Download citation
Download citation
link to html
The title compound, [Cu{HO3PCH(OH)CO2}(H2O)]·2H2O, was prepared by a hydro­thermal reaction. The distorted square-pyramidal coordination geometry of copper(II) is built up of one phospho­nate O atom, one hydr­oxy O atom, two carboxyl­ate O atoms and one water mol­ecule. In the crystal structure, a number of O—H...O hydrogen bonds involving the hydr­oxy groups, carboxyl­ate O atoms, phospho­nate O atoms, and uncoordinated and coordinated water mol­ecules are found.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047332/nc2059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047332/nc2059Isup2.hkl
Contains datablock I

CCDC reference: 627192

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.035
  • wR factor = 0.084
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT731_ALERT_1_B Bond Calc 0.85(5), Rep 0.845(10) ...... 5.00 su-Ra O2W -H2WB 1.555 1.555 PLAT735_ALERT_1_B D-H Calc 0.85(5), Rep 0.845(10) ...... 5.00 su-Ra O2W -H4# 1.555 1.555
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.05 Ratio PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.847(10) ...... 3.00 su-Ra O7 -H7A 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.848(10) ...... 3.00 su-Ra O7 -H7B 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.846(10) ...... 3.00 su-Ra O1W -H1WA 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.843(10) ...... 3.00 su-Ra O1W -H1WB 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(4), Rep 0.845(10) ...... 4.00 su-Ra O2W -H2WA 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.847(10) ...... 3.00 su-Ra O7 -H7A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(4), Rep 0.845(10) ...... 4.00 su-Ra O2W -H2# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.846(10) ...... 3.00 su-Ra O1W -H1# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.843(10) ...... 3.00 su-Ra O1W -H3# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.848(10) ...... 3.00 su-Ra O7 -H7B 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.95(3), Rep 1.947(12) ...... 2.50 su-Ra H7A -O1W 1.555 8.855 PLAT736_ALERT_1_C H...A Calc 1.88(3), Rep 1.876(13) ...... 2.31 su-Ra H7B -O2W 1.555 1.655
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of P1 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C1 = ... R PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.16 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 17 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Metal phosphonates have been of increasing interest in the past decade due to their potential applications in the fields of catalysis (Sharma & Clearfield, 2000), ion exchange (Clearfield, 1988), proton conductivity (Alberti et al., 1992), gas and liquid separations (Riou et al., 2000), biology (Nonglaton et al., 2004), and organic molecule sorption (Clearfield, 1998). Great efforts have been made to the syntheses of novel inorganic-organic hybrid materials based on metal phosphonates, which exhibt a variety of structures such as one-dimensional chains, two-dimensional layers, and three-dimensional networks. Recently, we also reported a novel one-dimensional Ni2+ coordination polymer containing 2-hydroxyphosphonoacetic acid (H3L) (Li et al., 2007). In this paper, we report the crystal structure of the copper(II) coordination polymer Cu[(HO3PCH(OH)CO2)(H2O)]n.2n(H2O), (I).

In the crystal structure of the title compound the Cu atom are in a distorted square-pyramidal coordination built up of five oxygen atoms from two symmetry related O3PCH(OH)CO2) anions and one coordinated water molecule. The values of the Cu—O bond lengths and O—Cu—O angles are in the range of 1.965 (3)–2.212 (3) Å and 76.07 (11) -174.87 (11) °, respectively (Table 1). The copper atoms are connected by the anions into chains, which elongate in the direction of the c axis. These chains are further be connected by O—H···O hydrogen bonding into layers, that are parallel to the a/b-plane. These layers are connected by the uncoordinated water molecules via hydrogen bonds into a three-dimensional hydrogen bonded network (Table 2 and Fig. 2).

Related literature top

For related literature, see: Alberti et al. (1992); Clearfield (1988, 1998); Li et al. (2007); Nonglaton et al. (2004); Riou et al. (2000); and Sharma & Clearfield (2000).

Experimental top

A mixture of 0.17 g (1.0 mmol) CuCl2.2H2O, 1.0 ml (4.0 mmol) 2-hydroxyphosphonoacetic acid (48.0 wt %) and 0.04 g (1.0 mmol) NH4F (as a mineralizer) were dissolved in 8 ml of deionized water, and then ammonia was added with stirring to adjust the pH of the mixture to pH = 3.0. The mixture was transfered into a 23 ml Teflon-lined stainless steel autoclave, and then heated at 423 K for 72 h. After cooling to toom-temperature blue crystals of the title compound were obtained, which were washed with demineralized water and dried in air at room temperature.

Refinement top

The C—H and hydroxyl H atoms were positioned with idealized geometry and refined isotropic (Uiso(H) = 1.2Ueq(C)) 1.5Ueq(O)) using a riding model with C—H = 0.98 and O—H = 0.82 Å. The water H atoms were located in difference map, refined isotropic with (Uiso(H) = 1.5Ueq(O)) but their bond lengths were restraint to 0.84 Å.

Structure description top

Metal phosphonates have been of increasing interest in the past decade due to their potential applications in the fields of catalysis (Sharma & Clearfield, 2000), ion exchange (Clearfield, 1988), proton conductivity (Alberti et al., 1992), gas and liquid separations (Riou et al., 2000), biology (Nonglaton et al., 2004), and organic molecule sorption (Clearfield, 1998). Great efforts have been made to the syntheses of novel inorganic-organic hybrid materials based on metal phosphonates, which exhibt a variety of structures such as one-dimensional chains, two-dimensional layers, and three-dimensional networks. Recently, we also reported a novel one-dimensional Ni2+ coordination polymer containing 2-hydroxyphosphonoacetic acid (H3L) (Li et al., 2007). In this paper, we report the crystal structure of the copper(II) coordination polymer Cu[(HO3PCH(OH)CO2)(H2O)]n.2n(H2O), (I).

In the crystal structure of the title compound the Cu atom are in a distorted square-pyramidal coordination built up of five oxygen atoms from two symmetry related O3PCH(OH)CO2) anions and one coordinated water molecule. The values of the Cu—O bond lengths and O—Cu—O angles are in the range of 1.965 (3)–2.212 (3) Å and 76.07 (11) -174.87 (11) °, respectively (Table 1). The copper atoms are connected by the anions into chains, which elongate in the direction of the c axis. These chains are further be connected by O—H···O hydrogen bonding into layers, that are parallel to the a/b-plane. These layers are connected by the uncoordinated water molecules via hydrogen bonds into a three-dimensional hydrogen bonded network (Table 2 and Fig. 2).

For related literature, see: Alberti et al. (1992); Clearfield (1988, 1998); Li et al. (2007); Nonglaton et al. (2004); Riou et al. (2000); and Sharma & Clearfield (2000).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. Crystal structure of (I) with labelling and displacement ellipsoids drawn at the the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of I with view along the b axis. Hydrogen bonding is shows as dashed lines.
catena-Poly[[[aquacopper(II)]-µ-2-(hydroxyphosphonato)acetato] dihydrate] top
Crystal data top
[Cu(C2H3O6P)(H2O)]·2H2ODx = 2.247 Mg m3
Mr = 271.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1082 reflections
a = 8.610 (5) Åθ = 3.2–23.6°
b = 9.871 (6) ŵ = 2.95 mm1
c = 18.892 (12) ÅT = 273 K
V = 1605.6 (17) Å3Plate, blue
Z = 80.10 × 0.04 × 0.03 mm
F(000) = 1096
Data collection top
Bruker APEXII CCD
diffractometer
1659 independent reflections
Radiation source: fine-focus sealed tube1187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 109
Tmin = 0.757, Tmax = 0.917k = 1212
8695 measured reflectionsl = 2313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.1295P]
where P = (Fo2 + 2Fc2)/3
1659 reflections(Δ/σ)max = 0.048
136 parametersΔρmax = 0.48 e Å3
6 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(C2H3O6P)(H2O)]·2H2OV = 1605.6 (17) Å3
Mr = 271.60Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.610 (5) ŵ = 2.95 mm1
b = 9.871 (6) ÅT = 273 K
c = 18.892 (12) Å0.10 × 0.04 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
1659 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1187 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.917Rint = 0.072
8695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
1659 reflectionsΔρmin = 0.49 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.12936 (5)0.14810 (5)0.35146 (3)0.01657 (16)
P10.80368 (12)0.01391 (10)0.35635 (6)0.0175 (3)
O10.7397 (3)0.1226 (3)0.37296 (16)0.0240 (7)
O20.9538 (3)0.0507 (3)0.39423 (15)0.0225 (7)
O30.6732 (3)0.1198 (3)0.37279 (16)0.0270 (7)
H3A0.71000.19640.37170.040*
O40.7112 (3)0.0110 (3)0.22203 (15)0.0211 (7)
H4A0.71110.09320.21560.032*
O51.0010 (3)0.2248 (3)0.27486 (15)0.0181 (6)
O60.8140 (3)0.2309 (3)0.19528 (15)0.0171 (6)
O71.2579 (4)0.0954 (3)0.43328 (16)0.0241 (7)
H7A1.312 (5)0.024 (3)0.430 (3)0.036*
H7B1.317 (4)0.162 (3)0.442 (3)0.036*
O1W1.0708 (4)0.3578 (3)0.41515 (18)0.0302 (8)
H1WA0.979 (2)0.377 (5)0.402 (3)0.045*
H2WA0.416 (6)0.356 (4)0.5073 (19)0.045*
O2W0.4439 (5)0.3037 (3)0.47445 (19)0.0387 (9)
H1WB1.057 (7)0.326 (5)0.4561 (13)0.058*
H2WB0.487 (6)0.355 (5)0.444 (2)0.058*
C10.8444 (4)0.0260 (4)0.2620 (2)0.0162 (9)
H1B0.92990.03560.25030.019*
C20.8908 (4)0.1696 (4)0.2423 (2)0.0150 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0155 (3)0.0165 (3)0.0177 (3)0.0013 (2)0.0005 (2)0.0011 (2)
P10.0165 (6)0.0134 (5)0.0225 (6)0.0016 (4)0.0007 (5)0.0013 (5)
O10.0249 (16)0.0154 (17)0.0317 (17)0.0033 (13)0.0011 (13)0.0046 (12)
O20.0215 (16)0.0247 (16)0.0214 (16)0.0051 (13)0.0022 (13)0.0032 (13)
O30.0235 (17)0.0180 (16)0.039 (2)0.0032 (12)0.0077 (14)0.0003 (14)
O40.0221 (16)0.0119 (15)0.0293 (17)0.0028 (12)0.0077 (13)0.0019 (13)
O50.0145 (14)0.0144 (16)0.0254 (17)0.0040 (11)0.0014 (13)0.0013 (12)
O60.0181 (15)0.0129 (15)0.0203 (16)0.0001 (12)0.0020 (13)0.0029 (12)
O70.0250 (17)0.0198 (17)0.0275 (17)0.0012 (13)0.0068 (14)0.0010 (15)
O1W0.0243 (17)0.0299 (19)0.036 (2)0.0041 (15)0.0012 (16)0.0010 (16)
O2W0.051 (2)0.034 (2)0.031 (2)0.0119 (18)0.0026 (18)0.0001 (15)
C10.018 (2)0.012 (2)0.018 (2)0.0018 (16)0.0020 (17)0.0004 (16)
C20.014 (2)0.015 (2)0.017 (2)0.0011 (17)0.0023 (17)0.0003 (17)
Geometric parameters (Å, º) top
Cu1—O21.965 (3)O4—H4A0.8200
Cu1—O71.971 (3)O5—C21.255 (4)
Cu1—O51.972 (3)O6—C21.262 (5)
Cu1—O6i1.994 (3)O6—Cu1ii1.994 (3)
Cu1—O4i2.211 (3)O7—H7A0.847 (10)
P1—O11.489 (3)O7—H7B0.848 (10)
P1—O21.522 (3)O1W—H1WA0.846 (10)
P1—O31.565 (3)O1W—H1WB0.843 (10)
P1—C11.820 (4)O2W—H2WA0.845 (10)
O3—H3A0.8200O2W—H2WB0.845 (10)
O4—C11.421 (4)C1—C21.519 (5)
O4—Cu1ii2.211 (3)C1—H1B0.9800
O2—Cu1—O788.87 (13)C1—O4—H4A109.5
O2—Cu1—O593.35 (12)Cu1ii—O4—H4A127.6
O7—Cu1—O5172.53 (12)C2—O5—Cu1128.1 (3)
O2—Cu1—O6i174.86 (11)C2—O6—Cu1ii122.2 (2)
O7—Cu1—O6i90.45 (13)Cu1—O7—H7A118 (3)
O5—Cu1—O6i87.97 (12)Cu1—O7—H7B107 (3)
O2—Cu1—O4i98.97 (11)H7A—O7—H7B109 (4)
O7—Cu1—O4i97.25 (12)H1WA—O1W—H1WB102 (5)
O5—Cu1—O4i89.46 (12)H2WA—O2W—H2WB105 (5)
O6i—Cu1—O4i76.07 (11)O4—C1—C2108.8 (3)
O1—P1—O2115.56 (17)O4—C1—P1110.4 (3)
O1—P1—O3107.27 (17)C2—C1—P1110.6 (3)
O2—P1—O3110.90 (17)O4—C1—H1B109.0
O1—P1—C1109.69 (17)C2—C1—H1B109.0
O2—P1—C1106.32 (17)P1—C1—H1B109.0
O3—P1—C1106.78 (17)O5—C2—O6122.2 (3)
P1—O2—Cu1125.23 (18)O5—C2—C1118.9 (3)
P1—O3—H3A109.5O6—C2—C1118.9 (3)
C1—O4—Cu1ii114.1 (2)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1iii0.821.842.651 (4)171
O4—H4A···O6iv0.821.792.606 (4)172
O7—H7A···O1Wv0.85 (1)1.95 (1)2.792 (5)176 (5)
O2W—H2WA···O2vi0.85 (1)2.10 (3)2.868 (5)151 (5)
O1W—H1WA···O1iii0.85 (1)1.97 (2)2.797 (5)167 (5)
O1W—H1WB···O2Wvii0.84 (1)2.08 (3)2.844 (5)151 (5)
O2W—H2WB···O2iii0.85 (1)2.21 (3)3.003 (5)156 (5)
O7—H7B···O2Wviii0.85 (1)1.88 (1)2.720 (5)173 (5)
Symmetry codes: (iii) x+3/2, y+1/2, z; (iv) x+3/2, y1/2, z; (v) x+5/2, y1/2, z; (vi) x1/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O6P)(H2O)]·2H2O
Mr271.60
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)8.610 (5), 9.871 (6), 18.892 (12)
V3)1605.6 (17)
Z8
Radiation typeMo Kα
µ (mm1)2.95
Crystal size (mm)0.10 × 0.04 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.757, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
8695, 1659, 1187
Rint0.072
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.04
No. of reflections1659
No. of parameters136
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Cu1—O21.965 (3)Cu1—O6i1.994 (3)
Cu1—O71.971 (3)Cu1—O4i2.211 (3)
Cu1—O51.972 (3)
O2—Cu1—O788.87 (13)O5—Cu1—O6i87.97 (12)
O2—Cu1—O593.35 (12)O2—Cu1—O4i98.97 (11)
O7—Cu1—O5172.53 (12)O7—Cu1—O4i97.25 (12)
O2—Cu1—O6i174.86 (11)O5—Cu1—O4i89.46 (12)
O7—Cu1—O6i90.45 (13)O6i—Cu1—O4i76.07 (11)
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.821.842.651 (4)170.6
O4—H4A···O6iii0.821.792.606 (4)172.0
O7—H7A···O1Wiv0.847 (10)1.947 (12)2.792 (5)176 (5)
O2W—H2WA···O2v0.845 (10)2.10 (3)2.868 (5)151 (5)
O1W—H1WA···O1ii0.846 (10)1.965 (15)2.797 (5)167 (5)
O1W—H1WB···O2Wvi0.843 (10)2.08 (3)2.844 (5)151 (5)
O2W—H2WB···O2ii0.845 (10)2.21 (3)3.003 (5)156 (5)
O7—H7B···O2Wvii0.848 (10)1.876 (13)2.720 (5)173 (5)
Symmetry codes: (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z; (iv) x+5/2, y1/2, z; (v) x1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds