.96900.33630.58860.070*
S20.52374 (7)0.27954 (6)0.09389 (12)0.0481 (3)
O20.1594 (2)0.01484 (14)0.9643 (3)0.0488 (6)
N20.6927 (2)0.18906 (16)0.3141 (4)0.0450 (7)
C20.8194 (3)0.27461 (18)0.4915 (4)0.0372 (7)
S30.10797 (6)0.07761 (4)0.83848 (10)0.0334 (2)
O30.1006 (2)0.16209 (13)0.8943 (3)0.0482 (6)
N30.3686 (2)0.15372 (15)0.2358 (3)0.0376 (6)
C30.6486 (3)0.26122 (18)0.2582 (4)0.0363 (7)
N40.4067 (2)0.01607 (16)0.2870 (4)0.0433 (6)
C40.4766 (3)0.1743 (2)0.0265 (4)0.0487 (9)
H4B0.41810.17710.08400.058*
H4C0.54010.14300.01200.058*
C50.4305 (3)0.1279 (2)0.1470 (4)0.0399 (7)
C60.3552 (2)0.08168 (17)0.3201 (4)0.0338 (6)
C70.2925 (2)0.07993 (17)0.4449 (4)0.0340 (7)
C80.2290 (3)0.14939 (19)0.4627 (4)0.0426 (8)
H8A0.22470.19600.39330.051*
C90.1727 (3)0.14945 (18)0.5821 (4)0.0394 (7)
H9A0.12970.19560.59380.047*
C100.1810 (2)0.07929 (17)0.6852 (4)0.0323 (6)
C110.2437 (3)0.00997 (18)0.6702 (4)0.0374 (7)
H11A0.24840.03630.74070.045*
C130.0297 (3)0.0440 (2)0.7251 (4)0.0442 (8)
H13A0.07500.04150.80080.066*
H13B0.02620.01060.67820.066*
H13C0.06360.08270.63420.066*
C120.2993 (2)0.01041 (18)0.5485 (4)0.0376 (7)
H12A0.34140.03610.53610.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0426 (4)0.0254 (4)0.0617 (5)0.0052 (3)0.0227 (4)0.0095 (3)
O10.0512 (14)0.0434 (13)0.0611 (15)0.0006 (11)0.0341 (12)0.0035 (11)
N10.0510 (16)0.0318 (14)0.0530 (16)0.0119 (12)0.0215 (14)0.0076 (12)
C10.0410 (18)0.0450 (19)0.056 (2)0.0067 (15)0.0188 (15)0.0063 (16)
S20.0403 (5)0.0470 (5)0.0606 (5)0.0017 (4)0.0208 (4)0.0177 (4)
O20.0559 (14)0.0431 (13)0.0513 (13)0.0099 (11)0.0222 (11)0.0146 (11)
N20.0509 (16)0.0290 (13)0.0609 (17)0.0083 (12)0.0258 (14)0.0082 (13)
C20.0400 (16)0.0305 (16)0.0501 (18)0.0080 (13)0.0273 (14)0.0082 (13)
S30.0354 (4)0.0268 (4)0.0415 (4)0.0008 (3)0.0172 (3)0.0019 (3)
O30.0613 (15)0.0302 (12)0.0605 (14)0.0002 (10)0.0296 (12)0.0083 (10)
N30.0371 (14)0.0346 (13)0.0462 (15)0.0045 (11)0.0205 (12)0.0019 (11)
C30.0412 (16)0.0275 (14)0.0499 (18)0.0026 (12)0.0284 (14)0.0057 (13)
N40.0460 (15)0.0361 (14)0.0564 (17)0.0041 (12)0.0281 (13)0.0012 (12)
C40.048 (2)0.058 (2)0.0481 (19)0.0096 (17)0.0268 (16)0.0005 (16)
C50.0350 (16)0.0419 (18)0.0459 (18)0.0076 (13)0.0170 (14)0.0034 (14)
C60.0282 (14)0.0314 (15)0.0444 (16)0.0058 (12)0.0153 (12)0.0019 (12)
C70.0269 (14)0.0271 (15)0.0519 (18)0.0045 (11)0.0180 (13)0.0013 (13)
C80.0475 (18)0.0276 (15)0.062 (2)0.0043 (13)0.0304 (16)0.0120 (14)
C90.0408 (17)0.0253 (14)0.0605 (19)0.0077 (13)0.0280 (15)0.0090 (14)
C100.0285 (14)0.0266 (14)0.0460 (16)0.0008 (11)0.0178 (12)0.0010 (12)
C110.0375 (15)0.0229 (14)0.0564 (19)0.0032 (12)0.0214 (14)0.0085 (13)
C130.0377 (17)0.0413 (18)0.057 (2)0.0043 (14)0.0192 (15)0.0019 (15)
C120.0354 (15)0.0270 (15)0.0555 (19)0.0032 (12)0.0215 (14)0.0035 (13)
Geometric parameters (Å, º) top
S1—C21.729 (3)N4—C61.298 (4)
S1—C31.736 (3)C4—C51.488 (4)
O1—C51.350 (4)C4—H4B0.9700
O1—N41.405 (3)C4—H4C0.9700
N1—C21.295 (4)C6—C71.468 (4)
N1—N21.389 (4)C7—C121.386 (4)
C1—C21.492 (5)C7—C81.393 (4)
C1—H1B0.9600C8—C91.372 (4)
C1—H1C0.9600C8—H8A0.9300
C1—H1D0.9600C9—C101.389 (4)
S2—C31.730 (3)C9—H9A0.9300
S2—C41.807 (4)C10—C111.378 (4)
O2—S31.439 (2)C11—C121.383 (4)
N2—C31.295 (4)C11—H11A0.9300
S3—O31.436 (2)C13—H13A0.9600
S3—C131.750 (3)C13—H13B0.9600
S3—C101.768 (3)C13—H13C0.9600
N3—C51.281 (4)C12—H12A0.9300
N3—C61.380 (4)
C2—S1—C386.69 (15)N3—C5—O1114.1 (3)
C5—O1—N4105.6 (2)N3—C5—C4130.0 (3)
C2—N1—N2113.1 (3)O1—C5—C4115.9 (3)
C2—C1—H1B109.5N4—C6—N3114.9 (3)
C2—C1—H1C109.5N4—C6—C7122.2 (3)
H1B—C1—H1C109.5N3—C6—C7122.8 (2)
C2—C1—H1D109.5C12—C7—C8119.9 (3)
H1B—C1—H1D109.5C12—C7—C6120.2 (3)
H1C—C1—H1D109.5C8—C7—C6119.8 (3)
C3—S2—C4101.93 (16)C9—C8—C7120.4 (3)
C3—N2—N1111.8 (3)C9—C8—H8A119.8
N1—C2—C1124.5 (3)C7—C8—H8A119.8
N1—C2—S1113.9 (3)C8—C9—C10118.7 (3)
C1—C2—S1121.6 (2)C8—C9—H9A120.6
O3—S3—O2118.73 (15)C10—C9—H9A120.6
O3—S3—C13108.04 (16)C11—C10—C9121.9 (3)
O2—S3—C13107.96 (16)C11—C10—S3118.6 (2)
O3—S3—C10108.20 (14)C9—C10—S3119.5 (2)
O2—S3—C10108.40 (13)C10—C11—C12118.9 (3)
C13—S3—C10104.63 (15)C10—C11—H11A120.6
C5—N3—C6102.0 (3)C12—C11—H11A120.6
N2—C3—S2127.0 (3)S3—C13—H13A109.5
N2—C3—S1114.5 (3)S3—C13—H13B109.5
S2—C3—S1118.54 (17)H13A—C13—H13B109.5
C6—N4—O1103.4 (2)S3—C13—H13C109.5
C5—C4—S2114.3 (2)H13A—C13—H13C109.5
C5—C4—H4B108.7H13B—C13—H13C109.5
S2—C4—H4B108.7C11—C12—C7120.2 (3)
C5—C4—H4C108.7C11—C12—H12A119.9
S2—C4—H4C108.7C7—C12—H12A119.9
H4B—C4—H4C107.6
C2—N1—N2—C30.3 (4)C5—N3—C6—C7177.7 (3)
N2—N1—C2—C1179.7 (3)N4—C6—C7—C128.7 (4)
N2—N1—C2—S10.0 (3)N3—C6—C7—C12168.0 (3)
C3—S1—C2—N10.3 (2)N4—C6—C7—C8173.3 (3)
C3—S1—C2—C1179.5 (3)N3—C6—C7—C810.0 (4)
N1—N2—C3—S2178.4 (2)C12—C7—C8—C90.1 (5)
N1—N2—C3—S10.6 (3)C6—C7—C8—C9178.2 (3)
C4—S2—C3—N20.4 (3)C7—C8—C9—C100.4 (5)
C4—S2—C3—S1179.38 (17)C8—C9—C10—C110.2 (5)
C2—S1—C3—N20.5 (2)C8—C9—C10—S3179.4 (3)
C2—S1—C3—S2178.59 (19)O3—S3—C10—C11150.6 (2)
C5—O1—N4—C60.3 (3)O2—S3—C10—C1120.6 (3)
C3—S2—C4—C573.2 (3)C13—S3—C10—C1194.4 (3)
C6—N3—C5—O10.6 (4)O3—S3—C10—C930.3 (3)
C6—N3—C5—C4179.9 (3)O2—S3—C10—C9160.3 (2)
N4—O1—C5—N30.2 (4)C13—S3—C10—C984.7 (3)
N4—O1—C5—C4179.7 (3)C9—C10—C11—C120.2 (5)
S2—C4—C5—N338.5 (5)S3—C10—C11—C12178.9 (2)
S2—C4—C5—O1140.8 (3)C10—C11—C12—C70.5 (5)
O1—N4—C6—N30.6 (4)C8—C7—C12—C110.4 (5)
O1—N4—C6—C7177.6 (3)C6—C7—C12—C11177.7 (3)
C5—N3—C6—N40.8 (4)

Experimental details

Crystal data
Chemical formulaC13H12N4O3S3
Mr368.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.365 (3), 15.956 (3), 8.2400 (16)
β (°) 108.26 (3)
V3)1543.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.825, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
3239, 3019, 2349
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.07
No. of reflections3019
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.57

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds